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Abstract

Marginal tolls are known to provide the existence
of an optimal equilibrium in atomic congestion
games, but unlike nonatomic games, there might be
additional equilibria even with linear cost functions
on resources. In this paper, we show that in games
with a large number of players, all equilibria are
near-optimal.

1 Introduction
It is well known that selfish routing results in suboptimal so-
cial behavior and in increased latency [Pigou, 1920]. The
modern literature formalizes selfish routing scenarios as con-
gestion games, where the inefficiency due to strategic behav-
ior is quantified as the Price of Anarchy (PoA)– the ratio be-
tween the optimal total latency and the maximal total latency
in equilibrium [Roughgarden and Tardos, 2007].

The game theoretic literature on selfish routing can be
classified into models of atomic (unsplittable) flow and non-
atomic flow, where in the latter, each agent accounts for an in-
finitesimally small fraction of the total congestion. While in
both models a pure equilibrium is guaranteed to exist, and can
be found via a simple local best-response dynamics, atomic
congestion games are considered more challenging to ana-
lyze. Atomic games may have multiple equilibria of different
costs, and the price of anarchy can be much higher than in
nonatomic games.

The PoA is well understood in congestion games, both
atomic and nonatomic, and almost independent from the
topology of the network [Roughgarden, 2009]. That is, the
inefficiency depends mostly on the edge latency functions,
and a simple network of two parallel edges (or roads) is suf-
ficient to create instances with the highest possible PoA.

Still, it is interesting to look to change the behavior of
agents by charging them for using a resource. It has been
known since [Beckmann et al., 1956] that to enforce opti-
mal behavior in nonatomic games (i.e. such that all equi-
libria have minimum total latency), it is sufficient to impose
marginal congestion tolls, i.e., charge each agent based on
the latency he currently adds to the other agents.1 Note that
we assume tolls are dynamic that depend on monitoring the
actual congestion on one hand, but can be easily computed.
This is in contrast to static tolls that typically depend on the

1It is typically assumed that the tolls themselves are not calcu-
lated as part of the total cost, e.g. because they return to the society
indirectly, or because the central authority only cares about the la-
tency. Non-refundable tolls are also studied [Cole et al., 2006] but
not in this paper.

optimal congestion, and often require extensive computation
(see e.g. [Bonifaci et al., 2011]).

For atomic games, it is known that marginal tolls guarantee
the existence of at least one optimal equilibrium [Sandholm,
2007], however there may be other inefficient equilibria, even
in games with linear latencies [Caragiannis et al., 2010a].
The problem becomes even more involved if we take into ac-
count more general notions of equilibrium such as mixed and
correlated equilibrium. For a specific classes of atomic rout-
ing games, marginal tolls guarantee optimal behavior in any
pure equilibrium. This is the case for example for symmetric
networks with parallel links (also known as resource selec-
tion games) since in such networks the equilibrium is unique.
The class of networks for which marginal tolls are optimal
was extended first in an unpublished (and unfinished) work
by Singh [Singh, 2008]. However Singh’s result was very re-
cently refuted by Igal Milchtaich (personal communications)
who provided the correct characterization.

Several other papers studied more complicated taxation
schemes and how low they can affect the PoA [Fotakis and
Spirakis, 2008; Caragiannis et al., 2010a].

Our contribution We show that for any fixed network, if
the number of players is sufficiently large, then any equilib-
rium under marginal tolls is near-optimal. Further, this result
extend to mixed, correlated, and coarse correlated equilibria.

We use the smoothness framework [Roughgarden, 2009],
which enables the PoA bounds to be established with rela-
tively short and simple proofs.

We also consider agents with variable sensitivity to mon-
etary tolls [Cole et al., 2006; Karakostas and Kolliopoulos,
2004; Fotakis et al., 2010], reflecting how agents trade-off
money for time. As discussed in [Yang and Zhang, 2008;
Meir and Parkes, 2015b], the parameter may be unobserv-
able, and thus unknown to the central authority setting the
tolls. Thus, following [Meir and Parkes, 2015b] and in con-
trast to most of the mechanism design literature, we assume
that a marginal toll is applied, and analyze the equilibrium for
a population as the sensitivity parameter varies.

Along the way, we state formally some known results on
marginal tolls that seem to have been overlooked in the recent
study of atomic congestion and routing games.

