
Urban Traffic Control Assisted by AI Planning and Relational Learning

Alberto Pozanco and Susana Fernández and Daniel Borrajo
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganes (Madrid). Spain
apozanco@pa.uc3m.es, sfarregu@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract
Urban Traffic Control is a key problem for most big
cities. An inefficient traffic control system can lead
to increased traffic congestions that degrade city
quality metrics such as average travel time or city
pollution. Most common approaches focus on con-
trolling traffic by appropriately setting traffic lights.
Current systems in operation range from static con-
trol of traffic light phases to adaptive systems based
on numeric models. In this paper, we propose an au-
tonomic approach based on declarative automated
planning to generate control plans only when the
default behavior should be overridden. Planning
is complemented with plan execution control and
monitoring, replanning, as well as self-adaptive be-
havior using Relational Learning. Learning is used
to anticipate the appearance of congestions and cor-
rectly solve them. Our system outperforms static
approaches as well as a planning-based system that
recently won a competition on autonomic behavior
in Urban Traffic Control.

1 Introduction
Traffic efficient management and control in urban networks is
an important challenge for city authorities. They usually want
to achieve a variety of policy-based objectives, such as re-
ducing atmospheric pollution or mitigating the effects of un-
expected situations like accidents or road closure. There are
many ways to set the traffic lights programs, ranging from
early static off-line approaches, to most recent adaptive ap-
proaches that change the programs according to the state of
the city. The reader is directed to surveys in the area [Papa-
georgiou et al., 2007; Hamilton et al., 2013].

From a centralized perspective, Automated Planning (AP)
has been recently shown to perform well in this kind of
tasks [Gulic̀ et al., 2015; Vallati et al., 2016]. The main ad-
vantage of using AP is that the domain and problem descrip-
tions are specified in a declarative language. Thus, even traf-
fic engineers can easily include new actions, sensor informa-
tion or metrics. Also, these models can be automatically up-
dated by using learning techniques. In this paper we propose
an approach that integrates a planning system for control-
ling traffic lights with a learning system that predicts when

a street density is going to be high in the near future. In
those cases, our system anticipates future problems by gener-
ating new goals to the planning module and starts a planning-
execution-monitoring process. The proposed system can be
seen as an instance of a full autonomic (autonomous) sys-
tem, given that it incorporates many self-* properties, as
self-monitoring (continuous observation), self-diagnosis (de-
tects undesired behavior), self-optimization (planning), self-
healing (executes actions) and self-adaptation (learning).

The paper is organized as follows: the next section de-
scribes the system architecture that integrates learning with
AP; the third section formally defines AP tasks and describes
the traffic-control domain; the fourth section briefly describes
the learning system; the fifth section presents the experimen-
tal results; and the last section draws conclusions and outlines
future work.

2 Architecture
We propose to use a planning-execution-monitoring architec-
ture called PELEA to provide a framework that can integrate
the various components of our system [Guzmán et al., 2012].
Figure 1 shows a sketch of the architecture. At start, the Ex-
ecution module receives an AP domain and problem. Then,
it captures the current state of the world, state, and sets the
problem initial state. The initial goal set could be also set
by the Goal&Metrics Generation module. The Monitoring
module calls the Planning module to obtain a plan whose
actions are sent back to the Execution module. Once the ac-
tions are executed, the Monitoring module receives the nec-
essary knowledge (current state, problem and domain) from
the Execution module to initialize a new planning-execution-
monitoring cycle. If the execution did not produce the ex-
pected changes (reduction in traffic density in some streets),
it will result in the generation of new goals and a new initial
state for a new call to the planner. The Goal&Metrics Gen-
eration module combines these goals with possible external
ones (as the ones given directly by traffic controllers) to up-
date the problem. The environment can be substituted by a
Simulator in some domains, as the one we focus in this paper.

