
Process Mediation in
an Extended Roman Model

Gösta Grahne and Victoria Kiricenko

Department of Computer Science and Software Engineering
Concordia University

Montreal, Quebec, Canada H3G 1M8
grahne,kiricen@cs.concordia.ca

1 Introduction

A mediator is a software module that provides sharing of services and and ag-
glomeration of resources into complex services. Mediators will play a pivotal
role in successful infrastructures for Semantic Web Services. Process media-
tion in Web Services involves issues of process compatibility and composability.
Evolving standards of web services, such as the web service Execution Environ-
ment (WMSX [21]) focus mostly on compatibility issues in a B2B environment,
whereas the problem of dynamic composition of web services is still maturing in
the research community. In this paper we contribute to the composition aspect
of process mediation.

Web service process specification has reached well accepted standards, such as
the Business Process Execution Language (BPEL4WS [9]). Moreover, it has re-
cently been shown that process algebra provides a useful interpretation of BPEL
specifications. Works such as [12, 19] provide the mapping from BPEL to process
algebra, and show how the algebra can be used to describe Web Services during
design stage. These works also demonstrate how process algebraic descriptions
can be extracted from existing Web Services for reverse engineering purposes.
This enables the use of numerous verification tools that are available for process
algebra (e.g. LOTOS) in web service development.

When it comes to the question of composability of web services some of the
most fruitful results have been achieved within the Roman model [3, 2, 7, 11, 14,
5], an evolving framework that takes a highly computational approach to Web
Service composition. In this paper we extend the Roman model by incorpo-
rating features from process algebra that will allow a fuller use of important
functionalities of Web Services, such as parallelism, nondeterminism, and task
decomposition.

Our contributions are as follows:

1. We develop a rigorous extension to the Roman model, and give a formal
semantics based on the process algebraic notion of simulation. Our exten-
sion not only allows for fuller coverage of the standard languages used for
description and execution of web wervices in practice, but also unifies the
approaches of modeling and mediating web services. Moreover, our extension

Page 17

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

allows for formal verification of mediated web services though the use of the
numerous tools available for process algebra.

2. We give an algorithm for mediating a requested Web Service from a resource
pool of more basic services.

Process mediation is a complex task, and our work certainly does not address
all the problems and all the mediation scenarios that may appear in the Web
Service context. In the concluding section we outline some extensions that we
are currently investigating.

2 Behavioral Models of Web Services

Web Services are distributed and independent pieces of software working to-
gether to achieve given tasks. The Business Process Execution Language (BPEL
[9]) is a notation for describing executable business process behaviors. Such be-
havioral signatures provide the foundation for composing Web Services.

Behavioral signatures are often formalized as state based (infinite) labeled
transition systems, i.e. (infinite) labeled graphs. Vertices represent processes and
labeled edges represent activity. The node that an edge is incident upon repre-
sents the state that the process has evolved to, after performing the action of
the label. This approach is also adopted in the Roman model [3, 2, 7, 11, 14, 5],
with the restriction that the transition graphs are tree structured.

Process algebra is a mathematical framework for reasoning about behavioral
signatures. Numerous processes algebras have been proposed and studied in the
literature. Basic ones include CCS, CSP, ACP, extensions are π-calculus and
timed CSP [10]. LOTOS [16] is for one of the most expressive process algebras,
and it comes with an industrial strength suite of tools for specification and
verification. Recently, Ferrara [12] has given a two-way mapping that allows an
automated translation between BPEL and LOTOS, thus making the LOTOS
suite available for Web Service development.

The “urelements” in all process algebras is a finite set of atomic processes.
Although syntactically different, all process algebras share a core set of basic con-
structs for process evolution, namely, sequential composition, non-deterministic
choice, parallel composition, communicating (synchronized) composition, and
recursion [10]. In our framework we use these core constructs, We build on the
Roman model, which provides a basic framework for Web Service specification
and verification. The Roman model is a robust foundation, and it is currently
being extended with e.g. asynchronous message exchange [6], value passing [5],
temporal constraints [14], Presburger constraints, discrete time, and non-regular
processes [11].

In the next section we give our extension of the Roman model. In order to
have a uniform framework, we build our extension from “first principles.” Due
to space limitations, some proofs are omitted. They can be found in a longer
version of the paper at the authors’ websites.

Page 18

3 An Enhanced Roman Model

Let N = {1, 2, 3, . . . , }. By N∗ we denote the set of all finite strings over N. The
empty string over N∗ is denoted by ε. A tree domain D is a non-empty subset of
N∗ that is closed under the prefix relation. (i.e. if u.w ∈ D then u ∈ D).

