
Mappings Creation Using a View Based Approach?

Adrian Mocan, Emilia Cimpian

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway, Ireland

adrian.mocan@deri.org, emilia.cimpian@deri.org

Abstract. Solving the heterogeneity problems between semantically enriched
data can only be done by having accurate alignments between the underlying on-
tologies. To obtain 100% accuracy of these alignments the human user (i.e. the
domain expert) has to be kept in the loop in order to validate the mappings part of
these alignments. Since creating mappings between ontologies in a manual fash-
ion can be an error prone and time consuming task, our aim is to provide semi-
automatic mechanisms that reduce the human effort to simple validations and
choices. Furthermore we propose a mechanism for transforming domain experts
inputs placed in graphical interface in formal representations of the semantic re-
lationships between ontologies. The domain expert can choose between different
views, each of them displaying certain relationships and entities in the ontolo-
gies, used for generating different types of mappings. At each step suggestion
algorithms propose possible solutions for creating new mappings.

1 Introduction

Ontology mappings have become a prerequisite in solving data heterogeneity problems
in the context of Semantic Web and Semantic Web Services. Manual, semi-automatic
or automatic approaches have as output a set of so calledmappings, expression of the
semantic relationships existing between the analyzed ontologies. Accordingly, the map-
pings might be 100% accurate (generated by manual and semi-automatic methods) or
could have a lower accuracy (usually generated by automatic methods).

In this paper we present a semi-automatic way of deriving the semantic relationships
existing between two ontologies (i.e. mappings) and expressing these relationships in a
formalized form. We especially emphasize the step in the mapping process that trans-
forms the domain expert inputs provided by using a graphical interface, in formal repre-
sentation of mappings. By this, the human user is abstracted from the peculiarities of a
specific formalism and they can fully focus on the problem to be solved. The proposed
tool offers a set of features meant to reduce the human user efforts during the mapping
process from a laborious and error prone task to simple choices and validations. This is
done by including a set of mechanisms and strategies to guide the domain expert dur-
ing the entire mapping process and to suggest potential relationships between the two
ontologies. Different views on the ontologies to be mapped can be activated, each of

? This material is based upon works supported by the Science Foundation Ireland under Grant
No. SFI/02/CE1/I131.

Page 97

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for private and scientific purposes. Re-publication of material in this volume requires permission by the copyright owners.

them focusing on certain ontology entities and their relationships. By switching views
different types of mappings can be created using the same principles.

The data mediation prototype we propose is part of Web Service Execution Envi-
ronment (WSMX) [7], a framework capable of dynamic discovery, selection, media-
tion and invocation of Semantic Web Services. WSMX has as conceptual model Web
Service Modeling Ontology (WSMO) [3] and as a consequence, in our approach, the
ontologies to mediate between are WSMO ontologies (i.e. ontologies that conform to
WSMO conceptual model for ontologies).

This paper is structured as follows: Section2 gives a short motivation and describes
the context in which this mediator was developed; Section3 presents the strategies and
mechanisms behind the design-time tool we propose; Section4 presents an example
that shows how our approach can be applied and how the generated mapping rules look
like; Section5 briefly describes two of the existing frameworks that relate to our work
and Section6 concludes the paper and indicates some of the future work.

2 Motivation

In the Semantic Web Services context it is mandatory for the exchanged data to be
semantically described by using ontologies. Furthermore, alignments between different
ontologies used for modelling the same domain have to be provided in order to enable
the inter-operation of various parties using these ontologies. Such an alignment has to
contain a set of (bidirectional) mappings that can be applied on the input data (source
data) to produce the corresponding data in terms of the ontologies used by the target
party. If the interchanged data are part of a business process the necessity of 100%
accuracy1 of mappings is obvious. This leads us to the immediate consequence that the
domain expert has to be kept in the loop to validate these alignments and to assure the
100% accuracy.

The ontology mapping tool developed in WSMX is able to offer support to the do-
main experts in their work, to reduce the amount of effort required and to create a formal
representation of the semantic relationships captured between the source and target on-
tologies. The semantic relationships are expressed as mappings in the abstract mapping
language proposed by [1] and stored in a persistent storage. These mappings are to be
used during the run-time when the actual transformations of the interchanged data is
performed. As the abstract mapping language doesn’t associate any formal semantics
to mappings, a grounding to a concrete language has to be provided. More details can
be found in [5].