One of the greatest challenges in the proposed architecture
is the generation of new goals. Here, we propose to apply ma-
chine learning techniques to infer when new goals should be
generated to anticipate future problematic streets. In a train-
ing step, examples are generated by observing the traffic be-



EXECUTION

PLANNING

plan

problem

domain

state

state

plan

problem

state MONITORING

domain

state
Learned

Model new goals

LEARNING

GOALS&METRICS

GENERATION

SIMULATOR/

ENVIRONMENT

Training

Examples

problem, domain

Inputs

External goals problem
plan

problem

Figure 1: Planning and execution architecture that includes learning capabilities.

havior during some time periods, under different traffic con-
ditions. Then, a learning algorithm can generate a model from
those examples, such that given any new state it returns new
goals. We are assuming here that the learning process is per-
formed off-line, prior to the actual use of the AP-based sys-
tem, but it could also be done on-line. The following section
formally defines AP tasks and describes the Urban Traffic
Control (UTC) domain we are using on this work.

3 Planning Tasks
In order to represent planning tasks compactly, the AP com-
munity uses the standard language PDDL (Planning Domain
Description Language) [Fox and Long, 2003]. Most planners
automatically generate an instantiated planning task from the
PDDL declarative description of a domain D and a problem
P . The domain defines the predicates for representing states
and the actions that agents can perform. Figure 2 shows an
example of an action in the domain definition. The problem
describes the task to be solved at each reasoning step; i.e., the
objects involved (e.g., streets, traffic lights), the initial state
and the set of goals to achieve. Figure 3 shows a subset of a
problem definition. The planner will receive both the domain
and the problem files as input and it will try to find a solu-
tion plan for the given problem. In this case, the output of the
planner will be a set of actions to be performed over the traf-
fic lights, such that these actions override the default control
program for a certain time period. If the planner has solved
the congestion at the next reasoning step, the default program
will take the control again. Otherwise, the next actions of the
previously generated plan are executed.

This planning model assumes the world is deterministic
and the agent has full observability, among other assump-
tions. In most real-world environments, this is not the case.
Actions have stochastic outcomes (the traffic density is not
always reduced in the same way when setting a longer green
phase in a traffic light), and agents have partial observabil-
ity (they do not know what the density due to new vehicles

entering the city is going to be in the following time steps).
There have mainly been two ways to handle uncertainty. In
the first type of models, uncertainty is represented explicitly
in the planning model and planners reason with those stochas-
tic models [Bonet and Geffner, 2005]. In the second, planners
reason with deterministic world models and when execution
of some actions fails, the agent replans [Yoon et al., 2007]. In
this paper, we will use the second alternative given that, from
a practical perspective, it is good enough for the domain we
are focusing on.

4 Learning Traffic Behavior
In this section we define the task of learning when goals will
arrive; that is, predicting the density level of the streets so
we can anticipate their congestion, generating the appropiate
goals for the planner. We formulate this problem as a time
series prediction one, using Relational Learning in this case.
Relational Learning is a Machine Learning technique that can
capture the correlations between connected elements. In our
case, we conjecture that the structured layout of a city can in-
fluence the density levels of some streets based on the ones
that are connected to some others. Thus, it is a relational do-
main. Relational Learning also suits AP, because it allows in-
duction over structured examples that can include first-order
logical representations, like the ones used in PDDL.

4.1 Representation
The representation is based on a subset of the predicates we
use in the planning traffic domain. In order to represent the
time steps, we modify some of these predicates, adding the
corresponding time steps. The predicates used for the learning
task are shown in Table 1.

We distinguish two types of predicates: the static and the
dynamic ones. The static part of the city is represented by the
connection predicate, that indicates that a vehicle can move
from one street section to another. All the connection predi-
cates together represent the entire city network. The dynamic



(:action hm-green-to-all-ways
:parameters (?t - traffic-light ?c - crossing ?sin - street

?sout1 - street ?sout2 - street ?sout3 - street)
:precondition (and (goes-into ?sin ?c)

(goes-out ?sout1 ?c)
(traffic-lights-from-street ?t ?c ?sin)
(not (opposite-direction ?sin ?sout1))
(densityLevel ?sout1 moderate)...)

:effect (and (not (state-to-street ?t ?sout1 red))
(densityLevel ?sin low)...)

Figure 2: Part of an example description of a PDDL action.

(define (problem traffic1) (:domain traffic)
(:objects s1 ... s566 - street

c1 ... c30 - crossing
tl1 ... tl10 - traffic-light)

(:init (goes-into s1 c3)
(opposite-directions s5 s7)
(state-from-street tl1 s7 green)
(densityLevel s1 high)...)