2 Preliminaries
For an integer m, [m] = {1, 2, . . . ,m}. We use bold letters
to denote vectors, e.g., a = (a1, . . . , am).

Following the definitions in [Roughgarden, 2007], a rout-
ing game is a tuple G = 〈V,E,N, c,u,v〉, where

• (V,E) are vertices and edges of a directed graph;



• N is a finite set of agents of size n;
• c = (ce)e∈E , where ce(x) ≥ 0 is a non-decreasing func-

tion indicating the cost incurred when x agents use edge
e (ce are called latency functions);2

• u,v are vectors of n vertices each, where (ui, vi) are the
source and target nodes of agent i;

We denote byAi ⊆ 2E the set of all directed paths between
the pair of nodes (ui, vi) in the graph. Thus Ai is the set of
actions available to agent i. We denote by A = ∪iAi the set
of all directed source-target paths. A routing game is symmet-
ric (also called single-source-single-target) if all agents have
the same set of actions, i.e., Ai = A for all i.

An action profile a = (ai)i∈N specifies the path ai ∈ Ai
of each agent i, and A = ×i∈NAi is the set of all action
profiles. We denote by se(a) ∈ N the congestion on edge
e ∈ E in profile a, i.e., se = se(a) = |{i ∈ N : e ∈ ai}| (a
is omitted when clear from context).

The cost for agent i in profile a is summed over all edges,
Ci(a) =

∑
e∈ai ce(se). The social cost in a profile a in game

G is attained by summing over all agents:

SC (G,a) =

n∑
i=1

Ci(a) =

n∑
i=1

∑
e∈ai

ce(se) =
∑
e∈E

sece(se). (1)

We denote by a∗ = a∗(G) = argmina∈A SC(G,a) the pro-
file that minimizes the social cost (optimal profile).

A profile a is a pure Nash equilibrium if no agent can gain
by changing her strategy, i.e. if for all i ∈ N, a′i ∈ Ai,
Ci(a) ≤ Ci(a−i, a

′
i), where a−i = (aj)j 6=i. The definition

of equilibrium extends to mixed and correlated strategies. We
omit the formal details. Denote by PNE(G) ⊆ A the sets of
pure Nash equilibria of G.

The price of anarchy (PoA) of G is the ratio between
the social cost of worst equilibrium and the optimal profile,
i.e. PoA(G) = max{SC(G,a):a∈PNE(G)}

SC(G,a∗) (the definition of
mixed- and correlated-POA is similar). It is well known that
the PoA can be upper bounded using only the class of latency
functions in G, regardless of the structure of (V,E). For ex-
ample, if all of ce are affine functions (ce(x) = aex + be for
ae, be ≥ 0) then PoA(G) ≤ 5

2 , and this is true for mixed and
correlated-PoA as well [Roughgarden, 2009].

The price of stability (PoS) of G is similarly defined as
the ratio between the best equilibrium and the optimal pro-
file [Christodoulou and Koutsoupias, 2005], i.e. PoS(G) =
min{SC(G,a):a∈PNE(G)}

SC(G,a∗) .

Biased games We are interested in a biased game, in our
case because of the use of tolls.3 A biased game is a pair
(G, Ĝ) such that G, Ĝ are identical except in their latency
functions. Informally, we assume that players behave accord-
ing to the “biased costs” (ĉe)e∈E (e.g. play an equilibrium of
Ĝ), but social cost is measured w.r.t. the “real costs” (ce)e∈E .

2Some authors prefer the term “arc” for directed edges. We stick
with the common term in computer science.

3Biased games are also used to model cognitive and behavioral
traits such as risk aversion [Ordóñez and Stier-Moses, 2010] or al-
truism [Caragiannis et al., 2010b].

The biased price of anarchy/stability (BPoA/BPoS) com-
pares the equilibria of Ĝ to the optimum of G, using
the real social cost of both. Formally, BPoA(G, Ĝ) =
max{SC(G,a):a∈PNE(Ĝ)}

SC(G,a∗) , and similarly for BPoS.
The primary bias we will consider in this paper is tolls,

and in particular marginal tolls. That is, we define τe(x) =
(x−1)[ce(x)−ce(x−1)], and set ĉMe (x) = ce(x)+τe(x). Toll
τe(x) is exactly the marginal cost inflicted upon the remaining
x− 1 agents who use e due to an additional agent. Other tool
schemes T can be similarly defined, replacing τe(x) with any
other non-negative function Te(x).

