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Abstract
The characteristic of fast movement in high-speed
rail seriously affects the stability of vehicular wire-
less communication. Applying cognitive technolo-
gy to individual users often brings frequent channel
switch and inefficient blind learning. To address
these issues this paper proposes a novel concept of
Cognitive Base Station (CBS), which has the capa-
bility of forecasting spectrum holes and assigning
spectrum to individuals. We then give the model of
cognitive base station and evaluate the performance
in our simulation platform within high-speed rail
environment. The experiment results further prove
that the model can significantly improve the perfor-
mance of vehicular communication.

1 Introduction
With the development of era, the demand for rail transit is
rapidly increasing. When travelling on train, the passengers
always hope to enjoy better communication quality and faster
data access service. European Rail Traffic Management Sys-
tem (ERTMS) is a revolution in railways to guarantee the
communication, which is consist of European Train Control
System (ETCS) and a mobile-communications network opti-
mized for railways called GSM-R.

GSM-R is the Global System for Mobile Communications-
Railway in the worldwide and is dedicated to provide the bidi-
rectional radio bearer for the train signaling systems, which
operates in a 4MHz band (876-880 MHz for uplink and 921-
925 MHz for downlink) [Sniady and Soler, 2012]. It is possi-
ble to divide the authorized band into 19 channels of 200KHz
width in each GSM-R group. The rail line is covered with
GSM-R groups and each consists of many GSM-R cells. A s-
ingle GSM-R cell can use only few of the channels in a round
robin manner, because the same channel cannot be reused by
neighboring cells due to interference. Each cell is equipped
with a base station. The base station is made up of building
baseband unit (BBU) and radio remote unit (RRU). RRU is
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always deployed outside along the railway and BBU is insid-
e. One BBU is connected to multiple RRUs. BBU and RRU
are used to process baseband signal and radio frequency sig-
nal, respectively. To ensure the communication between RRU
and passengers, two vehicular stations (VS) are installed on
the top and final carriages of the train. The network architec-
ture is illustrated in Fig. 1 [isheng Zhao et al., 2013], [Tian
et al., 2012]. The GSM-R system consists of base transceiver
stations (BTS) along the railway lines and embedded GSM-
R mobiles connected to antennas on the roof of the trains.
The train has to be permanently connected to the trains con-
trol center. This connection has a high priority level, and if
the modem connection is lost, the train stops automatically
[Dudoyer et al., 2012].

However, under the circumstance of high-speed railway
[Zhang et al., 2012], vehicular communication often shows
unstable, even sometime dreadful [Ai et al., 2014]. Usual-
ly, when the speed is up to 350 kilometers per hour, there
unavoidably arises some issues, such as Doppler shifts, fast
cell switching and the penetration loss [Zhou and Ai, 2014].
The Doppler shifts results from the relative motion between
a vehicle and a base station. Doppler Effect becomes another
pivotal factor degrading system performance, which increas-
es randomness of received signal [Liu et al., 2011], [Li and
Zhao, 2012], [Dybala and Radkowski, 2013]. The high speed
operation of the train leads to fast cell switching. As a train
moves across the footprint of the satellite beam, the receiv-
ing signal level may vary, especially towards the edge of the
beam, which significantly impacts service rates even causing
service drops [Li et al., 2013], [Alkayal and Saada, 2013].
The fully enclosed body structure with good sealing proper-
ty of the high-speed train results in penetration loss. Typi-
cally, the terminals inside the train connect to the base sta-
tions along the railway tracks via wireless links, in which the
large penetration loss will directly degrade the communica-
tion link quality and decrease the cell coverage [Zhu et al.,
2013], [Liu et al., 2012]. Furthermore, Federal Communi-
cations Commission (FCC) released the investigation on the
usage of spectrum In 2003. It suggested that the authorized
band in 3 − 6GHz range is less than 0.5% utilized on av-
erage. And so is the band below 3GHz, which is less than
35% [Commission and others, 2003]. Just based on these
viewpoints, it is necessary to introduce a novel architecture
for high-speed vehicular communication to address the issues
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Figure 1: Networks architecture for the high-speed rail communication system.

from individual user’s high-speed movement along the rails
and the inefficiency in the spectrum usage.