(:goal (and (densityLevel s4 low)
(densityLevel s35 low) ...)))

Figure 3: Part of an example PDDL problem file.

Predicate Type
density(st,l) Dynamic

connection(st,st) Static
openX(tl,st) Dynamic

densityLX(st) Dynamic

Table 1: Predicates used in the learning task. X represents the
time step. L represents the density level.

part of the city is formed by the state of the traffic lights and
the density of the streets. The openX(tl,st) predicate repre-
sents a green traffic light tl located at street st at time step X .
In our approach, X can take the values from one to three (X
previous time steps, or time windows), but it is a parameter
that can be modified to extend or reduce the prediction hori-
zon. The densityLX(st) predicate indicates that a street st has a
density level L at time step X . L can take the values veryhigh,
high, moderate, low and verylow. The last predicate of each
example, density(st,l), represents the current density level l of
the street st. This will represent the class of each example.

4.2 Algorithms
We are using TILDE [Blockeel and De Raedt, 1998] to learn
relational decision trees. It receives two files as input: the set-
tings file, where the user can specify the algorithm parame-
ters, as well as defining the predicates and classes; and the
knowledge base file, where both the training and test data
are included. The output of the learning algorithm is a file
containing the resulting relational tree and its translation into
rules. It also contains the confusion matrix for the training and
test sets. An example output of TILDE is shown in Figure 4,

where A represents the example id and the other letters the
predicates’ arguments (B is the street whose density level,
C, we want to predict). A minus symbol predating a vari-
able means that it is new in the tree, while when the variable
appears alone, it has to be referenced before. The classes to
predict appear in the leaf nodes of the tree between brackets.
For example, in the model shown in Figure 4, a high den-
sity would be predicted for a street B in two cases: (1) if its
density was low two time steps ago, but there exists another
street D connected to B whose density was high three time
steps ago and was not low in the last time step; and (2) if its
density was not low neither two time steps ago nor one time
step ago.

density(-A,-B,-C)
densityLow2(A,B)?
+-yes: densityHigh3(A,-D)?

+-yes: connection(A,B,D)?
+-yes: densityLow1(A,D)?

+-yes:[low]
+-no:[high]

+-no:[low]
+-no:[low]

+-no: densityLow1(A,B)?
+-yes: [low]
+-no: [high]

Figure 4: Example of TILDE output.



5 Experiments and results
On this work we use SUMO [Behrisch et al., 2011], an open
source traffic simulator developed by the German Aerospace
Center (DLR). It allows to import or generate not only road
networks, but also traffic demand. And it also allows users
to define traffic lights control programs. We want to test first
if we are able to build a model to predict the appearance of
goals in advance, and then we try to apply the created model
to several urban traffic control scenarios.

5.1 Results on Learning Goals
We are using a real city network in our learning experiments;
a grid-like section of Houston downtown, shown in Figure 5.
It is composed of 35 junctions, 140 traffic lights and 164 street
sections. We have selected five particular street sections to
learn from (A to E). We chose these city points due to their
different traffic characteristics. C and D are street sections
close to a Job Center. B is a point between the Job Center and
the main exit of the city. E represents a street section far from
the main traffic, while A is a random point with no specific
features.

Figure 5: Benchmark network in SUMO. Models are created
for points A, B, C, D and E. We assume that a Job Center is
located on D. F corresponds to the main exit point of the city.

We have also defined a traffic demand that tries to emulate
the real traffic flow of a city for an entire week. So, we define
lower vehicles traffic at night, more traffic at rush hours, and
higher traffic during week days than in the weekend. The Job
Center is included, where most of the cars want to go dur-
ing the work hours and also a main exit point, to go out of
the city at the end of the workday. The rest of the routes are
randomly generated. The vehicles may enter the city by any
street section and can finish their trip in an inner (parking,
mall, office...) or outer point of the network. A summary of
the full traffic demand specification is shown in Figure 6.

 0

 1

 2

 3

 4

 5

 6

 7

00:00 05:00 10:00 15:00 20:00

M
il
e
s
 o

f 
v
e
h
ic

le
s

Hours

Week

Weekend

Figure 6: Summary of the generated traffic flows on weekdays
and weekends. The y axis represents the number of vehicles
that enter the network at each hour, in thousands, and the x
axis represents the hours.