Now let Q be a state space, F ⊆ Q a designated set of final states, and Σ a
finite set of actions, Then an execution tree T is a function T : D → Q× (Σ∪λ),
such that T (ε) = (q, λ), for some q ∈ Q. The root of T is ε. A leaf node of T is
an element w ∈ dom(T), such that for all i ∈ N, wi /∈ dom(T).

The intuition is that the root is the start state of the service, and if (p, b) is a
child of (q, a), then the service was in state p, and went into state q after having
executed action a. It came into state p after having executed action b, and at
the root it has not yet executed any actions. When the service is satisfying a
request, it moves from the root state to some final state, while executing the
actions along the path.

We shall in the sequel denote D by dom(T). Figure 1 shows an example of a
(finite) execution tree. For this T , we have dom(T) = {ε, 1, 2, 11, 12, 13, 21, 121},
shown to the left, F = {p0, p1, p3}, Q = {p0, p1, p2, p3, }, and Σ = {a, b, c}. To
the right we show the function T graphically, e.g. T (12) = (p2, a). The leaves are
{11, 121, 13, 21}. Thus this service T can satisfy the requests {b, bb, bab, ba, ca}.

��

�� ��

�

���

�� ��

���������	��
�

�����
� �������

�����
�

�����
�

������� �������

Fig. 1. A tree domain and a tree

To compare the capabilities of Web Services, we need a notion of equivalence,
that tells us when two Web Services can perform the same tasks. Research in
process algebra has revealed a wide spectrum of equivalences [10]. At one end
is trace equivalence: two processes are considered equivalent if they can per-
form the same sequence of tasks. Trace equivalence represents a black box view
of the processes. At the other end of the spectrum is simulation equivalence.
This equivalence comes in various flavors, but the basic idea represents a game
theoretic view: two processes are equivalent if they can match each others task
sequences action by action.

Previously, in works on the Roman model [3, 2, 11, 14], a notion corresponding
to trace inclusion has been used implicitly or explicitly. However, research in
formal specification (see e.g. [10]) has shown that trace equivalence (two-way
trace inclusion) is not always adequate. Consider the following example.

Page 19

Example 1. An on-line computer store allows its users to search its product
catalogs, to make a selection and then buy the selected item, or to save the
results of the search for later use. Both execution trees in Figure 2 could be the
web service for (this aspect of) the online computer store, as they both contain
the same sets of traces ({search.buy, search.save}). However, in the execution
tree to the right, lets call it T ′, a user has a choice of executing either buy or
save after performing the search action, while in the execution tree to the left,
called T , the web service makes a nondeterministic choice when a user initiates
the search action. Note that one of the nondeterministic choices in T allows
the user to subsequently initiate only the buy action and the other choice allows
him to initiate only the save action, whereas in T ′ both the buy and the save
action are enabled after the search action. It is clear that a notion of inclusion
finer then trace inclusion is needed to distinguish between these two execution
trees. ut

��������	
����
�����	
��

�������

�������������������

��
�����	
��

�������

��������������������
�

�
�

�
�

�
�

Fig. 2. Forward simulation T � T ′

We shall therefore use a notion derived from bisimulation, called forward sim-
ulation [17]. While bisimulation and its variants have received intense attention
in the research community, forward simulation is much less investigated.

To define forward simulation formally, let Q and Q′ be state spaces, with
final states F and F ′, respectively, and let Σ be an alphabet. Let T : dom(T)→
Q × Σ and T ′ : dom(T ′) → Q ′×Σ be execution trees. We say that T can be
forward simulated by T ′, denoted T � T ′ if there exists a simulation relation
R ⊆ dom(T)× dom(T ′), satisfying:

1. (ε, ε) ∈ R
2. If (w,w ′) ∈ R, for some w ∈ dom(T), w ′ ∈ dom(T ′), and T (wi) = (s, a),

for some i ∈ N, then there exists j ∈ N and s ′ ∈ Q ′ such that (wi, w′j) ∈ R
and T ′(w′j) = (s ′, a).

3. For all (w,w′) ∈ R, where T (w) = (p, a), T ′(w ′) = (q, b), for some a, b ∈ Σ,
if p ∈ F then q ∈ F ′.

Example 2. Consider again the two execution trees given in Example 1. Forward
simulation requires that the simulating web service can simulate the simulee
in a lock-step fashion. As we can see from the Example 1, T cannot simulate
T ′. On the other hand T ′ can simulate T . For every action that T takes,

Page 20

T ′ can take the same action, and has at least the options of T for subse-
quent actions. In Figure 2 the dotted lines illustrate the simulation relation
R = {(ε, ε), (1, 1), (2, 1), (11, 11), (21, 12), . . .}. ut

Finite State Machines. So far, we have described web services on an abstract
semantic level. In practice, web services need to be finitely specified or imple-
mented. Following the Roman model, we shall represent a web service by a finite
state machine.

