
Abstract 
This paper presents an agent-based model to address the 
pedestrian route choice problem in shopping malls. 
Route choice in shopping malls may be defined by a 
number of causal factors. Shoppers may follow a pre-
defined schedule, they may be influenced by other 
people  walking, or  may want to get a glimpse of a 
familiar shopping. The route choice process assumes 
that the cost of each route can be calculated as a function 
of three factors: route length, impedance generated by 
other pedestrians and attraction for areas of interest on 
the environment. The impedance generated by the 
friction between pedestrians is assumed to exist even 
before physical contact, due to the psychological 
tendency to avoid passing close to individuals with high 
relative velocity. Pedestrians seek minimal route length 
and minimal friction with other pedestrians. In order to 
represent shopping areas environments, a new factor is 
being considered in the calculation of the route cost: the 
attraction for areas of interest on the environment. 
Simulation results were compared to real data collected 
by video recording in a shopping mall. 

1 Introduction 
Modelling of pedestrian’s behavior is a complex task and 
has been studied by different research areas. In order to 
represent motion of pedestrians more realistically, models 
are required to simulate several processes, including sense 
and avoidance of obstacles, interaction with other 
pedestrians and route choice. Agent-based abstraction has 
been widely used for pedestrian modeling, mainly due to its 
capacity to provide insights about  system´s reactions from 
changes on entities proprieties, capturing information over 
space and time at a  detailed level [Klügl and Bazzan 2012; 
Macal et al. 2006; Rossetti R. et. al. 2002]. Agent-based 
models represent agents’ decision-making ability based on 
their profile and perception over the environment. 
 
Agent-based pedestrians models require the aggregation of 
different levels of abstraction, that are modeled on different 
layers. The majority of pedestrian models present a multi-
layer simulation approach [Gaud et al. 2008; Hoogendoorn 

et al. 2002] composed by, at least, two layers: a tactical and 
an operational layer.  
 
The tactical layer chooses a path regarding an origin-
destination pair and a route choice criteria such as minimum 
distance and/or travel times. The tactical model determines 
the desired pedestrian directions, which are used in the 
operational model [Pretto et al. 2011].  
 
The operational model determines the low level microscopic 
movements of pedestrians. It is ruled by principles of 
pedestrians’sense and avoidance of obstacles. Most models 
reported in literature can be regarded as using force-based 
approaches [Helbing et al. 1991; Helbing et al. 1995]. In 
force-based models, agents evaluate forces exerted by 
infrastructure and by other agents. Helbing and Molnar 
(1995) presented a relevant work on force-based models in 
which they use Newtonian mechanics and a continuous 
space representation to model a long-range interaction. The 
concept behind this approach suggests that the motion of a 
pedestrian can be described by combination of several 
forces (including the repulsive forces from walls and other 
pedestrians). The social force model reproduces various 
emergent phenomena observed on pedestrian´dynamics. 
 
The tactical model is responsible for route choice. Realistic  
route choice is a complex process because most route 
selection strategies are based on subconscious decisions. 
Most models presented in the literature are concerned only 
with the quickest or shortest route, like Kirik et. al. (2009), 
Dressler et. al. (2010) and Lämmel et. al. (2014). However, 
other factors play an important role in route choice 
behavior, such as: peoples’ habits, number of crossings, 
pollution and noise levels, safety, shelter from poor weather 
conditions and other environment stimulations 
[Papadimitriou E., 2012]. Most relevant route choice models 
are concerned with pedestrians' evacuation. In Kretz et. al. 
(2011), for instance, pedestrians routes are chosen based on 
the minimal remaining travel time to destination. Kretz et. 
al. (2014) introduce a generic method for dynamic 
assignment used with microsimulation of pedestrian 
dynamics. In the paper, the routes mark the most relevant 
routing alternatives in any given walking geometry, 
reducing the infinitely many trajectories by which a 
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pedestrian can move from origin to destination to a small set 
of routes. Crociani and Lämmel (2016) present a work with 
two major topics. In the first topic, a novel cellular 
automaton (CA) model is proposed, which describes the 
pedestrian movement by a set of simple rules, and the 
second topic describes how the CA can be integrated into an 
iterative learning cycle where the individual pedestrian can 
adapt travel plans based on experiences from previous 
iterations. Patil et. al. (2010) propose an interactive 
algorithm to direct and control crowd simulation. The model 
presented by Treuille et. al., (2006) unifies route planning 
and local collision avoidance by using a set of dynamic 
potential and velocity. Teknomo (2008) and Teknomo et al., 
(2008) described a self-organization route choice approach 
to model the dynamics of agents, such as pedestrians and 
cars on a simple network graph. The agents decide, when 
reaching a vertex, which edge to enter next. This decision is 
based on a set of rules regarding the agent’s observation of 
the local environment. In order to represent complex 
networks, such as shopping areas and urban scenarios, 
agents need to represent more complex caracteristics and 
capabilities.  
 