Data is collected every five minutes for the learning task,
which means 2013 instances for the whole week. Five min-
utes is what we call “time step”, the sample frequency. We
have chosen this sample time as we want to collect traffic data
from an entire week, and, at the same time, we want to keep
a not very high number of instances so that TILDE is able to
handle them. In our experimental setting, a step in the simu-
lation corresponds to a second. Each instance stores the static
part of the city previously described, as well as the dynamic
component of the state in the last three time steps. We learn
one relational model for each street section shown in Figure 5,
and then we test with data of the other street sections.

We have also varied the density levels, both in the classes
to predict and the predicates used on each instance. We have
used two approaches. One is based on five density levels:
veryhigh, high, moderate, low and verylow. A second version
uses only two: high and low. All the generated models are
pre-pruned, limiting the creation of new branches when the
node has less than 10 instances.

In the first experiment, we generated five different models
using data from the five selected street sections and the five
density levels approach. And we tested these models in the
five street sections to check accuracy and generality of the
learned models. The results for this first configuration are on
Table 2.

We can observe that the accuracy is similar for all the street
sections except for B, whose behaviour seems to be more dif-
ficult to predict. A and E, the two points away from downtown
and the Job Center, present a similar behaviour as expected.

In the second experiment, the problem is simplified with
only two density levels both for the class and the state predi-
cates. The results for this last configuration are on Table 3.

We can observe that as we decrease the number of den-
sity levels, the complexity of the problem decreases too and
the prediction task becomes easier. With only two levels, the
density of a street knowing the state of the city in the last time



A B C D E
A 0.90 0.68 0.85 0.77 0.83
B 0.82 0.72 0.79 0.77 0.80
C 0.83 0.66 0.88 0.77 0.81
D 0.80 0.66 0.83 0.85 0.81
E 0.87 0.66 0.85 0.78 0.89

Table 2: Accuracy results using the model obtained with five
density levels. Each cell (i, j) represents the estimated accu-
racy of learning a model with the data extracted at point i in
the city and testing that model against the data collected at
point j.

A B C D E
A 0.99 0.94 0.99 0.97 0.99
B 0.99 0.95 0.99 0.98 0.99
C 0.96 0.93 0.99 0.97 0.99
D 0.96 0.93 0.99 0.98 0.99
E 0.96 0.93 0.99 0.97 0.99

Table 3: Accuracy results using two density levels for the
class and the predicates. Each cell (i, j) represents the esti-
mated accuracy of learning a model with the data extracted
at point i in the city and testing that model against the data
collected at point j.

steps can be predicted with a high accuracy, even in street sec-
tions that have very different behavior. The final model that
will be used in our architecture corresponds to the one learned
with the data of point B, which on average performs best. The
relational tree was shown in Figure 4.

5.2 Results on Traffic Management
Finally, we want to test whether a traffic control system would
improve its performance if it had some predictive model of
the traffic. To do so, we will use several simulation scenarios
where we vary the size of the network (medium and large),
the fluency of traffic (fluent or congested) and the evaluated
time period (an hour and a day).

When using the learned model, it predicts the density at
each street at each time step, using the previous X time steps
as input. If it detects a high density at any subset of the
street sections, it generates goals to lower the density of those
street sections. These new goals, together with the current
state of the traffic, create a PDDL planning problem that is
given as input to the planner. Therefore, the system is pre-
dicting the appearance of goals in the next X time steps, and
the planning process can anticipate to the congestions. We
will call this new approach Learning. In [Pozanco et al.,
2016], we show that if the system uses a short-horizon predic-
tion, having the same time steps for both building the model
and checking for goals is not that important. So, our system
checks for new goals every fifty seconds using the predic-
tion model built with the five minutes time step previously
described.