Let Σ be a finite set of actions, as before. Actions will be denoted by letters
a, b, c . . ., and the empty string over Σ is denoted λ. A (nondeterministic) Finite
State Machine (FSM) is a quintuple A = (Q,Σ, δ, p0, F) where Q is the finite
set of states of A, Σ is the finite set of possible actions, δ ⊆ Q × Σ × Q is the
transition relation, s ∈ Q is the initial state, and F is the set of final states of A
(see e.g. [15]).

��������������

��	��
� �������

��	����

��	����

��

�� �

�� ��

���������������������������� ���������	��
�

�

�

�

�

�

�

�

Fig. 3. An FSM an its execution tree

It should be noted that as opposed to the initial Roman model [3], our de-
finition of an FSM allows for nondeterminism. This approach is more realistic
as it is computationally closer to the specification languages typically used for
description of the web services. Moreover, it better captures the dynamic, not
always fully reliable, and partially redundant nature of web services. Nondeter-
minism has also been adopted in e.g. [11, 14], within the scope of the Roman
model.

Page 21

Given an FSM A = ({p0, p1, . . . , pn}, Σ, δ, p0, F), its execution tree TA is
mapping TA : dom(TA) → Q × Σ, where TA and dom(TA) are defined induc-
tively as:

1. dom(TA) = ε and TA(ε) = (p0, λ)
2. If w is a leaf of dom(TA), with TA(w) = (pj , a), and (pj , b1, pi1),

(pj , b2, pi2), . . . , (pj , bk, pik
) ∈ δ are all the transitions emanating from pj ,

with i1 < i2 < . . . < ik, then extend dom(TA) and TA as follows:
(a) Add w1, w2, . . . , wk to dom(TA).
(b) Extend TA by setting TA(w1) = (pi1 , b1), TA(w2) = (pi2 , b2), . . ., TA(wk) =

(pik
, bk).

Figure 3 shows an FSM and part of its execution tree.
We can now use forward simulation to compare FSM’s. We say that a web

service specified by an FSM A can be forward simulated by a web service specified
by an FSM A ′, if T (A) � T (A ′).

Given the fact that execution trees are (typically) infinite, we are interested
in a finite characterization of when T (A) � T (A ′).

Let A = (Q,Σ, δ, p0, F) and A ′ = (Q ′, Σ, δ ′, q0, F
′). We denote (with slight

abuse of notation) A � A ′, if there exists a simulation relation R ⊆ Q × Q ′

between the states of A and A ′, satisfying:

1. (p0, q0) ∈ R
2. If (p, q) ∈ R, and (p, a, s) ∈ δ, for some s ∈ Q, then there exists a t ∈ Q ′,

such that (q, a, t) ∈ δ ′ and (s, t) ∈ R.
3. For all (p, q) ∈ R, if p ∈ F then q ∈ F ′.

Example 3. Consider the two web services defined by FSM’s A and B in Figure 4.
These FSM’s are specifications of the execution trees in Figure 2. As expected,
B can forward simulate A, but not vice versa. The dotted lines illustrate the
simulation relation R = {(p0, q0), (p1, q1), (p2, q1)}. ut

��

������������
�����	

�� ��

��

������
�����	

��

Fig. 4. Forward simulation A � A ′

It is easy to show that the two notions of forward simulation coincide.

Lemma 1. A � A ′ ⇔ TA � TA ′

Page 22

4 Web Service Communities

A Web Service Community is a set of cooperating Web Services {T1, T2, . . . , Tk},
where each sub-service Ti is an execution tree with state space Qi and action
alphabet Σi. The action alphabet of the community is Σ = Σ1 ∪ . . . ∪Σk.

Intuitively, actions of a Web Service Community are enacted by executing
actions of the sub-services, either sequentially, or in parallel. This is formalized
using a merge operator, inspired by [18].

The merge operator is a significant extension to the classical Roman model.
Firstly, it allows for simultaneous execution of actions by two or several different
services. This is a feature that is as essential to Web Services as it is to any
distributed computations. Note that BPEL supports the <flow> construct that
allows the specification of one or more activities to be performed concurrently.

Secondly, the merge allows us to define processes that are composed of two or
more sub-processes. This feature can be achieved in BPEL by using links within
concurrent activities of the <flow> construct.