The literature presents several agent-based applications to 
simulate different pedestrians’ behaviors and environments. 
The pedestrians’ simulation in a commercial environment, 
such as shopping malls, is particularly complex since 
pedestrians are exposed to different stimulus and attractions 
[Wang, W. et. al. 2014]. Agent-based simulation is 
particularly valuable for these cases because environment 
stimulus exert distinct influences depending on the person 
profile. Dijkstra et al., (2013) provide a model for pedestrian 
activity simulations in shopping environments. This 
framework provides an activity agenda for pedestrian 
agents, guiding their shopping behavior in terms of 
destination and time spent in shopping areas. Pedestrian 
agents need to successively visit a set of stores and move 
over the network. The authors assumed that pedestrian 
agents’ behavior is driven by a series of decision heuristics. 
Agents need to decide which stores to choose, in what order 
and which route to take, subject to time and environment 
constraints.  
 
Route choice in shopping malls may be defined by a number 
of causal factors. Shoppers may follow a pre-defined 
schedule, they may be influenced by other people  walking, 
or  may want to get a glimpse of a familiar shopping. 

  
Shopping agents, as described in the literature [Borgers, A., 
and Timmermans, H., 1986; Ali, W. and Moulin, B., 2006] 
usually decide (i) in which stores to stop, (ii) in what order 
and (iii) which route to take. In practice, however, shopping 
mall users´ behaviour is a combination of planned and 
unplanned decisions. Planned decisions can defined by a set 
of origin-destination pairs. Unplanned decisions may be 
resultant from eventual impulses or the attraction exerted by 
shopping windows. 
 

This paper presents an agent-based route choice model to 
represents pedestrians’ in a shopping mall environment. The 
pedestrian model allows the representation of shopping 
users capable to perform either planned and unplanned 
behaviour, depending on the agent´s profile. Simulation 
results were compared to real data collected by video 
recording in a shopping mall. 

2 The Model 
 An agent-based model is proposed to address pedestrian 
route choice problem. Agent-based models represent agents’ 
decision-making ability based on agents’ characteristics 
profile and perception over the environment. In the 
proposed model, pedestrians are agents able to choose and 
recalculate routes. Pedestrians are not assigned to 
predetermined routes. 
 
In this model, a route is a set of coordinates followed by a 
pedestrian from origin to destination. Route choice process 
comprises three factors for calculation: (i) distance, (ii) 
interaction with other pedestrians (avoiding jams) and (iii) 
attraction for areas of interest on the environment (in this 
specific case: shop windows).  
 
The framework adopted to describe pedestrian behavior in 
this model (Figure 1) presents a three-layer structure, each 
layer representing: 

(i) Demand for travel - set of origin and destination. 
Each origin-destination pair is associated to a 
number of trips and a pedestrian generation rate. 
Origins and destinations are associated with nodes 
on the environment layer.  

(ii)  Simulation environment structure -.The 
environment is described as a continuous space and 
is composed by geometric entities, such as rooms, 
doors, and other obstacles. The environment 
entities are linked by a graph-based structure 
providing a route to all entities. In this model, 
nodes are defined by a set of coordinates (x, y). 
Nodes also contain properties defining local 
features of the environment. 

(iii) Pedestrians movement, sense and avoidance of 
obstacles: set of equations and agents behavior 
rules. The social force model (1) describes 
pedestrian walking behavior regarding agents’ low-
level motion, collision avoidance and velocity 
adaptation. Pedestrians freely walk on the 
modeling environment seeking the next graph node 
of the designated route. Pedestrians’ movements 
are ruled by the sense and avoidance model and are 
not restricted to a strict set of links. 