We compare our system with a Static one, that corre-
sponds to the default system used by SUMO. We also com-
pare our approach with a Reactive system, that acts locally
on each traffic light and sets a longer green phase on those

whose their corresponding street density is currently high.
We also compare with the AP approach proposed in [Gulic̀
et al., 2015], co-winner of the ARTS-COST competition on
Increasing the resilience of road traffic support systems by the
use of autonomics1. That planning system does not have any
learning component and only calls the planner when a vehicle
has been stopped for a long time. We will call it Planning.
This system is the starting point of our approach, so we use
the same planning domain and planner, LAMA [Richter and
Westphal, 2010]. The last system we introduce in the tests
combines the Planning approach and the Learning one.
It calls the planner when a goal (high density) is predicted or
the current density of a street is high. We will refer to it as
Combined.

We use the following metrics to measure the performance
of each system: the number of steps it takes all cars to reach
their destination; the total amount of C02 emitted by the vehi-
cles; the average waiting time (AWT); the average travel time
(ATT); and, if it applies, the number of planner executions
(PE) and the mean planner execution time (MPE). We choose
them simply for comparison, none of the systems explicitly
reasons on optimizing these metrics.

Experiments in a Medium-Sized City Network
We created a fluent traffic scenario for the first experiment by
introducing 5300 cars in 3600 steps in the same city network
we used in the learning goals experiments. The simulation
finishes if all cars reach their destination, or after 5000 steps.
The results are shown in Table 4. We can see that there is
no substantial difference when the traffic is fluid among the
different systems. But the Learning approach outperforms
the others on most metrics. So, when the traffic is fluent, one
expects that even the Static control program will perform
well. In this traffic situation, the time spent on average per
vehicle in a traffic light (AWT) is approximately half of the
total time spent in their complete travel (ATT). Given the size
of the example network, ATT is around three minutes, while
AWT is around a minute and a half. The number of plan-
ner executions is low in the Planning and Learning sys-
tems, and it becomes very high when using the Combined
approach. The number of times it calls the planner is much
higher than in the two other approaches, as expected.

Steps C02 AWT ATT PE MPE
Static 3969 1103 93 172

Reactive 4059 1137 100 181
Planning 4070 1117 95 175 22 10
Learning 3881 1090 88 167 15 10

Combined 4104 1193 115 197 61 10

Table 4: Performance of the different control systems with
a fluent traffic situation in a medium-sized city. Steps, AWT
and ATT are given in steps (seconds), while C02 is in kg.
MPE is in seconds.

In the second experiment, we test the systems performance
on a very congested traffic scenario using the same city net-
work. It was created by introducing 6000 cars in one hour

1https://helios.hud.ac.uk/cost/comp2.php

https://helios.hud.ac.uk/cost/comp2.php


(3600 steps). The results are reported in Table 5. The columns
report the same metrics as the one before.

Steps C02 AWT ATT PE MPE
Static - 2553 582 638

Reactive 4106 1262 119 202
Planning - 2187 435 506 48 11
Learning 4070 1265 121 204 46 10

Combined 4244 1301 128 212 68 11

Table 5: Performance of the different control systems with a
very congested traffic situation in a medium-sized city. Steps,
AWT and ATT are given in steps (seconds), while C02 is in
kg. MPE is in seconds.

As we can see, even if the Planning approach out-
performs the Static system, it performs worse than the
Reactive mechanism and the two other autonomic ap-
proaches. Both Learning and Combined can completely
solve the traffic congestion. The vehicles spend much more
time waiting on average than travelling in this scenario (rela-
tion between ATT and AWT). However, the Learning sys-
tem is able to reduce the waiting time to half of the travel
time, as in a fluent traffic situation. Thus, it is effectively con-
verting a congested situation into a fluent traffic scenario. The
reduction of the pollution achieved by Learning is quite
substantial too: half of the C02 levels of the static approach.
In fact, they are close to those generated in a fluent traffic sce-
nario. Reactive obtains practically the same results than
the Learning approach, even if it only acts locally at each
traffic light without considering the whole network.

Dense Traffic in a Large Size City Network
This experiment tests the scalability of the proposed model to
larger city networks. The benchmark network in this case is
composed of 130 junctions, 520 traffic lights and 566 streets.
This can be considered as a large network in relation to most
papers in the field, specially considering that our approaches
perform centralized planning. The network is shown in Fig-
ure 7. We introduce 13,000 cars in one hour in order to create
a dense traffic situation. As the city is bigger than the previous
one, a experiment will finish when all cars reach their desti-
nation or after 6,000 time steps. Table 6 reports the results.