In recent years, a lot of researchers used cognitive radio
(CR) to improve the performance of wireless communication.
The basic idea of CR networks is that the unlicensed devices
(also called cognitive radio users or secondary users) need to
vacate the spectrum band once detect the licensed devices (al-
so known as primary users). Simon HayKin defined the CR as
an intelligent wireless communication system that is aware of
its environment and uses the methodology of under-standing-
by-building to learn from the environment and adapt to sta-
tistical variations in the input stimuli [Haykin, 2005]. Letaief
presented a cognitive space-time-frequency coding technique
that can opportunistically adjust its coding structure by adapt-
ing itself to the dynamic spectrum environment [Letaief and
Zhang, 2009]. Soyeon Kim proposed a CR operational algo-
rithm for mobile cellular systems, which was applicable to the
multiple secondary user environment [Kim and Sung, 2014].
These results proved CR technology can significantly reduce
interference to licensed users, while maintaining a high prob-
ability of successful transmissions in a cognitive radio (CR)
ad hoc network.

There are few publications about applying CR to the field
of urban rail transit. Wu proposed a wireless cognitive model
for high-speed individuals’ spectrum management and show a
small performance improvement in wireless communication
[Wu et al., 2015]. Although using cognitive radio in high-
speed-railway has improved the performance, there are still
so many issues that are open to address:

(1) Most of the cognitive radio users usually sense in the

same environment and each user is independent. So they
compete each other for the spectrum resources, which
leads to blind learning and frequent conflicts.

(2) The rail transit contains a large number of CR user-
s. While every user sense the environment, the sys-
tem works with heavy workload and high computational
complexity.

(3) The operations of mutual competition and cooperation
between the CR users interfere with not only primary
users, but also themselves and their neighbors.

(4) Spectrum holes in each base station are different. It
would inevitably occur spectrum handoff.

For addressing the above issues, we try to propose a novel
model of cognitive base station in the paper. Our proposed
CBS attempts to use the authorized bands for railway without
interrupting PUs. The CBS model should satisfy the follow-
ing conditions:
(1) The CBS can forecast spectrum holes according to its

experience and assign spectrum to individuals within its
range of coverage. In this way, the computational com-
plexity of the entire network can be reduced.

(2) The rail transit runs daily over a fixed route according
to its timetable. The CBS can take the advantage of
these characteristics, cooperate with each other to fore-
cast spectrum holes on the whole route.

This paper is organized as follow. We first introduce the
concept of cognitive base station and its mathematical mod-
el in Section 2. Section 3 then applies the novel CBS model
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Figure 2: The cognitive cycle of a cognitive base station.

with RL into the scenario of high-speed rail, and propose the
cooperation mechanism of multiple CBS agents. The experi-
mental simulation results are given in Section 4. We conclude
this paper in Conclusion.

2 Cognitive Base Station Model
Our proposed CBS is deployed along the railway, which
works as a spectrum assigner. It learns from feedback re-
ceived through interactions with an external environment and
assigns spectrum to the passengers in the range of coverage.
We consider each CBS to be an agent, which has four spec-
trum management functions: spectrum sensing, spectrum
mobility, spectrum decision and spectrum sharing [Chkirbene
and Hamdi, 2015], [Lee and Akyildiz, 2012]. Fig. 2 gives
the steps of the cognitive cycle within the framework of CBS,
which is formed by the spectrum-aware operations. Each CB-
S agent uses reinforcement learning to operate spectrum man-
agement. All of the agents can sense the environment, obtain
its own current state about spectrum usage, and communicate
with each other for the purpose of cooperation. They then
make decision according to its own state and the whole net-
work situation, then use spectrum mobility to choose actions.
Finally, these CBS agents continue to send its new state to the
other neighbor CBS agents.

We assume that our cognitive radio network along high-
speed rail consists of a collection of CBS agents and CR user
agents. Each CBS agent has its own PUs and available spec-
trums. The CBS agents undertake decisions on choosing the
spectrum independently of the CR user agents in the range.
A choice of spectrum by the CBS agent i is essentially the
choice of the frequency represented by f i ∈ F . The CR
user agents continuously monitor the spectrum that the CBS
agent choose in each slot time. We assume perfect sensing,

in which, the CBS agents correctly infer the presence of the
PUs if the former lies within the PUs’ transmission range.