Formally, let a and b be actions. Then the merge of a and b, denoted a||b,
consists of either executing a followed by b, denoted a.b, or by executing b.a,
(both a.b and b.a are sequential executions), or executing them in parallel. For
the parallel execution we need a partial function γ : Σ ×Σ → Σ. If γ(a, b) = c,
then the parallel execution of a and b is visible externally as an action c. We
demand that, if defined, γ(a, b) = γ(b, a), and γ(a, γ(b, d)) = γ(γ(a, b), d), for all
a, b, d ∈ Σ, as γ models parallel execution (see [18]).

We now have two types of uses of the merge operator: The first is a parallel
execution of one action. In this case we have γ(a, a) = a, as in the search action
in Figure 5. The second use of merge is for task decomposition. When γ(a, b) = c
we take this to mean that externally visible action c is achieved internally by the
community through executing a and b in parallel. The buy computer action in
Figure 5 is an example of an action achieved internally by two parallel actions,
namely buy tower, and buy monitor.

Example 4. Consider the two Web Services defined by the FSMs A and A ′ given
in the Figure 5 to the left and to the right, respectively. The two web services
together form an web service community {A,A ′} and the figure also shows the
merge capabilities of the community in the form a Table for the γ function.

The service A allows the user to search for and buy computer towers, while
A ′ provides the same options for computer monitors. Now, what would be the
semantics of this community? Intuitively, the executions of the individual web
services can be interleaved in any possible order. In addition, with respect to the
defined γ searches can be done in parallel, and simultaneously buying a tower
and a monitor amounts to buying a computer. The merge of the A and A ′, with
respect to the given γ is illustrated in Figure 6, ut

Page 23

��

������
��	
��
��

��

��

������
��	
�������

��

Action Action Compound action

search search search

buy tower buy monitor buy computer

Fig. 5. Community of FSM’s

������

��������	
��
��

������

������

��	
�������

������

������ ��	
��
��

������

������

��	
�������

������

��	
��������

Fig. 6. Merge of community FSM’s

5 Semantics of Web Service Communities

As the meaning of Web Service processes is given in terms of process trees, we
need to define the community merge in terms of trees. We do this by extending
the language-theoretic shuffle [15] with the γ-function. (Note that in classical
process algebra the merge is defined axiomatically [10].)

Let T : dom(T) → Q × Σ, and T ′ : dom(T) → Q ′×Σ, be trees, with final
states F ⊆ Q ⊆ {1, . . . , k}∗, and F ′ ⊆ Q ′ ⊆ {1, . . . ,m}∗. To define the merge,
T ||T ′, of trees T and T ′ we need to specify dom(T ||T ′). For this, let w ∈ dom(T)
and u ∈ dom(T ′). We set:

1. ε||w = {w}, ε||u = {u}, and ε||ε = {ε}
2. if w = w ′ .i and u = u ′ .j, for some i ∈ {1, . . . , k}, j ∈ {1, . . . ,m} then

w||u = (w ′ ||u)i ∪ (w||u ′)k + j.
Furthermore, if γ(t(w), t′(u)) is defined, then add the element (w ′ ||u ′)k +
m + 2i · 3j to w||u.

Page 24

We can now define

dom(T ||T ′) = {w||u : w ∈ dom(T), u ∈ dom(T ′)}.

We regard dom(T ||T ′) as a subset of {1, . . . , k + m + 2k · 3m}∗.

Lemma 2. dom(T ||T ′) is a tree domain.

For an arbitrary string w over dom(T ||T ′), we define wl as the projection of
w to the subsequence of symbols ≤ k, and wr as the projection of w onto the
symbols > k and ≤ m.

By TQ(w) we mean p, where T (w) = (p, σ), and by TΣ(w) we mean σ.
Similarly for T ′.

Now we can define T ||T ′(ε) as (〈TQ(ε), T ′
Q(ε)〉, λ), and for all wi ∈ dom(T ||T ′),

T ||T ′(wi) =



(〈TQ(wli), T ′
Q(wr)〉, TΣ(wli)), i ≤ k

(〈TQ(wl), T ′
Q(wri)〉, T ′

Σ(wri)),
k < i ≤ k + m

(〈TQ(wli), T ′
Q(wri)〉, γ(TΣ(wli), T ′

Σ(wri)),
i ≥ k + m + 6.

Example 5. Let us return to the community of the two services in Examples 4.
Two execution trees T and T ′, corresponding to A and A ′ are given in Figure
7. The semantic merge of these two trees are shown in in Figure 8.

The semantic merge has the following properties:

Theorem 1. T ||T ′ = T ′ ||T , up to isomorphism.

Theorem 2. (T ||T ′)||T ′′ = T ||(T ′ ||T ′′), up to isomorphism.