Steps C02 AWT ATT PE MPE
Static - 6649 439 549

Reactive - 7676 605 709
Planning - 5520 341 468 50 46
Learning 5837 5231 321 445 47 44

Combined - 6279 518 633 64 54

Table 6: Performance of the different control systems with
a dense traffic situation in a large-sized city network. Steps,
AWT and ATT are given in steps (seconds), while C02 is in
kg. MPE is in seconds.

In this case, Learning outperforms the rest and it is the
only one that can finish the simulation before 6,000 steps.
The model we learned with the medium-sized urban network

Figure 7: Large city network used in the second type of ex-
periments.

is able to generalize to this larger city. Our system scales
quite well even in a large network; it can find a plan in less
than fifty seconds, the checking-for-goals sample period. The
performance of Planning is quite good in this case and it
almost solves the congestion. Thus, this only-planning ap-
proach works well when we have a reasonably high traffic
density (as in this experiment or in the first one), but not too
high (as in the previous experiment). The Reactivemethod
does not scale up well to the large city network. When trying
to locally reduce the congestion, it ends up generating traffic
jams and performing even worse than the default, Static.

Full day experiment
The last experiment focuses not only on trying to handle a
traffic peak, but also to test whether a system can deal with a
full day traffic flow. In these cases, the decisions spread over
time. We use the medium-sized city network and a traffic de-
mand specification similar to the one presented on Figure 6
for the week days. In this experiment we only measure the
AWT per hour. The other metrics could be irrelevant for the
24 hours case. The results are reported on Figure 8. Vehi-
cles routes remain static in SUMO. A car will always try to
reach its destination following the shortest path. If this route
is congested, the vehicle will not choose another one, but it
will stand still waiting for the route to be free. That is the
reason why, when using some systems, the network can get
congested at some time point and become congested for the
whole day. We can see this effect when a given curve in the
graphic reaches 200 s. When using this metric, a traffic sys-
tem performs better if the area under its curve is smaller.

As we can see, only our Learning system is able to fin-
ish the simulation properly. The AWT grows up in the morn-



 60

 80

 100

 120

 140

 160

 180

 200

00:00 05:00 10:00 15:00 20:00

A
W

T

Hour

Learning
Static

Planning
Reactive

Combined

Figure 8: Average waiting time in the city network per hour.

ing, when the cars go to the Job Center, but it does not get
fully congested. The AWT remains around 80 s throughout
the morning and it starts growing again by the end of the
workday. The metric reaches a peak around 18:00 where the
AWT is 103 seconds at the most congested traffic situation
of the day, which is still a reasonable behavior. After that
time period, the system is able to reduce the congestion and
the AWT starts to decrease. The Reactive system, which
showed good performance in the medium-sized city network,
can solve the early morning traffic problem. It obtains similar
results to the ones of Learning until the end of the work-
day. However, it cannot deal correctly with the end of the day
traffic. The other systems can not face the morning rush hour.
Even if the Planning system is still better than the other
two, it does not solve the congestion.

6 Related work
The first UTC models in the 1950s and 1960s, were based
on fixed-time traffic lights control mechanisms. Actions were
predefined following an off-line optimization using historical
data of demand levels. TRANSYT [Robertson, 1969] is one of
the most well developed and widely used control systems that
uses these techniques. These approaches could even generate
“green waves”, simple coordination of neighbouring traffic
lights in order to increase the traffic fluidity. The problem of
early systems is that they can age rapidly due to the continu-
ous evolution of the traffic flows in a city. The benefits may
be lost in some years if the control plans are not updated. Our
proposed system overcomes this situation, as it not only can
react to the current traffic scenario, but it can anticipate and
adapt to future ones.

In the last years, the use of new and better sensor systems
has allowed engineers to implement traffic-responsive sys-
tems that use the data provided by the detectors in an on-line
way. These techniques range from centralized approaches, as
SCOOT [Bretherton et al., 1998] and SCATS [Lowrie, 1990]
to distributed ones as UTOPIA[Donati et al., 1984]. As most
other traffic-responsive systems, they use a mathematical
framework to compute the optimal time allocation of each

traffic light. A weak point of these systems is that they cannot
predict incidents and they do not deal well with them. Also,
their models are not defined declaratively. Thus, our models
are easier to update with new types of information, or new
metrics to be taken into account when optimizing.