• Long-term Awareness of Spectrum Usage
Characterizing the spectrum bands based on their activi-
ty, and in particular, learning about the utilization of the
channel is a key function of the CR users. Online learn-
ing algorithms must be developed that allow the CBS a-
gents to continuously gather information about its radio
environment, and construct a utilization function. Apart
from simply classifying the spectrum as busy or avail-
able, it is beneficial if a probability distribution of the
anticipated transmission/silent durations of the PUs can
be derived. We propose a tightly integrated reinforce-
ment learning equipped link layer protocol to schedule
the transmissions between CBS agents and CR user a-
gents over time.
• End-to-End Learning

Distributed networks rely on multihop forwarding of
packets between a source-destination pair. Each CBS a-
gent on this path learns of its own spectrum environment
over time, and this information can be leveraged at the s-
tart and end points of the path to make optimal decisions
regarding the spectrum choices and routing options. As
an example, spectrum switching costs locally at a node
affects end-to-end delays. While spectrum characteris-
tics can be locally inferred, the specific choice of the
spectrum at each link to minimize intra-path switching
must be undertaken at the end points of the path. We
explore ways to share this learning and spectrum aware-
ness obtained by a node between its local neighbors, and
subsequently over multiple hops to the destination. The
cost of this learning and the benefits are investigated as
part of this project.

3 SPECTRUM MANAGEMENT BASED
COGNITIVE BASE STATION

3.1 The Q-Learning
Reinforcement learning, which is inspired by psychological
learning theory from biology [Waltz and Fu, 1965], enables
the agent to learn behavior through trail-and error interactions
with a dynamic environment [Sutton and Barto, 1998]. The
classical reinforcement algorithm is Q-Learning, the process
of which is as follows [Puterman, 1994]. On each step of
interaction the agent chooses an action according to the ex-
ternal environment based on its current state. As a result, the
action changes the environment and receives a reward. The
agent need to develop a policy, that maximizes the long-run
measure of reinforcement.

The classic reinforcement learning algorithm is formulat-
ed as follows. At each time t, the agent perceives its current
state st ∈ S and the set of possible actions Ast . The agent
chooses an action a ∈ Ast and receives from the environ-
ment a new state st+1 and a reward rt+1. Based on these
interactions, the reinforcement learning agent must develop a
policy π : S → A which maximizes the long-term reward
R =

∑
t γrt for MDPs, where 0 ≤ γ ≤ 1 is a discount-

ing factor for subsequent rewards. The long-term reward is



CBS agent

CBS agent

CBS agent

CBS agent

PU agents

PU agents

PU agents PU agents

CR 

agent

Figure 3: The cognitive base station within the high-speed-rail transportation.

the expected accumulated reward that the agent expects to re-
ceive in the future under the policy, which can be specified
by a value function. In this way, the Q-learning can calcu-
late an update to its expected discounted reward, Q(st, at) as
follows:

Q(st, at) ← Q(st, at) +

α[rt + γmax
a

Q(st+1, a)−Q(st, at)]

where γ is the discount factor such that 0 ≤ γ < 1. The agent
stores the state-action values in a table Q [Wu et al., 2010],
[Jiang et al., 2011], [Bkassiny et al., 2013].

Recently the reinforcement learning has attracted increas-
ing interest in the machine learning and artificial intelligence
communities. Kadam etc. applied the Q-Learning into rout-
ing data in Wireless Sensor Network scenario to route data
efficiently from one source to multiple mobile sinks [Kadam
and Srivastava, 2012]. It turned out that the algorithm can
extend the network lifetime.

3.2 Application to Cognitive Base Station
We illustrate the high-speed railway environment with CBS
agents along the way in Fig. 3 . We further model a cogni-
tive radio network as consisting of a set of Cognitive Base
Stations, denoted CBS, a set of primary users, denoted PU ,
and a set of available frequencies, denoted SP . We assume
that the topological structure of a given network is fixed.