Given a web service community (T1, . . . , Tk), we can now define its behavior
as T1|| . . . ||Tk

Theorem 3. The semantics T1|| . . . ||Tk is uniquely defined, up to isomorphism.

When the web services in a community are defined as finite state machines
A = (Q, Σ, δ, p0, F), and A′ = (Q′, Σ′, δ′, q0, F

′), we can construct an FSM
A||A′ = (Q||, Σ||, δ||, s||, F||), where Q|| = Q×Q ′, Σ|| = Σ∪Σ ′, s|| = (p0, q0), F|| =
F×F ′, and δ|| ⊆ (Q×Q ′)×(Σ∪Σ ′)×(Q×Q ′) is defined as follows: ∀ (p, a, q) ∈ δ,
∀ (q, b, q ′) ∈ δ ′, we have the transitions (〈p, q〉, a, 〈p ′, q〉) and (〈p, q〉, b, 〈p, q ′〉)
in δ||. Furthermore, if γ(a, b) = c then δ|| also contains (〈p, q〉, c, 〈p ′, q ′〉).

By an encoding similar to those used in the proofs of Theorems 1 and 2 the
following can be shown.

Theorem 4. TA||A′ = TA||TA ′ ut

Page 25

��������	
��

��
����

��
����������	�

�
�

��������	
��

��������	
��

��
����

��
������������	�

�
�

��������	
��

Action Action Compound action

search search search

buy tower buy monitor buy computer

Fig. 7. Web service community

�������������	
��
 �������������������

�
�

�������������	
��

���������� ��

����������������������

�
�

�������������������

 ���������������������

�������������	
��
 ���������������������

�������������	
��
�������������	
��

�
�

�
�

�
�

�
�

�
�

Fig. 8. Web service community execution tree

6 Synthesizing and Orchestrating Client Requests

The raison d’être of a Web Service community is to provide services to their
clients. When a client requests a certain service there might be no individual
Web Service in the community that can deliver it directly. However, as we al-
ready discussed in the previous section, the actions of individual Web Services
in the community can be interleaved in any order and also executed in parallel.
Therefore, it is possible that a composite Web Service can satisfy the client’s
request.

Service composition involves two main issues. The first, often called compo-
sition synthesis, is concerned with synthesizing a new composite Web Service,
thus producing a specification of how to coordinate the Web services available
in the community to provide a specified service. (This is the “compile time”
phase.) The second, referred to as orchestration, is concerned with coordinating
the correct execution of of an instance of a client request in the synthesized
composition. (That is, the “run time” phase.)

Page 26

Let us first formally define a service requested by a client, and what it means
for Web Service community to be able to satisfy the request.

A client request is an execution tree T0 : dom(T0)→ Q0 ×Σ. We say that a
web service community {T0, . . . , Tk} can satisfy the client if T0 � T1||T2|| . . . ||Tk.

��

������

��

��	
��
�� ��	
�������

��

������

��

��	
��������

Fig. 9. Two web service clients

In practice each subservice Ti is specified by an FSM Ai, and the client by
an FSM A0. We are thus interested in whether TA0 � TA1 ||TA2 || . . . ||TAk

. For
this we need

Theorem 5. TA0 � TA1 ||TA2 || . . . ||TAk
if and only if A0 � A1||A2|| . . . ||Ak.

Proof. By Lemma 1, we have A0 � A1||A2|| . . . ||Ak iff TA0 � TA1||A2||...||Ak
.

By repeatedly applying Theorem 4 we have that TA1||A2||...||Ak
is isomorphic to

TA1 ||TA2 || . . . ||TAk
. The claim now follows. ut

Let the client FSM be A0 = (Q0, Σ, δ0, p0, F0) and let the community be
A = {A1, . . . , Ak}, where Ai = (Qi, Σi, δi, q0i , Fi). We denote by −→q0 the tuple
〈q01 , q02 , . . . , q0k

〉, where q0i ∈ Qi is the start state of Ai. Similarly, −→q denotes
a tuple of states (not necessarily initial) from A1, A2, . . . An.

The following algorithm computes the simulation relation A � A .