Other AI-related approaches have appeared in recent years.
The main goal is to build semi- or fully autonomous systems
with little human assistance. Most of them address traffic
management from a multi-agent perspective. A single agent
acts over a single junction or subset of junctions and then
several agents collaborate, discuss and negotiate with the
rest [Ossowski et al., 1998]. In [Box and Waterson, 2012],
the authors propose a model based on logistic regression and
neural networks to learn over time how to better control the
traffic signals. Other approaches focus on multi-agent rein-
forcement learning [Kuyer et al., 2008], distributed geomet-
ric fuzzy systems [Gokulan and Srinivasan, 2010] or creat-
ing a multi-agent model predictive control [de Oliveira and
Camponogara, 2010]. New approaches for efficient UTC are
arising in the last years using vehicle communication as the
core of the control process [Ferreira et al., 2010]. But, these
methods are still far from being implemented in real cities and
controlling traffic lights remains the most widespread way to
handle urban traffic.

7 Conclusions and Future work
In this paper we have presented a dynamic approach for
UTC based on Automated Planning and Relational Learn-
ing. As we have shown, by adding a learning component
that can predict the city state to a planning system, we can
highly increase its autonomy. It can automatically generate
its own goals, in addittion to letting the planner starts the
planning process sooner. We have tested our model in sev-
eral traffic control scenarios, showing that the ability to an-
ticipate goals can lead to better control performance than us-
ing only static traffic lights programns. Our system also out-
performs the Planning system and overcomes its limita-
tions, as Planning needs to know when a vehicle has been
stopped for a long time. Instead, our model only needs the
street density levels, which are easier to obtain from current
sensor systems. By just knowing density levels, we are able
to model a wide variety of circumstances that affect traffic
behavior such as adverse weather conditions or different days
and hours. Also, since other types of incidents (e.g., road-
blocking or big accidents) indirectly affect the density levels,
we believe our approach could also work to alleviate conges-
tions caused by them.

In future work, we would like to integrate the ability to
learn how to anticipate goals with externally supplied goals
(e.g., by traffic controllers), reactively generated ones (e.g.,
reactively generating goals), or internally supplied ones (e.g.,
generated by internal motivations of the system). Although
the proposed system scales up, we would also like to apply
a multi-agent approach by dividing the city in sections in
which an agent can apply the system in an autonomous way.
We think this could lead to similar performance with lower
execution times. We would also like to compare our system
with other state of the art methods on traffic control, such as



model predictive control (e.g., SCOOT), or other AI-based ap-
proaches (e.g., reinforcement learning). Finally, we want to
test the proposed system in irregular city networks such as
European ones and build the learning model on-line in order
to show the system’s real-world applicability.

Acknowledgements
This work has been partially supported by MINECO project
TIN2014-55637-C2-1-R.

References
[Behrisch et al., 2011] Michael Behrisch, Laura Bieker,

Jakob Erdmann, and Daniel Krajzewicz. Sumo–simulation
of urban mobility. In The Third International Confer-
ence on Advances in System Simulation (SIMUL 2011),
Barcelona, Spain, 2011.

[Blockeel and De Raedt, 1998] Hendrik Blockeel and Luc
De Raedt. Top-down induction of first-order logical de-
cision trees. Artificial intelligence, 101(1):285–297, 1998.

[Bonet and Geffner, 2005] Blai Bonet and Héctor Geffner.
mGPT: A probabilistic planner based on heuristic search.
JAIR, 24:933–944, 12 2005.

[Box and Waterson, 2012] Simon Box and Ben Waterson.
An automated signalized junction controller that learns
strategies from a human expert. Engineering applications
of artificial intelligence, 25(1):107–118, 2012.

[Bretherton et al., 1998] R. Bretherton, K. Wood, and G.T.
Bowen. Scoot version 4. In Proceedings of 9th Inter-
national Conference on Road Transport Information and
Control, 1998.

[de Oliveira and Camponogara, 2010] Lucas Barcelos
de Oliveira and Eduardo Camponogara. Multi-agent
model predictive control of signaling split in urban traffic
networks. Transportation Research Part C: Emerging
Technologies, 18(1):120–139, 2010.