 
Figure 1 - Layers 

2.1 The Route Choice Process  
The presented route choice process is derivate from model 
established by Werberich et. al. (2014). Werberich et. al. 
propose that the cost of each route can be calculated as a 
function of two factors: route length and the impedance 
generated by other pedestrians. The impedance generated by 
the friction between pedestrians is assumed to exist even 
before physical contact, due to the psychological tendency 
to avoid passing close to individuals with high relative 
velocity [Helbing D. et al., 2000]. Pedestrians seek minimal 
route length and minimal friction with other pedestrians. In 
this model, a new factor is being considered in route cost 
calculation: attraction for areas of interest on the 
environment. 
 
The total route cost is the sum of all link costs. Dijkistra 
algorithm [Dijkstra E., 1959] is adopted to generate valid 
routes for any origin/destination pair. Figure 2 describes the 
cost calculation for a link. 

 

Figure 2 – Pedestrian’s profile and node attraction 
 

Figure 2 presents the elements involved in the route choice 
process. The cost estimation for a Pedestrian α to walk from 
node u to n involves three factors: (i) the distance between 
nodes ( r! − r! ), (ii) the impedance perceived by the 
pedestrian α exerted by other pedestrians (I!) and (iii) the 
environment attraction perceived by pedestrian α for the 
node n (A!! ). 
 
Impedance exerted by the pedestrians in the simulation is 
calculated by simple vectors operations. Subtracting the 
desired velocity of pedestrian α from the velocity of 
pedestrians closer to node n ( pedestrians 𝛽) it is possible to 
estimate I! (equation 1). 
 

I! =  𝑣! −
!!!!!
!!!!!

∗ 𝑣!! !           (1) 
where: 
v! = Pedestrian’s β current velocity; 
r!  = Node’s n vector position; 
r!  = Node’s u vector position ; 
𝑣!!= Pedestrian’s α desired speed. 
 
The calculation of I! considers a neighborhood area around 
the node n, defined by the radius R!. All  pedestrians inside 
the neighborhood area, at the instant of the route choice, are 
nominated pedestrians β. I! is the sum of the friction forces 
exerted by each pedestrian β over the desired velocity of the 
pedestrian α. 
 
As mentioned above, the graph nodes contain properties that 
classify local features of the environment. Node properties 
define the environment characteristics. For example, 
properties can  be defined as female clothes store, male 
clothes store, electronics store, shoe store, etc. Nodes are 
defined by a set of values for all simulated properties. 
Higher properties values mean the node is closer of the 
related feature. Properties can assume values in the range [0 
– 1].  
 
The attraction exerted by these nodes properties on 
pedestrians vary dependeing on pedestrians profiles.  
Pedestrians' profiles also present a set of values for all 
simulated environment properties, that represent their 
attraction for these features. For example, male pedestrians 
probably have higher values for a property relating to a male 
clothes store. These properties also assume values  in the 
range [0 – 1]. 
 
The attraction of node n, perceived by pedestrian α (A!! ), is 
calculated as a weighted average (Equation 2): 
 

𝐴!! =  !!
!!

!!! ∗!!
!

!!
!!

!!!
                      (2) 

 
where: 



p = total number of properties; 
P!! = pedestrian α property i value; 
N!! = node n property i value. 
 
The total estimated cost for pedestrian α to walk from node 
u to n (W!

!,!), is a balance between distance, impedance and 
attractiveness, as described in Equation 3: 
 

W!
!,! =  r! − r! . (1 + I! /I!"# + (1 - A!! ))       (3) 

 
where: 
I!"# = settable parameter that adjusts the balance between 
distance and impedance. Further  description of this 
parameter can be obtained in Werberich et al. (2014). 
 
Elected routes minimize the total cost W!. Equation 3 
ensures pedestrians are attracted to areas of interest 
considering their profile. Pedestrians also avoid congested 
areas and passing close to other pedestrians with high 
relative velocity. 

2.2 Pedestrian Stopping Behavior 
It is expected that pedestrians walking on shopping 
environment, when attracted by an environmental stimulus, 
may stop for a while. For example, pedestrians attracted by 
a shop window frequently stop walking when they get 
closer to this interest point. This model simulates 
pedestrians route choice process subjected to attraction by 
interest areas, tipical of shopping environments.  
 