Forward-Sim(A,A)
1 U ← ∅

� pairs of states (p, q) such that p cannot be simulated by q.
2 repeat
3 R ← ∅

� simulation relation
4 W ← ∅

� pairs of states (p, q) visited more than once
5 S ← {(p0,

−→q0)}
� pairs of states (p, q) in the currently checked sequence
Reliability ← true

6 Result ← Check(p0,
−→q0)

7 until Result = false ∨ Reliability = true
8 if Result = false
9 then R ← ∅

10 return R

Page 27

Check(p,−→q)
1 if p ∈ F ∧ ∃qij

∈ −→q such that qij
/∈ Fj

2 then U ← U ∪ {(p,−→q)}
3 S ← S \ {(p,−→q)}
4 return false
5 if {(p, a, p ′) : (p, a, p ′) ∈ δ, a ∈ Σ, p ′ ∈ Q} = ∅
6 then R ← R ∪ {(p,−→q)}
7 S ← S \ {(p,−→q)}
8 return true
9 for each (p, a, p ′) ∈ δ

10 do V ← {(qmo , . . . , qlj , . . . , qnk
) :

−→q = (qmo , . . . , qij , . . . , qnk
) ∧ (qij , a, qlj) ∈ δj}

∪
{(qmo

, . . . , qrj
, . . . , qsh

, . . . , qnk
) :

−→q = (qmo
, . . . , qij

, . . . , qlh , . . . , qnk
)∧

(qij
, b, qrj

) ∈ δj ∧ (qlh , c, qsh
) ∈ δh ∧ γ(b, c) = a}

11 if V = ∅
12 then U ← U ∪ {(p,−→q)}
13 S ← S \ {(p,−→q)}
14 if (p,−→q) ∈W
15 then Reliability = false
16 return false
17 Flag ← false
18 while V 6= ∅
19 do
20 V ← V \ {−→q ′}
21 if (p ′,−→q ′) 6∈ U
22 then if (p ′,−→q ′) ∈ R
23 then Flag ← true
24 else if (p ′,−→q ′) /∈ S
25 then S ← S ∪ {(p ′,−→q ′)}
26 Flag ← Flag ∨check(p ′,−→q ′)
27 else W ←W ∪ {(p ′,−→q ′)}
28 Flag ← true
29 if Flag = false
30 then S ← S \ {(p,−→q)}
31 U ← U ∪ {(p,−→q)}
32 if (p,−→q) ∈W
33 then Reliability = false
34 return false
35 R ← R ∪ {(p,−→q)}
36 return true

The algorithm is based on the partial depth first search approach used for
“on-the-fly” verification of behavioral equivalences introduced in [13].

Page 28

The procedure Check starts with a pair of start states and traverses the
client FSM constructing “on-the-fly,” as needed, part of the community FSM in
depth first order. The construction of the next state of A is based on the tran-
sitions of the component FSMs A1, . . . Ak, and on the γ-table of the community.

First the procedure checks that if the state of A0 is a final state then the
corresponding state of A is also a final state, that is, all of the component states
are final. Next, the procedure checks whether the state of A0 has any outgoing
transitions, and, if this is not the case, then the corresponding state of A can
definitely simulate it. After that, it picks one after another the transitions going
out of the state of A0 and checks if there is at least one corresponding transition
in A . If the algorithm finds such transition, it checks the pair of states that
these transitions are incident upon. If no corresponding transition exists in A ,
then, obviously, A cannot simulate A0

The list S of transitions that are considered in the current traversal is main-
tained in order not to go in cycles. When the algorithm sees the same pair of
states again it does not visit them again, but starts returning and constructing
the simulation relation. Thus, the pairs of states are visited in prefix order, while
the conditions for the simulation relation are checked in postfix order. Conse-
quently it is possible to reach a pair of states (p,−→q) which have already been
visited, but not yet determined to be in the simulation relation. In this case the
algorithm makes an optimistic assumption that (p,−→q) will be determined to be
in R at a later time. When this pair is eventually analyzed by the algorithm
(the algorithm maintains a set W of such pairs), if it is determined not to belong
to the simulation relation, then the procedure sets the flag Reliability to false,
which means that the simulation relation that the algorithm has constructed is
not guaranteed to be correct as the optimistic assumption used by the algorithm
was wrong.

If the algorithm decided that A0 cannot be simulated by A this decision
is always reliable because not assumptions are used to decide the false. How-
ever, if the procedure Check returned true the Reliability has to be true as
well, otherwise the simulation relation constructed by the procedure has to be
discarded and Check has to be called again. In order to omit repeating the
same dead-end traversals the algorithm maintains global list U of pairs that are
determined to be not in the simulation relation by previous calls to Check.

We note that Shukla et al. [20] previously have given a decision procedure for
testing whether one FSM can be forward simulated by another. This is achieved
by a reduction to a variant of Horn clause satisfiablity. However, their procedure
does not construct an actual simulation relation.

Theorem 6. Algorithm Forward-Sim(A0,A) runs in time O(|δ0|×|δ|), where
|δ0| and |δ| denote the sizes of the transition relations in A0 and A , respectively.