[Donati et al., 1984] F Donati, Vito Mauro, G Roncolini, and
M Vallauri. A hierarchical decentralized traffic light con-
trol system. the first realisation ”progetto torino”. In
Proceedings of the 9th World Congress of the Interna-
tional Federation of Automotive Control, pages 2853–
2858, 1984.

[Ferreira et al., 2010] Michel Ferreira, Ricardo Fernandes,
Hugo Conceição, Wantanee Viriyasitavat, and Ozan K
Tonguz. Self-organized traffic control. In Proceedings of
the seventh ACM international workshop on VehiculAr In-
terNETworking, pages 85–90. ACM, 2010.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of AI Research,
20:61–124, 2003.

[Gokulan and Srinivasan, 2010] Balaji Parasumanna Goku-
lan and Dipti Srinivasan. Distributed geometric fuzzy mul-
tiagent urban traffic signal control. Intelligent Transporta-
tion Systems, IEEE Transactions on, 11(3):714–727, 2010.

[Gulic̀ et al., 2015] Matija Gulic̀, Ricardo Olivares, and
Daniel Borrajo. Using automated planning for traffic sig-
nals control. In Working Notes of ARTS-COST 2nd com-
petition, 2015.

[Guzmán et al., 2012] César Guzmán, Vidal Alcázar, David
Prior, Eva Onaindı́a, Daniel Borrajo, Juan Fdez-Olivares,
and Ezequiel Quintero. PELEA: a domain-independent
architecture for planning, execution and learning. In Pro-
ceedings of ICAPS’12 Scheduling and Planning Applica-
tions woRKshop (SPARK), pages 38–45, Atibaia (Brazil),
2012. AAAI Press.

[Hamilton et al., 2013] Andrew Hamilton, Ben Waterson,
Tom Cherrett, Andrew Robinson, and Ian Snell. The
evolution of urban traffic control: changing policy and
technology. Transportation planning and technology,
36(1):24–43, 2013.

[Kuyer et al., 2008] Lior Kuyer, Shimon Whiteson, Bram
Bakker, and Nikos Vlassis. Multiagent reinforcement
learning for urban traffic control using coordination
graphs. In Machine learning and knowledge discovery in
databases, pages 656–671. Springer, 2008.

[Lowrie, 1990] PR Lowrie. Scats, sydney co-ordinated adap-
tive traffic system: A traffic responsive method of control-
ling urban traffic. 1990.

[Ossowski et al., 1998] Sascha Ossowski, José Cuena, and
Ana Garcı́a-Serrano. A case of multiagent decision sup-
port: Using autonomous agents for urban traffic control. In
Progress in Artificial Intelligence—IBERAMIA 98, pages
100–111. Springer, 1998.

[Papageorgiou et al., 2007] M Papageorgiou, M Ben-Akiva,
Jon Bottom, Piet HL Bovy, SP Hoogendoorn, Nick B
Hounsell, Apostolos Kotsialos, and M McDonald. Its and
traffic management. Handbooks in Operations Research
and Management Science, 14:715–774, 2007.

[Pozanco et al., 2016] Alberto Pozanco, Susana Fernández,
and Daniel Borrajo. On learning planning goals for traffic
control. In 4th Workshop on Goal Reasoning (IJCAI’16),
2016.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The lama planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence
Research, 39(1):127–177, 2010.

[Robertson, 1969] Dennis I Robertson. Transyt: a traffic net-
work study tool. 1969.

[Vallati et al., 2016] M. Vallati, D. Magazzeni, B. De Schut-
ter, L. Chrpa, and T.L. McCluskey. Efficient macroscopic
urban traffic models for reducing congestion: a pddl+ plan-
ning approach. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence (AAAI-16), 2016.

[Yoon et al., 2007] Sungwook Yoon, Alan Fern, and Robert
Givan. FF-replan: A baseline for probabilistic planning. In
ICAPS, pages 352–360, 2007.


	Introduction
	Architecture
	Planning Tasks
	Learning Traffic Behavior
	Representation
	Algorithms

	Experiments and results
	Results on Learning Goals
	Results on Traffic Management

	Related work
	Conclusions and Future work