3 Mappings Creation - A View Based Approach

The mapping creation process represents one of the most important phases in a me-
diator system. It is a design time process and it is well known that in order to obtain

1 By theaccuracywe don’t necessary understand in this work the correctness of the mappings.
Therefore, we consider that the mappings are accurate if they match the human user inputs,
i.e. domain experts inputs are 100% accurate.

Page 98

high accuracy of the mappings the human user has to be present in this process. We
believe that by offering a set of strategies and methodologies for creating these map-
pings, we can reduce this error prone and laborious process from a manual task to truly
semiautomatic one.

In our view, the mapping process (i.e. the design time phase of the mediation pro-
cess) basically requires three types of actions from the domain expert:

Browse the ontologiesThe domain expert has to discover the ontology elements they
are interested in. This step involves different views on the input ontologies, and
strategies for reducing the amount of information to be processed by the human
user (e.g. contexts based browsing).

Identify the similarities This step involves the identification of semantic relationships
between the entities that are of interest in the two ontologies. For doing this the
human user can make use of the suggestions offered by a set of lexical and structural
algorithms for determining semantic relationships.

Create the mappings This last step involves the capturing of the semantic relation-
ships by mappings. This means that the domain expert has to take the proper actions
in order to capture the semantic relationships in the mapping language statements
or maybe in predefined mapping patterns [2].

We propose a way of tackling the existing gap between the identified semantic re-
lationships of the two ontologies and the mapping language (in our case a logical lan-
guage) statements that capture these relationships. Mapping patterns can fill this gap
only partially, the necessary steps from the semantic relationships identified in graphi-
cal tools to these patterns remaining uncovered.

Our approach describes how the input ontologies can be browsed by using different
views, how the same ontological entities can play different roles in different views and
how certain algorithms can be applied on these roles. We identified a set of views that
can play an important role in the mapping creation process:PartOf view, InstanceOf
view, RelatedByview. Each of them will be described in details in this paper.

3.1 Terminology and General Strategies

We identify a set of general strategies that can be applied no matter what views are
used for browsing the ontologies. Before describing these strategies we have to define
several notions that will be used from now on:

Views A View presents a subset of the ontology entities (e.g. concepts, attributes, rela-
tions, instances) and the relationships existing between them. The views can be seen
as vertical subsets of the ontology – all the entities and relationships of a specific
type (dictated by each particular view) from the ontology are taken in considera-
tion. Usually the view used for browsing the source ontology (source view) and the
view used for browsing the target ontology (target view) have the same type but
there could be cases when different view types are used for source and target.

Roles In each of the views there is a predefined number of roles the ontology entities
can have. In general, particular roles are fulfilled by different ontology entities in
different views and in each of the strategies and algorithms described we refer to

Page 99

roles rather than ontology entities. The roles that can be identified in a view are:
Compound Item, Primitive Item, Description Item.

Compound Item A Compound Itemcontains at least one description associated with
it. For example in thePartOf view a compound item would be a concept that has at
least one attribute.

Primitive Item A Primitive Itemdoesn’t have any description associated. For example
in thePartOf view all data types play the role of a primitive item.

Description Item A Description Itemlinks a Compound Item with other Compound
or Primitive Items. By this we can define asSuccessorof a Description Item, the
Compound or Primitive Item it links to (indicated by→ in Figure1).

Figure 1 presents an abstract representation of a view and the main elements it
consists of.

• primitive_item1
• compound_item1

` descriptionItem1 → compound_item2x
descriptionItem2 → primitive_item1

• primitive_item2
• primitive_item3
• compound_item2

` descriptionItem1 → primitive_item3x
descriptionItem2 → compound_item3

• compound_item3
` descriptionItem1 → primitive_item2
` descriptionItem2 → primitive_item1x

descriptionItem3 → primitive_item3

Fig. 1.Abstract View

All the algorithms and the strategies we propose are designed to be applicable to
any view that meets these abstract specifications. By associating different ontological
entities with the roles presented above, different views are obtained, the results being
interpreted differently in respect with each particular view. One of the most important
advantages of this approach is that these algorithms are immediately reflected in the
graphical interface as unique mechanisms that ca be applied no matter of the view used.