Since the size of the community FSM A is at most exponential in the size
of the component FSM’s A1, . . . , Ak, the following holds.

Corollary 1. The algorithm Forward-Sim runs in EXPTIME.

Page 29

Client Action Community Action

r0
search−→ r1

p0
search−→ p1

q0
search−→ q1

r1
by tow
−→ r0 p1

by tow
−→ p0

r1
by mon
−→ r0 q1

by mon
−→ q0

Fig. 10. Orchestration of left client

Fig. 11. from Figure 9

Client Action Community Action

s0
search−→ s1

p0
search−→ p1

q0
search−→ q1

s1
by comp
−→ s0

p1
by tow
−→ p0

q1
by mon
−→ q0

Fig. 12. Orchestration of right client from
Figure 9

Theorem 7. The algorithm Forward-Sim is sound and complete.

Example 6. Consider a client given by the FSM on the left in the Figure 9, and
the Web Service community {A1, A2} from Figures 5 and 6.

Since we have γ(search, search) = search, allowing the searches to be exe-
cuted in parallel on many services, it is easy to see that there indeed is a sim-
ulation relation from A0 to A1||A2, namely R{(r0, 〈p0, q0〉), (r1, 〈p1, q1〉)}. From
this an orchestration engine (a Mealy-machine) can straightforwardly be con-
structed. For simplicity we illustrate the orchestration engine informally in the
table in the Figure 10.

The need for γ can be easily seen, as this client cannot be simulated by the
community in Figure 6, unless we use the look-ahead mechanism from [14]. How-
ever, look-ahead is not always possible, e.g. postponing the payment transaction
in on-line shopping. ut

In the full paper we show how a process algebra description can be obtained
from the simulation relation computed by our algorithm. Then, the process alge-
bra description can be automatically translated to executable BPEL-code, using
the two way mapping between process algebra and BPEL given in [12]. The fol-
lowing example illustrates this, and points out important BPEL constructs that
can be handled by our extended model, and which were not present in the ESC
implementation of the classical Roman model [4].

Example 7. Consider the right client Figure 9. We can satisfy this client, as we
have γ(buy tower, buy monitor) = buy computer. In this case the simulation
relation from the client to A1||A2 is R = {(s0, 〈p0, q0〉), (s1, 〈p1, q1〉)}

Note that γ allows composite services to be merged in the external action
alphabet of a web service community, thereby also achieving ease of integration
of new services into the community. The simulation relation for the right client
is given informally as the table in the Figure 11.

The BPEL pseudo-code for the actual implementation of this service is given
in Figure 13. Note that there are two <flow> constructs in this pseudo-code.
The first one results from γ(search, search) = search The two participating
services are invoked to perform search in parallel. The second corresponds to
γ(buy tower, buy monitor) = buy computer. ut

Page 30

7 Conclusions and Future Directions

We have develop a rigorous extension to the Roman model and given a formal
semantics using a process algebraic approach [18, 10]. Process algebra works well
at the stages of design and formal verification of web services [12, 19]. In our work
we show that this approach gives advantages if used at the process mediation
stage as well. Our extension allows for fuller coverage of the standard languages
used for description and execution of Web Services in practice and unifies the
modeling and mediating aspects of Web Services. Moreover, our extension allows
for formal verification of mediated Web Services though the use of the numerous
tools available for process algebra.

We gave an algorithm for mediating a requested Web Service from a resource
pool of more basic services. The algorithm constructs the required composition
“on the fly” without constructing the FSM for the entire Web Service community.
The produced composition is complete in the sense that it covers all alternatives
and the final decisions can be made at run time, based on the availability of
the component services, network bandwidth, or some cost model. The algorithm
runs in the exponential time which is the same as in the classical Roman model.

To see that the proposed solution is in fact practical consider the complete
mediation procedure, which starts with the executable web services, produces the
abstract descriptions (here is a possibility to formally verify some properties of
the available services, if required), composes the abstract descriptions to produce
a mediated service (at this stage also formally verifiable) and, finally, translates
the mediated service to an actual executable web service.

We are currently working on the implementation of a prototype system where
the mediator extracts algebraic descriptions from existing web services and the
abstract specification of the produced mediated web service is translated into
executable BPEL code, using the techniques in [12]. We are also working on
further extensions of the formal model.

References

1. Marco Aiello, Mikio Aoyama, Francisco Curbera, and Mike P. Papazoglou, editors.
Service-Oriented Computing - ICSOC 2004, Second International Conference, New
York, NY, USA, November 15-19, 2004, Proceedings. ACM, 2004.

2. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic composition of e-services that export their behavior.
In Maria E. Orlowska, Sanjiva Weerawarana, Mike P. Papazoglou, and Jian Yang,
editors, ICSOC, volume 2910 of Lecture Notes in Computer Science, pages 43–58.
Springer, 2003.

3. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. A foundational vision of e-services. In Christoph Bussler, Dieter
Fensel, Maria E. Orlowska, and Jian Yang, editors, WES, volume 3095 of Lecture
Notes in Computer Science, pages 28–40. Springer, 2003.

4. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Esc: A tool for automatic composition of services based on logics

Page 31

of programs. In Ming-Chien Shan, Umeshwar Dayal, and Meichun Hsu, editors,
TES, volume 3324 of Lecture Notes in Computer Science, pages 80–94. Springer,
2004.

5. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and Mas-
simo Mecella. Automatic composition of transition-based semantic web services
with messaging. In Böhm et al. [8], pages 613–624.

6. Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation specification:
a new approach to design and analysis of e-service composition. In WWW, pages
403–410, 2003.

7. Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella,
and Diego Calvanese. Synthesis of underspecified composite -services based on
automated reasoning. In Aiello et al. [1], pages 105–114.

8. Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-
Åke Larson, and Beng Chin Ooi, editors. Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September
2, 2005. ACM, 2005.

9. BPEL. Business process execution language for web services (version 1.1), May
2003.

10. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
North-Holland, 2001.

11. Zhe Dang, Oscar H. Ibarra, and Jianwen Su. Composability of infinite-state activity
automata. In Rudolf Fleischer and Gerhard Trippen, editors, ISAAC, volume 3341
of Lecture Notes in Computer Science, pages 377–388. Springer, 2004.

12. Andrea Ferrara. Web services: a process algebra approach. In Aiello et al. [1],
pages 242–251.

13. Jean-Claude Fernandez and Laurent Mounier. “on the fly“ verification of behav-
ioural equivalences and preorders. In Kim Guldstrand Larsen and Arne Skou,
editors, CAV, volume 575 of Lecture Notes in Computer Science, pages 181–191.
Springer, 1991.

14. Cagdas Evren Gerede, Richard Hull, Oscar H. Ibarra, and Jianwen Su. Automated
composition of e-services: lookaheads. In Aiello et al. [1], pages 252–262.

15. J. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Language, and
Computation. Addison–Wesley, Reading, MA, 1979.

16. ISO. Lotos: a formal description technique based on the temporal ordering of obser-
vational behaviour. Technical Report 8807, International Standards Organisation,
1989.

17. Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I.
untimed systems. Inf. Comput., 121(2):214–233, 1995.

18. R. Milner. A calculus on communicating systems. Lecture Notes in Computer
Science, 92, 1980.

19. Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on
web services using process algebra. In ICWS, pages 43–. IEEE Computer Society,
2004.

20. Sandeep K. Shukla, Harry B. Hunt III, Daniel J. Rosenkrantz, and Richard Ed-
win Stearns. On the complexity of relational problems for finite state processes
(extended abstract). In Friedhelm Meyer auf der Heide and Burkhard Monien, ed-
itors, ICALP, volume 1099 of Lecture Notes in Computer Science, pages 466–477.
Springer, 1996.

21. WSMX. Web service execution environment, June 2005.

Page 32

<process name = "ComputerPurchase" . . .>
. . .

<partnerLinks>
<partnerLink name = "customer" . . ./>
<partnerLink name = "towerStore" . . ./>
<partnerLink name = "monitorStore" . . ./>
. . .

</partnerLinks>
<variables>

<variable name = "searchRequest" . . ./>
. . .

</variables>
. . .

<pick>
<onMessage partnerLink = customer

portType = . . .

operation = "searchRequest"
variable = . . .>
<sequence>

. . .

<flow>
<invoke partnerLink = "towerStore"

portType = . . .

operation = "searchRequest"
. . . />

<invoke partnerLink = "monitorStore"
portType = . . .

operation = "searchRequest"
. . . />

</flow>
. . .

<pick>
<onMessage partnerLink = customer

portType = . . .

operation = " buy computerRequest"
variable = . . .>
<sequence>

. . .

<flow>
<invoke partnerLink = "towerStore"

portType = . . .

operation = "buy towerRequest"
. . . />

<invoke partnerLink = "monitorStore"
portType = . . .

operation = "buy monitorRequest"
. . . />

</flow>
. . .

</sequence>
. . .

</onMessage>
. . .

</pick>
. . .

</sequence>
. . .

</onMessage>
. . .

</pick>
. . .

</process>

Fig. 13. BPEL pseudo-code for the orchestration of the right client in Figure 9

Page 33