A toll scheme T strongly enforces optimal flow in a game
G if all equilibria of ĜT (i.e., the game with biased costs ĉT )
are optimal inG (equivalently, if BPoA(G, ĜT )=1) [Fotakis
and Spirakis, 2008]. Similarly, a toll scheme weakly enforces
optimal flows if BPoS(G, ĜT ) = 1.

Marginal tolls in the nonatomic Pigouvian model were sug-
gested by Beckmann [Beckmann et al., 1956], who showed
they strongly enforce optimal flows in that model. Our goal
is to understand the power of marginal tolls in atomic routing
games.

3 Marginal tolls are weakly optimal
The marginal toll scheme for atomic games coincides with the
taxes proposed by Sandholm [Sandholm, 2007], albeit Sand-
holm defined taxes at the strategy level, rather than tolls on
particular edges. The observation that marginal tolls weakly
enforce optimal flows was also made in an unpublished report
by Singh [Singh, 2008].4 We state the result for the standard
routing games framework.

Theorem 1 ([Sandholm, 2007; Singh, 2008]). For any
atomic congestion game G, there is a pure Nash equilibrium
in ĜM that is optimal inG. Equivalently, BPoS(G, ĜM ) = 1.

The theorem follows from a simple observation: ĜM is
a potential game [Rosenthal, 1973], whose potential func-
tion φ(ĜM ,a) coincides with the social welfare of G. Thus
the optimum of SC(G,a) must a be local minimum of
φ(ĜM ,a), i.e. a pure Nash equilibrium. Quite strikingly, the
theorem was extended to a much more general framework
where agents have idiosyncratic preferences over strategies,
and congestion may depend on agents weight or other fea-
tures [Sandholm, 2007; Singh, 2008].

Unfortunately, in atomic games there may be additional
suboptimal equilibria.

Example 1. Consider a game with 3 parallel links, E =
{a, b, c} and 3 agents N = {1, 2, 3}. A1 = {a, b}, A2 =
{b, c}, and A3 = {c}. Latency functions are cb(x) =
cc(x) = x, ca ≡ 2 (see Fig. 1). The modified cost functions
under any edge-independent nonnegative tolls can be written
as ĉb(x) = ĉc(x) = (1, 2 + T (x), 3 + T ′(x)). The unique
optimum is a∗ = (a, b, c) with cost SC(a∗) = 2 + 1 + 1 = 4,
which is also a PNE. However, there is another PNE a′ =

4Recent works on tolls in routing games seem to be unaware of
this observation [Fotakis and Spirakis, 2008; Fotakis et al., 2010;
Swamy, 2012].
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Figure 1: Figure (1a) shows the base game G. The other
figures show the optimal state a∗ and the state a′ which is an
additional equilibrium of both G and ĜT .

(b, c, c) with cost SC(a′) = 1 + 2 + 2 = 5. This remains
a PNE of ĜT as long as ĉTb (x) = ĉTc (x): agent 2 is not al-
lowed to use edge a, and agent 1 does not want to use it since
ĉa(1) = 2 > 1 = ĉb(1).

This means that marginal tolls in atomic games do not, in
the general case, strongly enforce optimal flows.

4 Strongly Enforcing Optimal Flows
The prominent technique for proving PoA bounds is smooth-
ness analysis. In short, a game G is (λ, µ)-smooth if for
all a ∈ A there is a′ ∈ A such that

∑
i∈N Ci(a−i, a

′
i) ≤

λSC(G,OPT(G))+µSC(G,a). If a gameG (not just a rout-
ing game) is (λ, µ)-smooth, then PoA(G) ≤ λ

1−µ [Roughgar-
den, 2009]. Further, this holds for the mixed, correlated, and
coarse-correlated PoA as well. For routing games, it is also
shown that restricting the class of latency functions results in
smooth games. For example, if all cost functions are affine,
then G is ( 5

3 ,
1
3 )-smooth (thereby showing PoA(G) ≤ 5

2 ).
Given a biased game (G, Ĝ), we can similarly define the

property of biased smoothness.

Definition 1. (G, Ĝ) is (λ̂, µ̂)-biased smooth (BS), if there is
a′ s.t. for any profile a,∑
j∈N

(Cj(a)+Ĉj(a−j , a
′
j)−Ĉj(a)) ≤ λ̂SC (G,OPT(G))+µ̂SC (G,a).