Decomposition Algorithm The decomposition algorithm is one one of the most im-
portant algorithms in our approach and it is used to offer guidance to the domain expert
in the mapping process and to compute the structural factor as part of the suggestions
algorithms (described later on in this section). By decomposition we expose the de-
scriptions of a compound item and make them available to the mapping process. That
is, the decomposition algorithm can be applied on description items and it returns the
description items (if any) for the successors of that particular description items. An
overview of this algorithm is presented below: The implementation ofisCompound,
getDescriptions, getSuccessor, andcreateLoopdiffer from one view to another – for
example, the cases when loops are encountered (i.e. the algorithm will not terminate)
have to be addressed for each view in particular.

Page 100

Table 1.Decomposition Algorithm

decompose (Collection collectionOfItems){
Collection result ;
for each item in collectionOfItems do {
if isCompound (item)

Collection itemsDescriptions = getDescriptions (item);
for each description in itemsDescriptions {
Item successorItem = getSuccessor (description);
if (not createLoop (succesorItem))

result = result + successorItem ;
}

}
return result ;

}

Mapping Contexts During the mediation process not all the information available in
the ontology is of interest for each particular phase of the mapping process. Amapping
contextrepresents a subset of a view and presents only the relevant information for the
current step of the mapping process. The notion of mapping context goes hand in hand
with the decomposition algorithm as a mapping context is updated by applying this
algorithm on a set of items. Thereby, by applying it recursively and updating the cor-
responding mapping context, the domain expert is guided through the mapping process
until all the items from the initial context are mapped. A mapping context can be seen
as a horizontal subset of an ontology2.

Please note that when updating mapping contexts the input of the human user has
to be taken in consideration: the domain expert has to choose the source and the target
items on which the decomposition process has to be applied. Of course, this choice can
be done in a semi-automatic manner, the system suggesting the most probable source-
target combinations to be further explored. Depending on the results returned by apply-
ing the decomposition algorithm on the source and on the target items respectively, four
situations might me encountered:

– Both sides decomposition.For both the source and the target items the decomposi-
tion algorithm returned a non empty set of items. As a consequence both the source
and the target mapping contexts are updated.

– One side decomposition - Source decomposition.Only for the source items the
decomposition returned a non empty set of items. This means that only the source
mapping context is updated while the target mapping context remains unchanged.

– One side decomposition - Target decomposition.This is symmetric with the previ-
ous case. Only the target mapping context is updated, the source mapping context
remaining unchanged.

– No decomposition.Successors were found neither for the source nor for the target,
so no mapping contexts can be updated. Usually this ends the decomposition and
the mapping process for the current branches in the source and target views.

2 As the ontologies are browsed using views, the context becomes a horizontal subset of a view

Page 101

Suggestion Algorithms The suggestion algorithms are used for helping the domain
expert in taking decisions during the mapping process, regarding the possible seman-
tic relationships between source and target items in the current mapping context. We
propose a combination of two types of such algorithms: the first one being the lexical
based algorithms while the second type being the structural algorithms that consider the
description items in their computations.

As a result, for each pair of items we compute a so calledeligibility factor (EF),
which indicates the degree of similarity between the two items: the smallest value (0)
means that the two items are completely different, while the greatest value (1) indicates
that the two items are similar. For dealing with the values between 0 and 1 a threshold
value is used: the values lower than this value indicate different items and values greater
than this value indicate similar elements. Setting a lower threshold assures a greater
number of suggestions, while a higher value for the threshold restricts the number of
suggestion to a smaller subset. The EF is computed as an weighted average between
a structural factor(SF), referring to the structural properties and alexical factor(LF),
referring to the lexical relationships determined for a given pair of items. The SF of
two items is recursively determined by calculating the EF for their descriptions and
for the successors of their descriptions. As mapped items have the EF equal with 1, is
interesting to observe that the suggestions become more accurate the further we advance
in the mapping process.

The weights can be chosen based on the characteristics of the ontologies to be
mapped. For example when mapping between ontologies developed in different lan-
guages the weight of LF should be close to 0 in contrast with the case when mapping
between ontology developed in the same working groups or institutions (the usage of
similar names for related terms is more likely to happen) .