Spectrum holes vary due to the behavior of PUs, which
causes the change of environment. CBS agents can perceive
the states within the environment. The state of an CBS agent
is the current spectrum of its transmission. The state of the
multi-agent system includes the state of every CBS agent. We
therefore define the state of the system at time t, denoted st,
as

st = ( ~sp)t
, where ~sp is a vector of spectrums across all agents. Here
spi are the spectrum on the ith agent and spi ∈ ~SP . Nor-

mally, if there are m spectrums, we can using the index
to specify these spectrums. In this way, we have ~SP =
{SP 1, SP 2, ..., SPm}.

At a particular time and a particular state, the CBS will take
action according to learning results to either switch channel
or transmit. At time t we define at = k, where k is the action
that CBS chooses at time t and

k ∈ {switch to channel1, switch to channel2,

..., switch to channelm, transmit data}.

Once the CBS agent has detected any active PU, it would
take action to channel switching. We use the Q table to s-
tore state-action values. At time t, the state is spt and the
action is k, then we can calculate the value Q(spt, k) by the
above Q-learning formulas. If PU is detected, the CBS agent
would switch to the other available spectrum with the largest
Q-value.

The reward is the estimate for spectrum usage availablity
on a CBS agent. The different network situation results in
different rewards as follows.

• CR-PU interference: If a PU’s activity occurs in the
spectrum shared by any CR user, and in the slot same
selected for transmission, then a high penalty of −15 is
assigned. The intuitive meaning of this is as follows: We
can avoid the collisions among the CR users using the
mediation from the CBS agents. However, the concur-
rent use of the spectrum with a PU goes against the prin-
ciple of protection of the licensed devices, and hence,
must be strictly avoided.

• Successful Transmission: If none of the above condition-
s are observed to be true in the given transmission slot,
then packet is successfully transmitted from the sender
to receiver, and a reward of +5 is assigned, which is
found experimentally to give the best results.
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Figure 4: The Q-learning process on CBS model.

Once detected the primary user, a harsh punishment will be
given. Otherwise, a positive reward will be assigned. Fig. 4
illustrates the proposed process, and Algorithm 1 describes
our algorithm for implementing the Q-learning on CBS agent.

4 EXPERIMENTAL SIMULATION
4.1 Experimental Design
In this section, we describe preliminary results from applying
our reinforcement learning based approach to the cognitive
radio model. To detect the PUs correctly is the necessary
prerequisite. The overall aim of our proposed learning based
approach is to allow the CBS agents to decide on an optimal
choice of spectrum so that (i) PUs are not affected, and (ii) CR
users share the spectrum in a fair manner. These two rules are
to simulate the public’s behaviors in Urban Rail Transit En-
vironment. That is, those bands that are frequently occupied
by licensed users are rarely utilized because of open areas or
relatively closed environment, and the public can opportunis-
tically use band resources with a same probability.

Our novel CBS network simulator within the framework
of high-speed rail has been designed to investigate the effect
of the proposed reinforcement learning technique on the net-
work operation. The implemented ns-2 model is composed of
several modifications to the physical, link and network layers
in the form of stand-alone C++ modules. The PU Activity
Block describes the activity of PUs based on the on-off mod-
el, including their transmission range, location, and spectrum
band of use. The Channel Block contains a channel table
with the background noise, capacity, and occupancy status.
The Spectrum Sensing Block implements the energy-based
sensing functionalities, and if a PU is detected, the Spectrum
Management Block is notified. This, in turn causes the device
to switch to the next available channel, and also alert the up-
per layers of the change of frequency. The Spectrum Sharing
Block coordinates the distributed channel access, and calcu-
lates the interference at any given node due to the ongoing

Algorithm 1 Pseudo code of Q-learning on CBS
Main()
Initialize state st and action at and their ~Q value;
repeat

Q-learning(st, at, ~Q)
until all episodes are traversed

Q-with-Kanerva(st, at, ~Q)
repeat

Take action st, observe reward rt, get next state st+1

Get Q(stat) from the Q-table;
for all actions a* under new state st+1 do

Generate the state-action pair st+1at+1 from state
st+1 and action a*
Get Q(st+1at+1) from the Q-table;

end for
δ = r + γ ∗maxQ(st+1at+1)−Q(stat)

∆ ~Q = α ∗ δ
~Q = ~Q+ ∆ ~Q
st = st+1

if random probability ≤ ε then
for all actions a* under current state st do
at = argmaxaQ(stat)

end for
else
at = random action

end if
until st is terminal

transmissions in the network. The Cross Layer Repository
facilitates the information sharing between the different pro-
tocol stack layers.