(2)

It is easy to see that if G is (λ, µ)-smooth, then
(G,G) is (λ, µ)-BS: we set a′ = OPT(G), and note that∑
j∈N (Cj(a)+Cj(a−j , a

′
j)−Cj(a)) =

∑
j∈N Cj(a−j , a

′
j).

Theorem 2. Suppose that (G, Ĝ) is (λ̂, µ̂)-BS. Let σ be any
equilibrium (pure, mixed, correlated, or coarse-correlated) of
the game Ĝ. Then SC (G, σ) ≤ λ̂

1−µ̂SC (G,OPT(G)).

The original proof of Roughgarden [Roughgarden, 2009]
for the PoA (and coarse-correlated PoA) naturally extends to
biased smoothness.5 For completeness, we provide the proof

5A similar definition of smoothness was applied, for example, for
finite congestion games with altruism: when Ĉ(a) is a combination
ofC(a) and SC(a), then the BPoA coincides with the “robust PoA”
of Chen et al. [Chen et al., 2011].

(almost identical to the ones in [Roughgarden, 2009; Chen et
al., 2011]) in the appendix.

In particular, (1, 0)-BS means that BPoA(G, Ĝ) = 1, i.e.
that any PNE of Ĝ is optimal in G.

We are interested in showing that (G, ĜM ) is BS for some
reasonable parameters λ̂, µ̂.

4.1 Smoothness in the large
When an atomic game becomes large, i.e. when we fix the
network and increase the number of players, there is evi-
dence that the game behaves more similarly to a nonatomic
game [Feldman et al., 2015]. We show how to extend biased-
smoothness analysis (and in particular marginal tolls) to large
atomic games. While we can not apply the results of Feldman
et al. directly, our techniques are inspired by theirs.
Lemma 3. Let a,a′ be any two profiles in G with n agents,
and let ε = ε(G) = maxe∈E,x∈N(ce(x + 1) − ce(x)). Then∑
j∈NCj(a−j , a

′
j)− Cj(a)) ≤

∑
e∈E(s

′
e−se)ce(se) +O(nε).

Proof.∑
j∈N

(Cj(a−j , a
′
j)− Cj(a))

=
∑
j∈N

((
∑

e∈a′j\aj

ce(se + 1) +
∑

e∈aj∩a′j

ce(se))−
∑
e∈aj

ce(se)).

By definition of ε, we continue:

≤
∑
j∈N

((
∑

e∈a′j\aj

(ce(se) + ε) +
∑

e∈aj∩a′j

ce(se))−
∑
e∈aj

ce(se))

≤
∑
j∈N

(
∑
e∈a′j

ce(se)−
∑
e∈aj

ce(se)) +
∑
j∈N

∑
e∈E

ε

=
∑
j∈N

(s′ece(se)− sece(se)) + n|E|ε.

That is, we can write the sum of deviations as a function of
the aggregate congestion (approximately).

Next, we think of a sequence of atomic games with increas-
ing n: We fix a network (V,E) and continuous quasi-convex
cost functions c = (ce)e∈E , where ce : [0, 1]→ R+. For ease
of presentation, we consider symmetric games (i.e. where
there is just one source-target pair u, v ∈ V ), although simi-
lar arguments extend to asymmetric games. This already in-
duces a symmetric nonatomic game G̃ = (V,E, u, v, c). For
n ∈ N, we define Gn by setting Gn = (V,E,N, u, v, cn),
where cn(x) = c(x/n). Thus G̃ is the limit of (Gn)n=1,2,...

(we call it the limit game).
Our continuous cost functions can also be subject to bi-

ases. Let ˆ̃ce be the biased continuous cost of c̃e, and ĉne (x) =
ˆ̃ce(x/n). Biased-smoothness for continuous cost functions
was defined and explored in [Meir and Parkes, 2015b]: we
say that c is (λ̂, µ̂)-biased smooth w.r.t. ĉ if for all t, t′ ∈ R+,

c(t)t+ ĉ(t)(t′ − t) ≤ λ̂c(t′)t′ + µ̂c(t)t.

Clearly, if c̃ is (λ̂, µ̂)-biased smooth w.r.t. ˆ̃c, then cn is (λ̂, µ̂)-
biased smooth w.r.t. ĉn for any n.