Even if the structural factor is computed using the decomposition algorithm, the
actual heuristics used are dependent on the specific views where it is applied. In a
similar manner the current views determine the weight for the structural and lexical
factors as well as the exact features of the items to be used in computations.

Bottom-up vs Top-Down Approach Considering the algorithms and methods de-
scribed above two possible approaches regarding ontology mapping can be differen-
tiated: bottom-up and top-down approaches.

The bottom-up approach means that the mapping process starts with the mappings
of the primitive items (if possible) and than continues with items having more and
more complex descriptions. By this the pairs of primitive items act like a minimal,
agreed upon set of mappings between the two ontologies, and starting from this minimal
set more complex relationships could be gradually discovered. This approach is useful
when a complete alignment of the two ontologies is desired.

The top-down approach implies that the mapping process starts directly with map-
pings of compound items and it is usually adopted when a concrete heterogeneity prob-
lem has to be resolved. That means that the domain expert is interested only in resolving
particular items mismatches and not in fully aligning the input ontologies. The decom-
position algorithm and the mapping contexts it updates will help the user to identify

Page 102

all the relationships that can be captured by using a specific type of view and that are
relevant to the problems to be solved.

In the same way as for the other algorithms, the applicability and advantages/disad-
vantages of each of these approaches depends on the type of view used.

Abstract Mapping Language The scope of the design-time environment presented
in this paper is to produce formal representations of the semantic relationships identi-
fied/validated by the domain expert using a graphical tool. We chose to express these
relationships as mappings in the language proposed in [1]. It is an abstract mapping
language which does not commit to any existing ontology representation languages,
thereby a formal semantic has to be associated with it and to ground it to a concrete
language. Part of our work was to provide a grounding to Flora23 but for space reasons
we are not discussing it in this paper (a full description can be found in [5]). From the
same reasons we provide only a brief listing of some of the abstract mapping language
statements:

– classMapping- By using this statement, mappings between classes in the source
and the target ontologies are specified. Such a statement can be conditioned by
class conditions (attributeValueConditions, attribuiteTypeConditions, attributeOc-
curenceConditions).

– attributeMapping- Specifies mappings between attributes in the source and target
ontologies. This statements usually appears together with classMappings and can
be conditioned by attribute conditions (valueConditions, typeConditions)

– classAttributeMapping- It specifies mappings between a class or an attribute (or the
other way around) and it can be conditioned by both class conditions and attribute
conditions.

– instanceMapping- It states a mapping between two individuals, one from the source
and the other from the target.

In the next sections we illustrate how these mapping language statements are gen-
erated during design time by using our view based approach.

3.2 PartOf View

The PartOf is probably the most popular view on the ontologies to be aligned. The
roles ofPrimitive itemsare taken by theprimitive concepts(i.e. data types) while the
roles ofCompound itemsare taken byconceptsdescribed by at least one attribute. The
descriptionsare represented byattributesand naturally, thesuccessorof a description
is therangeof that attribute. As shown in Figure2 the successor of a description in this
view (i.e. the range of an attribute) can be either a primitive concept or a compound
concept.

Using this view we can create the following set of mappings:

Primitive Concept to Primitive Concept mapping. Such a mapping generates aclassMap-
pingstatement in the abstract mapping language.

3 Available athttp://flora.sourceforge.net

Page 103

http://flora.sourceforge.net�

• primitive_concept (data type)
• compound_concept

` attribute1 → primitive_concept (range)x
attribute2 → compound_concept (range)

Fig. 2. Elements ofPartOf View

Compound Concept to Compound Concept mapping.This mapping generates aclassMap-
ping statement in the abstract mapping language corresponding to the two com-
pound concepts and triggers the decomposition mechanism, followed by a set of
mappings between the attributes of these compound concepts, respectively. Such
mappings between attributes are described below.

Attribute to Attribute mapping. There are four cases that can be encountered in this
situations, generated by the two types of concepts an attribute can have as range:
primitive concept or compound concept (i.e. primitive range or compound range).

– Primitive rangeon the source andprimitive rangeon the target.
An attributeMappingis generated in the abstract mapping language followed
by a mapping between two primitive concepts.

– Primitive rangeon the source andcompound rangeon the target.
This case generates in the abstract mapping language aclassAttributeMapping
between the owner of the source attribute and the target attribute, followed by
a mapping between two compound concepts: the owner of the source attribute
and the range of the target attribute.