We conduct our experiment in the following scenario: there
are 2 trains which take on 21 passengers for each and 5 CBS
agents aside the railway. The average speed of train is 10m/s.
We have 10 primary users in the range of each CBS. The ac-
tivity of primary users is based on ON-OFF model and each
primary user is assigned the spectrum randomly from 5 spec-
trums (small network) or10 spectrums (large network) . The
CBS agent senses the spectrum holes per 0.1 second and as-
signs available spectrum to CR user agent. The simulation
parameters are summarized in Table 1.

4.2 Experimental results
We compare the performance of our CBS with reinforcement
learning (CBS-RL) scheme with the CBS with Round-Robin
scheme (CBS-RR), which is a typical way in GSM-R sys-
tem. The Round-robin (RR) scheme employs the principle
that once a spectrum is not available, the agent switches to
next channel in equal portions and in circular order, handling
all switches without priority (also known as cyclic executive).
This method is simple, easy to implement, and starvation-
free. In our RL-based scheme, the exploration rate ε is set to
0.2, which we found experimentally to give the best results.
The initial learning rate α is set to 0.8, and it is decreased by
a scaling factor of 0.995 after each time slot.

Figure 5(a) shows an example about the distribution of
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Table 1: Simulation Parameters
Parameters Values
Topology size X:7000m Y:500m
Number of passengers 42
Number of primary users 50
Number of cognitive base station 5
Speed 10m/s
Number of spectrums 6
Bandwidth 2000000Hz
Simulation time 1000s

spectrums occupancy on the CBS with 5 spectrums. Spec-
trums occupancy on CBS follows the ON-OFF model: the
ON mode is in the normal distribution with the parameter
µ = 25, and the OFF mode is in the exponential distribu-
tion with the parameter β. the value of which is randomly
generated.

Figure 5(b) and 5(c) show the average rewards received by
CBS agent across all spectrums using the CBS-RL scheme.
The result in Figure 5(b) shows that after learning over 1000
epochs, Channel 5 receives the largest positive reward of ap-
proximately +5.5, while Channel 1, 2, 3 and 4 gets a reward
of approximately −11.8, +0.7, −5.1 and +3.3. The results
indicate that our approach pushes the CBS agents to gradual-
ly achieve higher positive rewards and choose more suitable
spectrum for their transmission. The results also indicate that
the reward tends to be suitable to the distribution of spectrums
occupancy. A similar trend is observed in Figure 5(c), with
Channel 10 receiving the highest average reward of approxi-
mately +5.2.

Figure 5(d) and 5(e) show the cumulative number of chan-
nel switching using CBS-RL and CBS-RR schemes. The
result in Figure 5(d) shows the average number of channel
switches for the small topology. We observe that after learn-
ing, the CBS-RL scheme tends to decrease number of channel
switching to 5, while CBS-RR keeps the channel switches
to approximately 12. For the large topology in Figure 5(e),
the CBS-RL scheme reduces the channel switches to 6, while
CBS-RR keeps the channel switches approximately 23. The
results indicate that our proposed CBS-RL approach can keep
the channel switches lower than the CBS-RR approach and
converge to an optimal solution.

5 CONCLUSIONS
To address the issues of frequent channel switches and inef-
ficient blind learning in high-speed rail, we propose a novel
concept of Cognitive Base Station, which has the capability
of forecasting spectrum holes and assigning spectrum to indi-
viduals. Our simulation results prove that after autonomous
learning, the CBS-RL scheme can forecast spectrum holes.
In this way, our proposed model can significantly improve
the performance of vehicular communication, which can de-
crease cell-switching and unsuccessful transmission.
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