Theorem 4. Consider a limit game G̃, where c̃e are quasi-
convex and (λ̂, µ̂)-biased smooth w.r.t. the bias ˆ̃c. Then for
any δ > 0 there are ε > 0, n(ε) s.t. for all n > n(ε), the
atomic game (Gn, Ĝn) is ((1 + δ)λ̂, µ̂)-BS. In particular,

BPoA(Gn, Ĝn) ≤ (1 + δ)
λ̂

1− µ̂
,

and this extends to any coarse-correlated equilibrium.

Proof. Let a′ = OPT(Gn), Zn = SC(Gn,a′). Since
SC(Gn,a′) = Ω(n) (the cost for each agent is at least some
constant), we write Zn > ρn for some ρ > 0 and n > n(ρ).

Since c̃e is bounded and continuous for all e ∈ E,

max
x∈[n]
{cne (x+ 1)− cne (x)} = max

x∈[n]
{c̃e(

x

n
+

1

n
)− c̃e(

x

n
)}

≤ sup
t∈[0,1]

{c̃e(t+
1

n
)− c̃e(t)}

n→∞→ 0,

and thus for all ε > 0 there is some n(ε) s.t. for all n > n(ε),
we have cne (x+ 1)− cne (x) < ε . By Lemma 3

SC(Gn,a) +
∑
j∈N

Ĉn
j (a−j , a

′
j)− Ĉn

j (a))

≤ SC(Gn,a) +
∑
e∈E

(s′e − se)ĉ
n
e (se) +O(nε)

=
∑
e∈E

(sec
n
e (se) + (s′e − se)ĉ

n
e (se)) + nε′

≤
∑
e∈E

(λ̂cn(s′e)s
′
e + µ̂cn(se)se) + nε′ (smoothness)

= λ̂Zn + µ̂SC(Gn,a) + nε′

< λ̂SC(Gn,a′) + µ̂SC(Gn,a) +
1

ρ
Znε′ (Zn > ρn)

= (λ̂+
ε′

ρ
)Zn + µ̂SC(Gn,a)

≤ (1 +
ε′

ρ
)λ̂Zn + µ̂SC(Gn,a). (λ̂ ≥ 1)

Selecting ε′ < δρ (and thus sufficiently small ε > 0, and n >
max{n(ρ), n(ε)}), completes the proof. The BPoA bound
then follows directly from Theorem 2.

Since biased smoothness hold for various pairs of cost
functions, Theorem 4 is quite useful. Mainly, we get that
marginal tolls strongly enforce near-optimal flow if there are
enough players.

Corollary 5. Consider any limit game G̃, where c̃e are quasi-
convex. Then for any δ > 0 there is some n(δ) s.t. for all
n > n(δ), BPoA(Gn, Ĝn) ≤ 1 + δ.

Proof. Consider the continuous version of marginal tolls
ˆ̃c(t) = c̃(t) + t · ∂c(t)∂t

[Beckmann et al., 1956].6 The proof
follows directly from Theorem 4 and from the fact that any
quasi-convex function c̃ is (1, 0)-biased smooth w.r.t. ˆ̃c [Meir
and Parkes, 2015b].

6Due to rounding, ĉn(x) is very close, but not identical to the
discrete ĉM (x) we previously defined.
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Figure 2: The X-axis shows the tax-sensitivity of agents,
where β = 0 means they ignore the tax.
The double red lines are the tight bounds on the BPoA for
large games with affine costs stated in Corollary 6.

5 Tax-sensitivity
We next consider agents with variable sensitivity to monetary
tolls, as in [Cole et al., 2006]. Formally, the marginal toll
τe(x) is imposed on edge e, but the cost experienced by the
agents is ĉβe (x) = c(x) + β · τe(x), where β is a parame-
ter reflecting how agents trade-off money for time. Denote
by Ĝβ the biased game obtained from G by replacing every
cost function ce(x) with ĉβ(x). We analyze the equilibrium
for a population with parameter β (where β = 1 means that
ĉβe (x) = ĉMe (x)).

In [Meir and Parkes, 2015b], various BPoA bounds are
derived for nonatomic games with various classes of cost
functions (general/convex/polynomial/linear). We show how
these bounds extend to large games.