– Compound rangeon the source andprimitive rangeon the target.
This case is symmetric with the one presented above and it generates aclas-
sAttributeMappingin the abstract mapping language (actually this is anat-
tributeClassMappingbut there is only one statement in the language for both
situations) and leads to a compound concept to compound concept mapping as
well.

– Compound rangeon the source andcompound rangeon the target.
An attributeMappingis generated in the abstract mapping language followed
by a mapping between the two compound concepts.

Primitive Concept to Compound Concept mapping.The PartOf view does not al-
low this type of mappings. Such mappings that might seem necessary initially, are
covered by considering a compound concept from the source that has (or inherits)
an attribute pointing to the primitive concept and mapping it with the compound
target concept.

Compound Concept to Primitive Concept mapping.This is a situation similar to the
one above and thePartOf view does not allow this type of mapping. The ratio-
nal behind these restrictions is that such combinations would generate artificial
mappings (with no semantics) between primitive concepts and all the compound
concepts that refer, by means of their attributes, to these primitive concepts. For
example, any compound concept that has an attribute with the rangeStringcould
be mapped withString.

Page 104

3.3 InstanceOfView

During the modeling process a set of instances can be used to properly capture some of
the features of the domain. This is the case for enumeration sets, containing for example
geographical locations, categories or even the allowed values for certain data-types (e.g.
true and false for boolean). In thePartOf view these instances are not visible, however
in the InstanceOfview the primitive items’ role is taken by such instances (we call
themprimitive instances). By using these primitive instances more complex instances
(compound instances) could be created, that is, instances of compound concepts whose
attributes have ranges for which primitive or compound instances already exist or can
be created. The compound instances play the role of compound items in this view (see
Figure3). The descriptions for the compound instances are represented by the attributes
and attribute values corresponding to the compound instances. The attribute values are
in fact the successors of compound items descriptions.

Additionally in this view we have to consider the rest of the concepts, for which
no compound instances can be created. They might be either primitive concepts (they
have no attributes at all) or compound concepts (none of their attributes has a range for
which a primitive instance exists or a compound instance can be created) as identified
in the PartOf view. They will play in this view the role of primitive items and all of
them will be calledprimitive concepts.

• primitive_instance
• compound_instance

` attribute1 → primitive_instancex
attribute2 → compound_instance

• primitive_concept

Fig. 3.Elements ofInstanceOfView

InstanceOfview is used for creating conditional mappings and almost all the cases
presented in thePartOf view occur in this view as well but with the difference that
conditions are associated to mappings:

Primitive Instance to Primitive Instance mapping. This mapping generates aninstanceMap-
pingstatement in the abstract mapping language.

Primitive Instance to Compound Instance mapping.Mappings between a primitive
and a compound instance are not allowed in theInstanceOfview from similar rea-
sons as forPrimitive Concept to Compound Concept mappingin thePartOf view.

Compound Instance to Primitive Instance mapping.The same restriction applies as
above.

Compound Instance to Compound Instance mapping.This mapping generates aclassMap-
ping statement in the abstract mapping language corresponding to the two com-
pound concepts that are instantiated by the compound instances and triggers the
decomposition mechanism, followed by a set of mappings between the attribute val-
ues of these compound instances, respectively. Such mappings between attributes’
values are described below.

Page 105

Attribute value to Attribute value mapping. There are four cases that can be encoun-
tered in this situation, generated by the two types of instances an attribute can have
as value: primitive instance or compound instance (i.e. primitive instance range or
compound instance range).

– Primitive instance rangeon source andprimitive instance rangeon target.
An attributeMappingis generated in the abstract mapping language condi-
tioned by twoattributeValueConditions- one for the source and the other one
for the target attribute.

– Primitive instance rangeon source andcompound instance rangeon target.
This case generates in the abstract mapping language aclassAttributeMapping
between the owners of the source attribute and target attribute followed by a
mapping between two compound instances: the owner of the source attribute
and the range of the target attribute. In addition atypeConditionon the target
attribute is applied.