To simulate pedestrians’ stopping behavior the model 
introduces the concept of hotspots. Hotspots are defined by 
a location on the environment (𝑥 and 𝑦 coordinates) and a 
neighborhood area (radius 𝑅). Hotspots have the same 
environment properties as graph nodes. When a pedestrian 
reaches the neighborhood area of a hotspot, he decides 
whether to stop or not. This decision process considers the 
pedestrian profile and the hotspot properties. Pedestrian 
profile includes a value denoting the tendency to stop on a 
hotspot (T!). Higher values of T! means the pedestrian have 
higher tendency to stop on hotspots. T! values also respect 
the range [0–1]. Equation 4 defines the probability of a 
pedestrian α stopping on a hotspot q (S!

!). 
 

𝑆!
! =  (!!

!!
!!! ∗!!

!)
!!
!!

!!!
∗  𝑇!                 (4) 

where: 
p = total number of properties; 
P!! = pedestrian α property i value; 
H!! = hotspot q property i value; 
T! = pedestrian α tendency to stop on a hotspot. 
 
 
 
 
 
 
 
 
 
 
 
 

If a pedestrian decides to stop on a hotspot neighborhood, 
the hotspot coordinates become his new destination for the 
stopping period. The balance between the pedestrian desired 

speed vector (𝑣!!) and the forces exerted by the hotspot 
walls, keep the pedestrian standing in the neighborhood 
area. During this period, the interaction between pedestrians 
is maintained, allowing a realistic representation of 
pedestrians behavior at window shops. When a pedestrian 
stopping time has expired, a new route is recalculated to the 
final the destination.  
 
The time a pedestrian stops at a hotspot may has variable 
assumptions. In this formulation, pedestrians stopping time 
is assumed to be fixed, equal to 20 seconds. Assumptions 
about stopping times can be discussed in more detail. An 
important work regarding time spent at store windows was 
developed by Dijkstra J. et. al. (2014). In this paper, authors 
describe the time spent in a store based on pedestrians 
profile and store segment.   
 
Figure 3 presents a flowchart of the agent’s internal process.  
 

 
Figure 3  - Agent’s internal process 

 
As presented in this flowchart, a pedestrian only performs a  
route recalculation procedure after stopping at a hotspot. A 
Social Force-based route choice process considers the 
interaction with other pedestrians, which provides a 
dynamic behavior. However, if necessary, when simulating 
complex scenarios, the model structure allows the 
introduction of route recalculation areas. When simulating  
small scenarios, where the decision at the beginning of the 
trip was based on a good assessment of the way forward for 
all simulation timeframe, route recalculation may not be 
necessary. 



3 Collected Data 
Video data were collected in a shopping mall of Porto 
Alegre, Brazil. The camera collected images from a hall that 
connects the two main corridors of the first floor. Figure 
4  presents an image of the studied area and the collected 
pedestrian routes. 
 
The software Tracker was used to collect pedestrians’ data 
in a semi-automatic process. The collected data is composed 
by a set of coordenates (x and y) over 1 minute of video for 
each pedestrian. 
 
In order to simplify the data analysis, the enviroment was 
segmented in cells. A color map representing the cumulative 
occupation of each cell is shown at figure 5, segmented by 
gender.  

 
Figure 4 – The Mall 

 
Figure 5 –Collected data 

 

Data analysis allows the identification of three stores with 
higher pedestrian attraction . Table 1 shows the number of 
pedestrians, men (M) and women (W), that were attracted 
and stopped closer to these areas.  
 
Table 1 – Stopped pedestrians 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Simulation 
The proposed model has the potential to represent several 
properties regarding agents’ profile and environment 
characteristics. In order to simplify the simulation, only two 
properties were considered in this experiment: Male Store 
Attraction (MSA) and Female Store Attraction (FSA). 
These two properties were applied to: 
 
i.    Scenario elements: hotspots and graph nodes (MSAs and 
FSAs); 
ii.   Agents (MSAa and FSAa).  
 
The experiment was developed to identify the influence of 
MSAa and FSAa in the number of pedestrians that are 
attracted to hotspots. The MSAa and FSAa were calibrated 
based on collected data. 
 
The model was implemented using c# programming 
language (simulation engine) and Windows Presentation 
Foundation for the graphical interface. 
 
4.1 Simulation Scenario 
Figure 6 shows the simulation scenario built to represent the 
observed environment. Green areas (h1, h2, h3) are the 
hotspots. The hotspots correspond to stores where mall 
users used to stop on the real site. Dots are the graph nodes. 
Rectangles represent mall kiosks. 
 