For large atomic games, all the biased smoothness bounds
from [Meir and Parkes, 2015b] for tax-sensitivity and other
biases immediately apply. These bounds are also known to
be tight.

For example, it was shown that affine cost functions (of
the form c̃(t) = at + b for a, b ≥ 0) are (1, (1+β)

2

4 − β)-
biased smooth w.r.t. ˆ̃c(t) as defined above for all β ≤ 1 and
( (1+β)2

4β , 0)-biased smooth for β ≥ 1. We get the following
corollary due to Theorem 4:

Corollary 6. Consider any limit game G̃, where c̃e are
affine. Then for any δ > 0 there is some n(δ) s.t. for all
n > n(δ), BPoA(Gn, Ĝn) ≤ 1

(β+1)− (1+β)2

4

if β ≤ 1, and

BPoA(Gn, Ĝn) ≤ (1+β)2

4β if β ≥ 1.

Another benefit of smoothness-in-the-large is that the pa-
rameters λ̂, µ̂ are typically much smaller for classes of con-
tinuous functions than for the corresponding class of discrete
costs. Indeed, [Feldman et al., 2015] show that the PoA of
large games is significantly smaller due to this: for linear
costs the PoA drops from 5

2 to 4
3 , and for polynomials of

degree d, the PoA drops from Ω(2d) to O( d
ln d ). Our re-

sult shows that this still holds for large games with biases.
For brevity we do not re-state all the results from [Meir and
Parkes, 2015b] for large atomic games, however Fig. 2 shows
the bounds for affine costs.



6 Discussion
We have studied the problem of strongly enforcing optimal
flows in atomic congestion games through marginal conges-
tion tolls. Such tolls always weakly enforce optimal flows,
and strongly enforce optimal tolls in large games. Further,
our analysis extends to games where agents’ tax-sensitivity
is not aligned with that of the designer. This is particu-
larly important in the context of mechanism design where
we seek to shape drivers’ incentives and lead the system to
a good equilibrium [Tumer and Agogino, 2006], and when
drivers are subject to cognitive and behavioral biases such
as risk-aversion [Ordóñez and Stier-Moses, 2010; Nikolova
and Stier-Moses, 2015]. One important challenge is to ex-
tend the BPoA bounds to games where agents differ in their
levels of risk aversion or tax sensitivity. This has been done
to some extent in nonatomic games [Meir and Parkes, 2015a;
2015b].

More broadly, this work provides more evidence for the
usefulness of “biased-smoothness” analysis, in the line of
[Chen et al., 2011; Meir and Parkes, 2015b], and we hope
it can lead to a better understanding of routing games where
agents are subject to either external influences (like tolls) or
behavioral biases.
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A Omitted proofs

Theorem 2. Suppose that (G, Ĝ) is (λ̂, µ̂)-BS. Let σ be any
equilibrium (pure, mixed, correlated, or coarse-correlated) of
the game Ĝ. Then SC (G, σ) ≤ λ̂

1−µ̂SC (G,OPT(G)).

Proof. For a correlated profile σ we denote SC(G, σ) =
Ea∼σ[SC(G,a)].

By Def. 1, there is a profile a′ s.t. Eq. (2) holds for every
profile a.

It is sufficient to prove for a CCE σ. By definition of CCE,
for any i ∈ N, bi ∈ Ai,

Ea∼σ[Ĉi(a)] ≤ Ea∼σ[Ĉi(a−i, bi)]. (3)

SC(G, σ) = Ea∼σ[SC(G,a)] ≤ Ea∼σ[SC(G,a)] (4)

+

(
n∑
i=1

Ea∼σ[Ĉi(a−i, a
′
i)]− Ea∼σ[Ĉi(a)]

)

= Ea∼σ

[
SC(G,a) +

n∑
i=1

Ĉi(a−i, a
′
i)− Ĉi(a)

]
(5)

= Ea∼σ

[
n∑
i=1

(
Ci(a) + Ĉi(a−i, a

′
i)− Ĉi(a)

)]
≤ Ea∼σ

[
λ̂SC(G,OPT(G)) + µ̂SC(G,a)

]
(6)

= λ̂SC(G,OPT(G)) + µ̂SC(G, σ), (7)

where Inequality (4) follows from Eq. (3) with bi = a′i,
(5)+(7) from linearity of expectation, and (6) from Eq. (2)
applied for each a. By rearranging terms, we get the bound
in the theorem.