– Compound instance rangeon source andprimitive instance rangeon target.
This case is symmetric with the one presented above and it generates aclas-
sAttributeMappingin the abstract mapping language and leads to a compound
instance to compound instance mapping as well. In addition atypeCondition
on the source attribute is applied.

– Compound instance rangeon source andcompound instance rangeon target.
An attributeMappingand twotypeConditionsone for the source and the other
one for the target attribute, are generated in the abstract mapping language
followed by a mapping between two compound instances.

In this view, no decomposition process can be applied on the primitive concepts and
they can participate in the following types of mappings:

Primitive Instance to Primitive Concept mapping. This type of mapping is not al-
lowed as the scope of primitive instances is to set conditions when mapping be-
tween other ontological entities. In this case, most probably a Compound Instance
(created based on the initial primitive instance) with a Primitive Concept mapping
should be considered.

Primitive Concept to Primitive Instance. The above restriction applies here as well.
Primitive Concept to Compound Instance mapping.This type of mapping will trig-

ger decomposition on the right side and will generate aclassMappingstatement in
the abstract mapping language. After decomposition, a set of mappings between the
primitive concept and the attribute values of the compound instances can follow.

Primitive Concept to Attribute value mapping. Depending on the range of a partic-
ular attribute value (primitive or compound instance) we have two cases:

– Primitive concepton source andprimitive instance rangeon target.
An attributeValueConditionis added to the mapping between the primitive con-
cept and the concept that owns the attribute (used in the above attribute value).

– Primitive concepton source andcompound instance rangeon target.
A typeConditionis added to the mapping between the primitive concept and
the concept that owns the attribute (used in the above attribute value). After
thisprimitive concept to attribute valuemappings are to be considered.

Page 106

3.4 RelatedByView

Another interesting view to consider is the one whereattributesplay the roles of items.
Each item has two fixed descriptions, one calledhasDomainand the other calledhas-
Range, having as successor the domain and the range of the attribute, respectively. Be-
cause of these two fixed descriptions, all the items arecompound items. In addition,
applying the decomposition algorithm to the descriptions and their successors will trig-
ger a change of the view type. As the successors are concepts, by decomposition the
view will switch fromRelatedByview (see Figure4) to thePartOf view.

• attribute1
` hasDomain → compound_conceptx

hasRange → primitive_concept (data type)
• attribute2

` hasDomain → compound_conceptx
hasRange → compound_concept

Fig. 4.Elements ofRelatedByView

We have two interesting types of mappings that can be done using this view: map-
pings between twoRelatedByviews, and mappings between aRelatedByview and a
PartOf view (for the source and target respectively). For the first case we simply have:

– (Compound) Attribute to (Compound) Attribute Mapping. This is a classical
mapping between two attributes, which will be followed after applying the decom-
position algorithm by mappings between their domains and ranges. Such mappings
can be done using thePartOf view as well, with only one difference: when created
using theRelatedByview, inverse attributes can be mapped, simply by mapping
hasDomainfrom the source with thehasRangedescription from the target andhas-
Rangefrom the source withhasDomainfrom the target. One has to keep in mind
that the decomposition will trigger a view switching (fromRelatedByto PartOf
view) so these mappings are affected by the restriction of thePartOf view (i.e. no
mappings between primitive and compound concepts or vice versa are allowed).
This type of mappings generates anattributeMappingand a pair ofclassMappings
statements in mapping language.

When mapping betweenRelatedByandPartOf view (and vice versa) we can have the
following types of mappings:

– (Compound) Attribute (from RelatedBy) to Compound Concept(from PartOf).
This mapping can be followed by any mappings betweenhasDomainandhasRange
descriptions and descriptions of the compound concept from the target (i.e. at-
tributes) as long as the mappings between successors conform to the restrictions
on mappings in thePartOf view. A classAttributemapping will be generated, fol-
lowed by one or more pairs ofclassAttributeMappingandclassMapping.

– Compound Concept(from PartOf) to (Compound) Attribute (from RelatedBy).
This is a similar type of mapping as the one presented above. AclassAttribute
mapping is created, followed by one or more pairs ofclassAttributeMappingand
classMapping.

Page 107

In the next section we exemplify how a small ontology fragment is captured through
the three types of views presented above.

4 Example

Let’s consider the two fragments of ontology in Table2 and try creating different types
of mappings by using different types of views. For each pair of views we will present
the abstract mappings generated from the graphical tool together with the grounding
from this abstract representation to Flora-2.