 
Figure 6 – Simulation scenario 

 
Table 2 shows the values for MSAs and FSAs considered for 
the hotspots and its surronding yellow graph nodes. Blue 



graph nodes (Figure 6) exert no attraction over the agent, the 
value for both MSAs and FSAs are zero. The MSAs and 
FSAs values were assumed to be constants. The MSAs and 
FSAs  definition can be enhanced by considering effects of 
various design and management attributes. An example of  
the evaluation of consumers attraction can be found in 
Oppewal, H., and Timmermans, H. (1999). The authors 
estimated a stated preference model from responses to 
descriptions of an hypothetical shopping centers considering 
attributes such as: area for pedestrians, window displays, 
street layout, and street activities.  
 
 
 
Table 2 – Hotspots configuration 
 

 

4.2 Calibration 
The calibration process aimed to calibrate the agents’ profile 
(MSAa and FSAa) in order to reproduce the number of 
stopped pedestrians at each hotspot. For this purpose, four 
groups of simulations were run (s1, s2, s3, s4).  For each 
simulation group, 50 simulations were performed. Two 
agents classes were implemented: male agents (MA) and 
female agents (FA). By definition, male agents have FSAa = 
0 and female agents have MSAa = 0. Table 3 shows the  
configuration profiles defined for each simulation group. 
 
Table 3 – Agents profile configuration 
 

simulation	group	 MA	 FA	
s1	 MSAa	=	0.1	 FSAa	=	0.1	
s2	 MSAa	=	0.5	 FSAa	=	0.5	
s3	 MSAa	=	0.7	 FSAa	=	0.7	
s4	 MSAa	=	0.9	 FSAa	=	0.9	

 
The only variables in simulations were MSAa and FSAa. 
The scenario configuration was kept constant. Agents’ 
tendency to stop (𝑇!) was set to 0.7. According to observed 
data, each simulation run comprised 80 agents, 40% MA 
and 60% FA. Pedestrians are generated with a fixed rate 
over time, with 40% of change to be male and 60% of 
change to be female. Figure 7 shows a simulation 
screenshot, MA are green circles and FA are red circles. A 
simulation video is availiable at: 
https://youtu.be/10OUgNMaoNA. 
 
 

 
 

Figure 7 – Simulation screenshot 
 

Figure 8 shows a color map of the results for all simulation 
groups (s1, s2, s3, s4), and the average number of agents 
stopping at each hotspot (h1, h2, h3) over 50 simulation 
runs. 
 

 
Figure 8 – Simulations results 

 
4.2 Simularion Analysis 
Simulation group s3 presented the best ajustment to the 
observed data. Higher values of MSA and FSA lead to 
higher attraction to hotspots. However, it is important to 
highlight that even though a pedestrian chooses a route to 
get closer to a shop window, he needs to reach a hotspot to 
stop. If the hotspot area is too crowded, he may not reach 
the hotspot, due to the social force effect, and do not stop. 
Thus, the attraction effect has a tendency to be balanced. 
Figure 9 show the s3 color map and the color map generated 
from real data. The s3 color map is one of 50 simulations. It 
is possible to observe differences in color patterns between 
simulation and real data. This difference is due the noise of 



pedestrians’ tracking process and camera perspective. It is 
important to highlight stopping pattern at hotspots is similar. 
 

 
Figure 9 – Real data versus simulation data 

5 Conclusions 
The modeling approach presented in this paper provides a 
sound representation of pedestrian route choice dynamics 
considering the attraction to shop windows. Route choice is 
based on a combination of distance, impedance generated by 
other pedestrians and shop window attraction. The model 
differs from other pedestrians’ route choice approaches 
because it seamlessly incorporates pedestrians social force 
into the route choice decision process. 
 
In this model, we have created an association between the 
pedestrian’s profile and store segment. When a pedestrian 
defines a route, due to its attraction to a store, he draws his 
chance to stop at a hotspot. The formulation of stopping 
chances can be enhanced through a more complex agent 
abstraction. However, it is well known that increasing 
model complexity usually leads to an increase in the 
calibration process effort.  
 
The analysis from simulations indicates that the agents’ 
emerging behavior  provides a promising approach for real 
case applications. This model formulation is capable of 
supporting more complex agents’  profiles and aplications to  
different enviroments, such as variable shopping premisses, 
expositions sites and passengers terminals.  
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