Throughout the example we will represent the attributes in the following form in
order to make the mappings self-explanatory:

[(attribute_owner) attribute_owner.attribute name => attribute_range]

The concepts will be referred simply by their names. The mapping process can

Table 2.Source and a target ontology fragments to be mapped

concept person
name ofType xsd:string
age ofType xsd:integer
hasGender ofType gender
hasChild ofType person
marriedTo ofType person

concept gender
range ofType xsd:string

instance male memberOf gender
range hasValue "male"

instance female memberOf gender
range hasValue "female"

concept human
name ofType xsd:string
age ofType xsd:integer
noOfChildren ofType xsd:integer

concept marriage
hasParticipant ofType human
date ofType xsd:date

concept man subConceptOf human

concept women subConceptOf human

start by creating mappings using thePartOf view for both ontology fragments (see
Figure5). The mappings generate the abstract mapping language statements illustrated
in Table3. In order to use these mappings in concrete mediation scenarios a grounding
mechanism is necessary to associate formal semantics to them. Table4 shows how these
mappings can be grounded to Flora-2. The dotted lines in Figure5 shows mappings that
are automatically created due to the inheritance relation existing betweenhumanand
manandhumanandwomanconcepts.

Another set of mappings can be created by usingInstanceOfviews (see Figure6).
These mappings create a set of mapping rules and associate conditions to them, meaning
that a particular mapping is valid only if the associated conditions hold.

Table5 shows these mappings in the abstract mapping language while Table6 con-
tains the same mappings grounded to Flora-2.

Page 108

Fig. 5. Example of mappings between twoPartOf Views

Table 3.Abstract mapping language statements generated by usingPartOf views

Mapping (id000001
classMapping (one-way

string string))
Mapping (id000002

classMapping (one-way
integer integer))

Mapping (id000003
classMapping (one-way

person human))
Mapping (id000004

attributeMapping (one-way
[(person) person.name => string] [(human) human.name => string]))

Mapping (id000005
attributeMapping (one-way

[(person) person.age => integer] [(human) human.age => integer]))

Table 4.Flora-2 statements generated from the abstract mappings in Table3

mediated(X_2, string):string :- X_2:string.
mediated(X_3, integer):integer :- X_3:integer.
mediated(X_4, human):human :- X_4:person.
mediated(X_5, human)[human.name -> Y_6] :- X_5[person.name -> Y_6].
mediated(X_7, human)[human.age -> Y_8] :- X_7[person.age -> Y_8].

Page 109

Fig. 6.Example of mappings between twoInstanceOfViews

Table 5.Abstract mapping language statements generated by usingInstanceOfviews

Mapping (id000011
classMapping (one-way

person man)
attributeValueCondition(person [(person) person.hasGender => string] male)

Mapping (id000012
classMapping (one-way

person women)
attributeValueCondition(person [(person) person.hasGender => string] women)

Table 6.Flora-2 statements generated from the abstract mappings in Table5

mediated(X_9, man):man :- X_9:person, X_9[hasGender -> male].
mediated(X_10, woman):woman :- X_10:person, X_10[hasGender -> female].

Fig. 7.Example of mappings between twoRelatedByViews

Page 110

Another set of mappings can be created by usingRelatedByandPartOf views as
depicted in Figure7, for themarriedTorelation.

These mappings generate two oneclassAttributeMappingand oneattributeClassMap-
pingdenoted in the abstract mapping language by the same statement,classAttributeMap-
ping (see Table7). Table8 depicts the grounding of the abstract mappings in Flora-2.

Table 7. Abstract mapping language statements generated by usingRelatedByandIn-
stanceOfview

Mapping (id000021
classAttributeMapping (one-way

[(person) person.marriedTo => person] marriage))
Mapping (id000022

classAttributeMapping (one-way
person [(marriage) marriage.hasParticipant => human]))

Table 8.Flora-2 statements generated from the abstract mappings in Table7

mediated(X_25, marriage):marriage :- Y_26[person.marriedTo -> Z_27],
mediated(X_25, human):human,
Z_27:human, Y_26:person.

mediated(X_24, marriage)[marriage.hasParticipant -> mediated(Y_23, human)] :-
Y_23:person,
mediated(X_24, marriage):marriage.

5 Related Work

PROMPT is an algorithm and a tool proposed by Noy and Musen [6], which allows
semi-automated ontology merging and alignment. It takes as inputs two ontologies and
guides the user through an iterative process for obtaining a merged ontology as an out-
put. This process starts with the identification of the classes with similar names and
provides a list with initial matches. Then the following steps are repeated several times:
the user selects an action (by choosing a suggestion or by editing the merged ontology
directly) and the tool computes new suggestions and determines the eventual conflicts.

MAFRA [4] is a Mapping Framework for Distributed Ontologies, designed to offer
support at all stages of the ontology mapping life-cycle. The framework is organized
in two dimensions: it contains horizontal and vertical modules. The horizontal mod-
ules (Lift & Normalization, Similarity, Semantic Bridging, Execution, Post-processing)
describe fundamental and distinct phases in the mapping process, while the vertical
modules (Evolution, Domain Constraints & Background Knowledge, Cooperative Con-
sensus Building, Graphical User Interface) run along the entire mapping process inter-
acting with the horizontal modules.

Our approach offers a set of strategies that guides the domain expert through the
whole mapping process. By maintaining proper mapping contexts and applying the de-
composition process we can ensure that a complete set of mappings are derived for

Page 111

that specific problem and give a precise meaning to user’s actions. Further more, alter-
nating different views on the ontologies to be mapped we can change the meaning of
these actions without changing the mapping process. Each of the views we identified
can be used to address different types of ontologies mismatches in a natural way and to
abstract the human expert from the burdensome of the underlying mappings represen-
tation. And finally, we generate a representation of the identified semantic relationships
as mappings in an abstract mapping language offering a great flexibility with respect to
the mapping context in which these mappings are to be used.

The ideas presented in this paper have been implemented as part of WSMX Ontol-
ogy Mapping Tool, delivered as plug-in in the Web Service Modeling Toolkit4.

6 Conclusions and Future Work

Our approach proposes a methodology for mapping creation based on the inputs and
validations of a domain expert. The resulting mappings have a 100% accuracy with
respect to the domain expert inputs. They are represented as statements in an abstract
mapping language, leaving open the possibility to create the most suitable grounding
for a specific application.

Our future plans include refinements of the strategies and methodologies we in-
troduced as: the identification of more views that can have a relevant role in mapping
creations, improvements of the suggestion algorithms (including tuning mechanism)
and of course enhancements of the design-time tool towards a more intuitive and user
friendly graphical interface.

References

1. J. de Bruijn, D. Foxvog, and K. Zimmerman. Ontology mediation patterns. Technical report,
SEKT Deliverable D4.3.1, 2004.

2. Jos de Bruijn, Douglas Foxvog, and Kerstin Zimmerman. Ontology mediation patterns li-
brary. SEKT Project Deliverable D4.3.1, Digital Enterprise Research Institute, University of
Innsbruck, 2004.

3. C. Feier, A. Polleres, R. Dumitru, J. Domingue, M. Stollberg, and D. Fensel. Towards intel-
ligent web services: The web service modeling ontology (WSMO).International Conference
on Intelligent Computing (ICIC), 2005.

4. A. Maedche, B. Motik, N. Silva, and R. Volz. Mafra - a mapping framework for distributed
ontologies. Proceedings of the 13th European Conference on Knowledge Engineering and
Knowledge Management (EKAW), September 2002.

5. A. Mocan and E. Cimpian. WSMX Data Mediation. Technical report, WSMX Working Draft,
http://www.wsmo.org/TR/d13/d13.3/v0.2/, March 2005.

6. D. Noy and M. Munsen. Prompt: Algorithm and tool for automated ontology merging and
alignment.Proceedings of the National Conference on Artificial Intelligence (AAAI), 2000.

7. K. Verma, A. Mocan, M. Zaremba, A. Sheth, and J. A. Miller. Linking semantic web service
efforts. Second International Workshop on Semantic and Dynamic Web Processes (SDWP),
2005.

4 Fore more information seehttp://sourceforge.net/projects/wsmx/

Page 112

http://www.wsmo.org/TR/d13/d13.3/v0.2/�
http://sourceforge.net/projects/wsmx/�

