

Martin Hepp, Axel Polleres, Frank van Harmelen, Michael Genesereth
(Editors)

Proceedings

First International Workshop on Mediation in
Semantic Web Services

(MEDIATE 2005)

in conjunction with the

3rd International Conference on Service-Oriented
Computing (ICSOC 2005)

Amsterdam, The Netherlands, December 12, 2005

Organizing Committee:

Michael Genesereth (Stanford University)

Frank van Harmelen (Vrije Universiteit Amsterdam)

Martin Hepp (DERI, University of Innsbruck)

Axel Polleres (DERI, University of Innsbruck)

Workshop URI:
http://www.deri.at/events/workshops/mediate2005

Sponsored by the European Commission under the DIP project

(FP6 - 507483).

Table of Contents

Preface

Organizing Committee and Program Committee Members

Liliana Cabral and John Domingue:
Mediation of Semantic Web Services in IRS-III 1

Gösta Grahne and Victoria Kiricenko:
Process Mediation in an Extended Roman Model 17

Emanuele Della Valle, Dario Cerizza, and Irene Celino:
The mediator centric approach to Automatic Web Service Discovery
of Glue 35

Michael Stollberg, Emilia Cimpian, and Dieter Fensel:
Mediating Capabilities with Delta-Relations 51

Colombe Hérault, Gaël Thomas, and Philippe Lalanda:
Mediation and Enterprise Service Bus: A position paper 67

Jérôme Euzenat:
Alignment infrastructure for ontology mediation and other applications 81

Adrian Mocan and Emilia Cimpian:
Mappings Creation Using a View Based Approach 97

Philipp Kunfermann and Christian Drumm:
Lifting XML Schemas to Ontologies - The concept finder algorithm 113

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

Preface

The usage of computer systems is widely characterized by decentralized design
and autonomous evolution. If we look at system components from a global
perspective, they are frequently developed and modified without alignment in the
design stage. Also, components follow individual paths of evolution during their life-
cycles. It can be observed that this is a major cause for interoperability problems,
contributing to the brittleness of systems integration efforts. If we want to increase the
degree of automation in general, it seems important to provide software components
that can help overcome occurring interoperability conflicts and this in an automated
fashion. This functionality is known as mediation and the respective components are
called mediators.

Mediation can take place on various levels, e.g. on the level of data, ontologies,
processes, protocols, or goals. To a great extent, it will depend on the availability of
sophisticated, industry-strength mediation support whether the promise of Semantic
Web services and dynamic value chains can become a reality.

As a consequence, mediators are a fundamental component of a comprehensive
Semantic Web services framework. However, they are not yet fully developed as a
research topic in this community. Many theoretical and practical issues of yielding
sophisticated, scalable, and reliable mediators are not solved. The workshop aims at
bringing together experts from various areas of research in order to advance the
theoretical and practical knowledge about the design and implementation of mediators
in Semantic Web services.

We received a very broad spectrum of submissions and are confident that the nine
papers that we finally selected for publication and presentation will contribute to a
better understanding of mediation in the context of Semantic Web services. All papers
were reviewed by at least two members of the Program Committee.

The organizers would like to thank all authors for their submissions and the
members of the Program Committee for their time in reviewing the papers.

Program Committee

Organizing Committee

Michael Genesereth (Stanford University)
Frank van Harmelen (Vrije Universiteit Amsterdam)
Martin Hepp (DERI, University of Innsbruck)
Axel Polleres (DERI, University of Innsbruck)

Program Committee

Diego Calvanese (Free University of Bozen/Bolzano)
Emilia Cimpian (DERI)
Jos De Bruijn, (DERI)
John Domingue (Open University)
Jérôme Euzenat (INRIA)
Dieter Fensel (DERI)
Fausto Giunchiglia (University of Trento)
Rick Hull (Bell Labs)
Michael Kifer (University at Stony Brook)
Deborah McGuinness (Stanford University)
Enrico Motta (The Open University)
Marco Pistore (University of Trento)
Pavel Shvaiko (University of Trento)
Jianwen Su (UC Santa Barbara)
York Sure (AIFB)
Paolo Traverso (ITC/IRST)
Michael F. Uschold (Boeing)
Ludger van Elst (DFKI)
Holger Wache (Vrije Universiteit Amsterdam)
Gio Wiederhold (Stanford University)

Mediation of Semantic Web Services in IRS-III

Liliana Cabral and John Domingue

Knowledge Media Institute, The Open University, Milton Keynes, UK
{L.S.Cabral, J.B.Domingue}@open.ac.uk

Abstract. Business applications composed of heterogeneous distributed com-
ponents or Web services need mediation to resolve data and process mis-
matches at runtime. This paper describes mediation in IRS-III, a framework and
platform for developing WSMO-based Semantic Web Services. We present our
approach to mediation within Semantic Web Services and highlight the role of
WSMO mediator types when solving mismatches at the semantic level between
a service requester and a service provider. We describe the components of our
mediation framework and how it can handle data, goal and process mediation
during the activities of selection, composition and invocation of Semantic Web
Services.

1 Introduction

Integrating software applications developed in heterogeneous platforms has a high
cost for most businesses today, because it means manually providing mappings for
data and message formats exchanged between business processes of partner agencies.
The advent of Web Services, as part of a trend in XML-based distributed computing,
made the integration of applications on the Web a far easier task. Companies can keep
intact their legacy implementation of computing systems and provide services by ex-
posing functionalities through a standard interface description. Thus, applications in
diverse areas such as e-commerce and e-government can interoperate through Web
services implemented in heterogeneous platforms.

However, integration requires that requesters of Web services agree on the mean-
ing of the messages being exchanged with the providers before they can invoke the
Web services. In addition, a service requester has to map his request to the require-
ments of available services.

Despite the advance in the use of standards for Web Service description (e.g.
WSDL) and publishing (e.g. UDDI), the syntactic definitions used in these specifica-
tions do not completely describe the capability of a service and cannot be understood
by software programs. It requires a human to interpret the meaning of inputs, outputs
and applicable constraints as well the context in which services can be used. Semantic
Web Services (SWS) combine Semantic Web and Web Service technologies to pro-
vide the infrastructure for semantically describing Web services facilitating automatic
service discovery, composition, execution and mediation.

This paper describes mediation in IRS-III [6], an infrastructure for developing
WSMO-based Semantic Web Services [17]. IRS-III is an operational semantic plat-

Page 1

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

form for the representation and execution of knowledge models. We present our top-
down approach to mediation within Semantic Web Services and highlight the role of
WSMO mediator types when solving mismatches at the semantic level between a ser-
vice requester and a service provider. We describe the components of our mediation
framework and how it can handle data, goal and process mediation during the activi-
ties of selection, composition and invocation of Semantic Web Services.

The rest of the paper is structured as follows: section 2 describes mediation issues
faced by applications using Semantic Web Services; section 3 gives a brief overview
of IRS-III and the Web Service Modeling Ontology – WSMO; section 4 describes the
IRS-III mediation approach and in particular our mediation framework; in section 5
we present a case-study on e-government, which uses our approach; in section 6 we
discuss related work and in section 7 we present our conclusions.

2 Semantic Mediation Issues

Business applications composed of heterogeneous distributed components or Web
Services need mediation to resolve data and process mismatches at runtime. We view
mediation in the context of Semantic Web Services and define it as an activity for
solving conceptual mismatches during the interaction between a service requester and
a service provider. One can model specialized mediators which provide a mediation
service or declarative mappings for solving different types of mismatches.

Providing a semantic description for a Web Service allows a broker to use the
knowledge available for managing the different levels of mediation needed. In this
case the conversation between a client and a provider can be handled by a Semantic
Web Service execution environment (broker) which can provide mediation during the
activities of discovery, composition and invocation for solving mismatches at the se-
mantic level.

A Semantic Web Service can be associated with one or more domain ontologies
for describing its functional and non-functional capabilities. This description is used
whenever a service is queried or invoked. Usually, a mapping between elements of
the ontology used by the client application (or another service) and the ontology used
by the service has to be provided. In particular, a developer might want to represent
the connections and transformations between elements representing different aspects
of the service, for example, for supporting dataflow of composed services. It might be
also necessary to transform inputs during the selection and invocation process.

We present our view on the levels of mediation needed within a Semantic Web
Service infrastructure that can be handled by different mediation components as well
as a specific approach for modeling mediators which can represent types of mis-
matches and provide the mappings needed.

Semantic data mediation tackles the problem of alignment between ontologies as-
sociated with data resources. This problem alone is one of the main research topics on
ontology management and coordination (e.g. [2], [7], [10]) in the Semantic Web,
which investigates solutions in terms of automatically or semi-automatically generat-
ing declarative mappings between different ontological elements.

Page 2

Within a Semantic Web Services infrastructure, domain ontologies are associated
with the descriptions of the different elements of the service. Mediators between on-
tologies can carry out mappings when other elements such as Goals and Web Services
import ontologies.

When composing services for providing functionality, the connections between
services must match. Explicit mediators can be defined for mapping or transforming
the output of a source service into the input of a target service.

When an application or another service has to interact with a service during invo-
cation, mismatches can occur for example between the format or the order in which
the information is requested and the way in which information is provided. A com-
munication protocol in terms of message exchanges has to be followed by the service
requester.

The mediation issues mentioned above can be solved by a mediation framework as
part of the Semantic Web Service infrastructure. Different components of the run-
time environment have access to the semantic descriptions of the service and are able
to solve existing mismatches.

A mediation framework can be supported by a design-time tool. The design-time
tool should support users in generating conceptual mappings between ontologies as-
sociated with Semantic Web Services. These declarative mappings can be made avail-
able through Mediators to the run-time environment, which is able to execute them
during the invocation of a Semantic Web Service. Alternatively, the run-time envi-
ronment can consume a mediation service associated with a Mediator, which can per-
form generic types of transformations on behalf of the service, for instance
concatenations or sorting.

3 IRS-III Overview

IRS-III [6] is an implemented infrastructure which allows the description, publication
and execution of Semantic Web Services according to the WSMO conceptual model
[17]. The meta-model of WSMO defines four top level elements:

• Ontologies,
• Goals,
• Web Services, and
• Mediators.

Ontologies [8] provide the foundation for semantically describing data in order to
achieve semantic interoperability and are used by the three other WSMO components.
Goals define the tasks that a service requester expects a Web Service to fulfil. In this
sense they express the service requester’s intent. Web Service descriptions represent
the functional behaviour of an existing deployed Web Service. The description also
outlines how Web Services communicate (choreography) and how they are composed
(orchestration). Mediators handle data and process interoperability issues that arise
when handling heterogeneous systems. One of the main characterizing features of
WSMO is that Ontologies, Goals and Web Services are linked by Mediators. In par-
ticular, WSMO provides four kinds of mediators:

• OO-mediators enable components to import heterogeneous ontologies;

Page 3

• WW-mediators link Web Services to Web Services;
• WG-mediators connect Web Services with Goals;
• GG-mediators link different Goals.

The incorporation of four classes of mediators in WSMO facilitates the clean sepa-
ration of different mapping mechanisms. For example, an OO-mediator may specify
an ontology mapping between two ontologies whereas a GG-mediator may specify a
process transformation between two Goals.

IRS-III provides a powerful execution environment for knowledge models. A
WSMO description representing the capability of a deployed service can be instanti-
ated within IRS-III operational framework and used for discovery, composition and
invocation. IRS-III is based on a distributed architecture which communicates via
SOAP. The server component handles ontology management and the execution of
knowledge models for Semantic Web Services. The server also receives SOAP re-
quests (through the API) from client applications for creating and editing WSMO de-
scriptions of Goals, Services and Mediators as well as invocation of Goals. The
publisher component allows providers of services to attach WSMO descriptions to
their deployed services and provides handlers (proxies) to invoke services in specific
platforms (lisp code, java code, web services and web applications).

4 IRS-III Mediation Approach

IRS-III Mediation approach is based on: a set of design principles for Semantic Web
Services; a mediation framework incorporating a number of components of the IRS-
III architecture; and use of the WSMO Mediator meta-model. The following sub-
sections explain our approach in details.

4.1 Design Principles

Our approach is based on the following design principles:

Use of Ontologies – Semantic descriptions of Web Services are ontological meta-
models. Furthermore, ontologies can serve as a container and delimit the scope of in-
stances during the execution of a model for mediation.
Executable Semantic Descriptions – All aspects of a web service needed for media-
tion including choreography, orchestration and ontology mappings can be interpreted
by the IRS-III execution environment (reasoning engine).
IRS-III as a broker – IRS-III mediates between client requests and service providers
whenever a Semantic Web Service is invoked. The interaction with the service occurs
via the choreography of a single service or via the orchestration of a composed ser-
vice (multiple choreographies).
Goal-based invocation – Client requests are given by Goal descriptions. IRS-III se-
lects a Web-Service which can achieve the Goal. Mismatches can occur between the
Goal description and the Web Service description.

Page 4

Goal-based decomposition – A Web-Service can decompose its functionality into
sub-goals described by the orchestration. There can be mismatches between sub-
Goals.
Explicit Semantic Mediator description – IRS-III uses mediators to explicitly con-
nect and provide mapping rules or mediation services between services elements.

4.2 Mediation Framework

The IRS-III mediation framework implements data mediation, goal mediation and
process mediation of Semantic Web Services. The main objective is to provide media-
tion components which solve types of mismatches by reasoning over the given Goal,
Web Service and Mediator descriptions.

The following sub-sections will explain in more details the use of WSMO concep-
tual models by the data mediator, goal mediator and process mediator framework
components.

Goal

Choreography
InterpreterInvoker

Data
Mediator

Web Service

OO-Mediator

Process
Mediator

Orchestration
Interpreter

GG-MediatorGoal
Mediator

WG-Mediator
WW-Mediator

Fig. 1. Mediation framework of IRS-III

Figure 1 illustrates the main architecture components incorporated in the mediation
framework of IRS-III. In the steps below we describe the overall sequence of me-
diation activities taking place during selection, composition and invocation of Se-
mantic Web Services.

1. The Goal Mediator searches for WG-Mediators whose source component
matches the current Goal when IRS-III receives an achieve-goal request from
a client application. It selects the first targeted Web-Service which matches
the requested capabilities (input types, preconditions, assumptions, non-
functional properties etc). The types of mismatches that can occur are: a) the
input types of a Goal are different from the input types of the target Web
Service; and b) Web Services have more inputs than the Goal.

2. The Process Mediator establishes an interaction with a deployed web service
(code) by executing its Web Service choreography through the Choreography
Interpreter. The Process Mediator performs the lifting and lowering of data
provided by the Web Service grounding and is able to create the communica-
tion messages corresponding to the choreography communication primitives.

Page 5

It keeps the state of the communication throughout operation calls executed
via the Invoker component.

3. The Process Mediator component also executes the orchestration of a com-
posite Web Service using the Orchestration Interpreter. It keeps the state of
the orchestration (control and data flow) between invocations of sub-Goals.
The Process Mediator searches for GG-mediators connecting sub-Goals in
the orchestration. The types of mismatches that can occur are: a) output types
of a sub-goal are different from the input types of the target sub-Goal; b) out-
put values of a sub-goal are in a different order from the inputs of the target
sub-Goal; c) the output of a sub-Goal has to be split or concatenated into the
inputs of the target sub-goals.

4. The Data Mediator component is used by the Goal Mediator and by the Proc-
ess Mediator for mapping data across domain ontologies. It executes the
mapping rules of OO-mediators used by other WSMO elements.

As a knowledge-based framework, IRS-III models the WSMO specification as a

set of related knowledge models for the WSMO top level components of Goals, Web
Services and Mediators, which are meta-models in corresponding ontologies. In the
following we describe data, goal and process mediation from the perspective of the
given Mediator model.

Listing 1. IRS-III mediator meta-model.

(def-class mediator (invokable-entity wsmo-entity)
 ((has-source-component :type wsmo-entity)
 (has-target-component :type wsmo-entity)))

(def-class wg-mediator (mediator)
 ((has-source-component :type (or web-service goal wg-mediator))
 (has-target-component :type (or web-service goal wg-mediator))
 (uses-mediator :type oo-mediator)
 (has-mediation-service :type goal)))

(def-class ww-mediator (mediator)
 ((has-source-component :type (or web-service ww-mediator))
 (has-target-component :type (or web-service ww-mediator))
 (uses-mediator :type oo-mediator)
 (has-mediation-service :type goal)))

(def-class gg-mediator (mediator)
 ((has-source-component :type (or goal gg-mediator))
 (has-target-component :type (or goal gg-mediator))
 (uses-mediator :type oo-mediator)
 (has-mediation-service :type goal)))

(def-class oo-mediator (mediator)
 ((has-source-component :type wsmo-ontology)
 (has-target-component :type wsmo-ontology
 (has-mapping-rules :type mapping-rule)))

Listing 1 shows the meta-model specification of a Mediator in IRS-III. The main

concept is defined by the class Mediator which is subclassed into more specific types
of mediators (wg-mediator, ww-mediator, gg-mediator, oo-mediator). Source and tar-
get components can be any of the WSMO top level components (class wsmo-entity).
The mediators differ according to the type of source and target components they can

Page 6

handle and whether it uses a mediation service or mapping rules. Thus, mediators are
bridges which can provide conceptual mappings or input transformations from source
components to target components. IRS-III supports the implementation of Mediation
Services as Goals as well as the explicit declaration of mapping rules. Since media-
tion services are implemented as Goals they can simply be invoked resulting in the
transformation of the relevant input data. IRS-III’s reasoning engine can for example
match the inputs of the mediation service with the inputs of the source component;
and the output of the mediation service with the input of the target component.

4.2.1 Data Mediation

The Goal, Web Service and other Mediator descriptions associated with a web ser-
vice can refer to an OO-mediator in order to use ontologies which do not match. IRS-
III handles data mediation by executing the mapping rules provided by an OO-
Mediator (fig. 2). In IRS-III, the source and target components of an OO-mediator are
ontologies.. Furthermore, the source and target can be the home ontologies of associ-
ated Goals or Web Services.

OOMediator
Source Target

Mapping rules

Maps-to….

ONTOLOGY ONTOLOGY

Fig. 2. Mediation between two ontologies

The underlying modeling language OCML [12] has a mechanism for mapping be-
tween entities associated with knowledge models. A simple way of dynamically asso-
ciating elements of a source and a target ontology is through backward chaining rules
using the def-concept-mapping and def-relation-mapping constructs.

Listing 2 shows how a mapping rule can be used to link the slots of classes in two
different ontologies. More specifically, the definitions below link the has-citizen-
name slot of class citizen in the source ontology to the has-client-name slot of class
client in the target ontology. This example is taken from the e-government scenario
and reflects the fact that a service requester can refer to an entity as citizen and a ser-
vice provider can refer to it as client.

The def-concept-mapping construct in Listing 2 associates each instance of the citi-
zen class to a newly created instance of the client class and link them by generating
instances of the relation maps-to internally. The def-relation-mapping construct uses
the generated maps-to relation within a rule which asserts the value of the mapped
citizen name to the value of the client name.

Page 7

IRS-III executes the mapping rules within a temporary ontology created by merg-
ing the source and target ontologies. The temporary ontology is then discarded after
the Web Service invocation.

Listing 2. Example of a mapping rule.

(def-concept-mapping citizen client)

(def-relation-mapping citizen-client-name-mapping
 ((has-client-name ?client ?value)
 if
 (maps-to ?client ?citizen)
 (has-citizen-name ?citizen ?value)))

WG-mediators, GG-mediators and WW-mediators have a data mediation capacity

for transforming inputs between source and target components by using mediation
services and have different roles within the process mediation as explained in the fol-
lowing sections.

4.2.2 Goal Mediation

The goal mediator component of IRS-III handles mismatches that occur during the

process of selection of Web Services for solving a Goal. The IRS-III approach as-
sumes that application developers can create or search for Goal and Web Service de-
scriptions available in a library.

A WG-mediator is created for connecting every Web Service to a Goal it can
achieve. The WG-mediator model also specifies a mediation service which can trans-
form the inputs of a Goal into the format of the inputs used by a Web Service. When a
user requests a goal to be achieved, the mediation service associated with the media-
tor of each linked web service is executed so that the matchmaking during selection
can be carried out over the mediated data.

G WS

WGMediator

G

Source Target

Mediation Service

First-name

First-name

Name

Name

Last-name

Last-name

Fig. 3a. Mediation between a Goal and a Web Service. Two inputs of Goal are
transformed into one input of the Web Service

Figure 3a shows a graphical illustration of the mediation taking place between a
Goal and a Web Service via a WG-mediator. In this example, the Goal requested by
the application takes two inputs (first and last names), which are transformed by the
mediation service into one input (name) used by the target Web Service.

Page 8

G WS

WGMediator

G

Source Target

Mediation Service

First-name

Name

Name

First-name

Last-name

WGMediator

G

Source

Name Last-name

Target

Mediation Service

Fig. 3b. Mediation between a Goal and Web Service. One input of the Goal is
transformed in 2 inputs of the Web Service

Since a mediation service can return only one output, IRS-III use a set of mediators
between the goal (source) and the web service (target) in order to provide the required
number of inputs to the target component as shown in figure 3b. In this example, each
mediation service transforms (e.g. splits) the goal input (name) in one of the required
inputs of the target component (first-name, last-name). The IRS-III engine can match
the inputs and outputs for providing values as required.

4.2.3 Process Mediation

The Process mediation component of IRS-III handles mismatches that occur during
the invocation or composition of a Web Service. IRS-III either executes the choreog-
raphy (interaction protocol) of a single Web Service or the orchestration of a com-
posed Web Service, using the values provided by the Goal inputs. Moreover, the
Process mediator has to execute the choreography of each single Web Service in the
Orchestration.

In IRS-III the choreography of a Web Service describes how to interact with a de-
ployed service (client choreography). A set of rules (guarded transitions) in the chore-
ography are used to specify the flow of operations required for realizing the specific
functionality of the Web Service. The Process Mediator uses the Web Service ground-
ing for creating the communication messages based on the operations declared at the
conceptual level.

A choreography is provided to interact with a single Web Service. By interpreting
the choreography and grounding, the Process mediator component can send messages
to the service in the right order and format on behalf of the client. When a Web Ser-
vice is composite an orchestration has to be provided instead. Nevertheless, its input
values have to be passed to the orchestration and the result of the orchestration has to
be passed back to the Web Service. The orchestration follows the decomposition of
Goals into sub-Goals and uses GG-mediators for connecting sub-goals and mediating
the order and types of inputs between them.

We illustrate in the following the role of a GG-mediator during orchestration (fig.
4). The provider of a Web service describes the orchestration through control-flow
mechanisms, for instance: (sequence G1 G2 M1). The Sequence control command

Page 9

executes the given sub-goals (G1 and G2) in sequence. Figure 4 shows the graphical
representation of the GG-mediator connecting G1 to G2. This mediator supports the
data flow between the sub-goals and the necessary transformations. The source goal
(G1) produces one output (E1), which is transformed by the mediation service in one
input (E2) used by the target Goal (G2). During the execution of the orchestration the
input values (SC, TC, A) received by the current invoked Goal are sent onto the sub-
goals through matching, then the associated GG-mediator (M1) are used to connect
and forward results between sub-goals providing the necessary transformations
through the mediation service.

G1 G2

GGMediator

G

Source Target

Mediation Service

SC
Value

E2

TC

E1

E1
A

E2

Fig. 4. Mediation between two sub-goals. The input of goal1 is transformed in one
input of goal2

WW-mediators can be used in a similar way to GG-mediators by the Process Me-
diator. In this case, the WW-mediator can provide mappings between the input values
of the current Web Service and the Web Services in the orchestration.

5 A case study in E-government

The main requirement for applications in E-government relates to the interoperability
of data and processes between services provided by government agencies. Thus, the
e-government domain is a natural application area for mediation of Semantic Web
Services. The ability to aggregate and re-use all the information resources relevant to
a given problem and further to make this available as a basis for transparent interac-
tion with community partner organisations and individual citizens is very restricted.
Furthermore, the goals of citizens using e-government services and of government
providers of services are often not conceptually aligned, contributing to misunder-
standing, low take up and poor relations between citizens and their governments.

We have created a prototype for the case study on e-government within the DIP
project (http://dip.semanticweb.org) for illustrating Semantic Web Services. We will
comment on the requirements and use of mediation within the scenario implemented.

Page 10

5.1 Application Scenario and requirements

We illustrate the implementation of our e-government use case through an applica-
tion scenario. The prototype is a portal for Essex County Council in UK, where two
governmental agencies were involved:

• Community Care (Social Services) in Essex County Council - they typi-
cally have a coordinating role in relation to a range of services from a num-
ber of providers and special responsibility for key services such as support
for elderly and disabled people (day centers, transportation). It uses the
SWIFT database as its main records management tool.

• The Housing Department of Chelmsford District Council - handles hous-
ing services and uses the ELMS database

In this scenario, a case worker of the Community Care department helps a citizen
to report his/her change of circumstance (e.g. address) to different agencies involved
in the process. In this way, the citizen only has to inform the council once about
his/her change, and the government agency automatically notifies all the agencies in-
volved. An example might be when a disabled mother moves into her daughter’s
home. The case worker opens a case for a citizen who is eligible to receive services
and benefits – health, housing, etc. Multiple service providing agencies need to be in-
formed and interact.

From the scenario above we have gathered the following mediation requirements
and solutions:

• Data mediation - Agencies have their own databases and hence different data
formats for the same concept (e.g. Address). Different data formats can be
lifted to the same concept in a domain ontology. At a semantic level, different
concepts can be mapped through mediators.

• Goal mediation – Agencies achieve goals in different ways (e.g assess equip-
ment for a citizen). Here we can define one Goal that can be satisfied in differ-
ent ways by applicable Web Services developed within different agencies.
Multiple Web Services can be linked to the same Goal via Mediators.

• Process mediation - Agencies processes behave in different ways according to
their own set of operational procedures, requirements and constraints. Each
Web Service presents a choreography describing how a client talks to the de-
ployed service. Furthermore, sub-Goals can be composed together for provid-
ing the functionality of one Web Service through the Web Service
orchestration.

5.2 Prototype Development

In our approach for developing applications using Semantic Web Services with IRS-
III we devise a customer team for creating Goal descriptions according to user re-
quests and a development team for creating Web Service descriptions for the avail-
able deployed web services. The application developer is then able to create Mediator
descriptions which connect domain ontologies, Goals and Web Services and provide

Page 11

mediation services or mapping rules for solving mismatches between ontological
elements.

The main characteristic of the prototype architecture is that it is service oriented.
The portal application created over this architecture implements Semantic Web Ser-
vices that have integration purpose across the various agencies involved in our e-
government scenario. The main services provided through the portal are the ones
which can be shared between agencies or used to send/get information to/from more
than one agency or even third parties (e.g. list of equipments provided).

The structure of ontologies in fig. 5 represents the libraries of WSMO models for
the e-government application. The light-colored rectangles on the top-half of the dia-
gram represent domain ontologies. The dark-colored rectangles on the bottom-half of
the diagram represent ontologies with Goal, Web Service and Mediator descriptions
available from Community Care (boxes on the left) and Housing Department (boxes
on the right. The libraries above provide a clear separation of user goals and web ser-
vice contexts within agencies and the use of mediators for linking them. Agencies
also share the WSMO upper model and the e-government upper level ontology.

Fig. 5. Structure of ontologies for the e-government application

For illustration purposes (figure 6) we describe in the following the structure of
WSMO descriptions associated with one of the goals (Assess-Equipment-Goal) de-
fined in our prototype. This Goal describes a request for a service that can assess
housing equipments (items) for a citizen who has registered for benefits within Essex
County Council. Published services must find all items that suit the citizen’s situation
(mobility-impairment, visual-impairment, hearing-impairment, baby-care etc) and
weight, and the budget of the council’s case worker. Restrictions on the way the ser-
vice can solve the goal are given by pre-conditions and post-conditions.

The Housing Department provides a composed web service (Housing-Dept-Assess-
Items-WS) for solving the goal described above. The composition is defined by the
orchestration in the format: (Sequence G1 G2 G3 M1 M2), where G1, G2 and G3 rep-
resent sub-goals and M1 and M2 the GG-mediators connecting them. In our example

Page 12

the sub-goals are: Find-Items-by-Purpose-and-Weight-Goal; Assess-Budget-Goal and
Select-Suitable-Items-Goal. A third party company provides a single web service
(Third-Party-Assess-Items-WS) for solving the above goal, which is described with
concepts from the domain ontology Third-Party-Items-Ontology.

The mediator descriptions used in this example (fig. 6) are explained in the follow-
ing. Note that all links coming from mediators connect source to target components
(labels were omitted to avoid cluttering the diagram).

Assess-Equipment-Goal

Housing-Dept-Assess-Items-WS

OO-Mediator1

WW-Mediator1WG-Mediator4

Get-Case-Worker-Budget-WS

WG-Mediator1

GG-Mediator1

GG-Mediator2

Third-Party-Assess-Items-WS

Get-Items-WS

Get-Items-WS

Assess-Budget-Goal

Select-Items-Goal

Find-Items-by-purpose
-and-weight-Goal

WG-Mediator2

WG-Mediator5

WG-Mediator3

Equipment
ontology

Third-party-items
ontology

has-orchestration

usesimports

Fig. 6. Sample structure of WSMO descriptions for the e-government prototype

• WG-Mediator1 – connects Third-Party-Assess-Items-WS to E-Gov-
Assess-Items-Goal allowing it to be selected for solving the goal. This
mediator defines a mediation service for converting the value of input
weight from pounds (in the goal) to kilos (in the web-service).

• WG-Mediator2 – connects Housing-Dept-Assess-Items-WS to E-Gov-
Assess-Items-Goal allowing it to be selected for solving the goal. There is
no mediation service and the input types are inherited from the goal.

• OO-Mediator1 – Defines mapping rules for aligning Third-Party-Items
domain ontology (used by the Web Service) with Equipment ontology;

• GG-Mediator1 – Allows the output of Find-Items-by-Purpose-and-
Weight-Goal to be used as input by Select-Suitable-Items-Goal.

• GG-Mediator2 – Allows the output of Assess-Budget-Goal to be used as
input by Select-Suitable-Items-Goal. It uses a mediation service to map
the input type Budget (in the source sub-goal) to input type Cost (in the
target sub-goal).

• WG-Mediator3, WG-Mediator4 and WG-Mediator5 – Connect corre-
sponding Web Services to Sub-Goals in the orchestration. The Housing

Page 13

Department has specific services for solving those goals and no mappings
are required.

• WW-Mediator1 – Connects the two web-services for sharing concepts.

6 Discussion and Related Work

Mediation approaches for integration of heterogeneous components or data re-
sources can range from techniques for mapping several resources to a canonical on-
tology to mediation components which handle transformations between different
protocols. In this paper we focus on mediation provided by Semantic Web Services
and in particular, on the conceptual modeling and integration aspects of mediation
rather than on mapping algorithms. Thus, we have investigated how a mediation
framework can handle semantic descriptions for solving mismatches during selection,
composition and invocation of services.

Recent work within the knowledge representation research community (e.g. [9]
[16] [10]) has contributed to the formalization of ontological mappings, which can be
used by SWS mediators, specifically OO-mediators. Reuse in ontology mappings is
also discussed in [7], where types of mappings between ontologies, called alignments,
are viewed as objects which can be created and used by different users. However, in
that case the API proposed is more likely to be used within a design tool which would
generate the mappings declaration.

OWL-S [15] does not model the mediator concept. Yet, mediation plays a key role
in the approach [14]. The OWL-S approach considers that mediation is handled dur-
ing discovery and decomposition by architectural components and that a mediation
service is treated just as another web service. This assumption makes mediation very
implementation dependent and not visible to the user.

WSMX [18], an execution environment for WSMO, contains a data mediation
component [11] and a process mediation component [4]. The main difference is that
WSMX is not a knowledge-based execution environment. Thus, the Mediator concep-
tual model is not used by the Mediation components. The WSMX data mediation
component can execute mapping rules generated at design time by a mapping tool,
but do not implement mediation services as Goals. The WSMX process mediation
component works on predefined types of mismatches between two choreography in-
stances while IRS-III Process Mediator interprets the choreography provided by the
Web Service and handles mismatches during orchestration. IRS-III follows the UPML
design principles [13] for Goal decomposition within the orchestration, whereby a
Web Service can decompose its functionality into sub-Goals.

The work on virtual providers [1], which formalizes WSMX process mediation,
follows the same approach for mediating between two business process interfaces.
The approach in [5] describes the process mediator as the middleware for handling
composition.

Page 14

7 Summary and Conclusions

In this paper we have identified mediation issues within Semantic Web Services and
provided a solution in terms of a mediation framework. IRS-III as a broker follows a
top-down approach in which its framework components use semantic descriptions to
support the mediation process. IRS-III enables easy integration of heterogeneous ser-
vices by reasoning over the WSMO conceptual model of domain ontologies, Goals,
Web Services and Mediators. In particular, modeling mediators provides design time
and runtime support for the automation of data, goal and process mediation of Seman-
tic Web Services.

Explicitly modeling types of Mediators in WSMO has many advantages since IRS-
III provides the mechanisms for reasoning and behaving according to the knowledge
models. First, representing a mediator as a meta-model enables easy inspection by de-
velopers. Second, as independent components, mediators can be indexed and reused
through a library. Third, mediation services associated with mediators are defined as
goals which can be achieved by an implemented web service. Finally, ontology map-
pings can be provided by the relation mapping mechanism of the underlying reason-
ing engine. Developers can also inspect mapping rules and test mediation services by
searching a library or repository of mediators.

IRS-III exploits the semantics of the WSMO mediator concept during the selection,
composition and invocation of Semantic Web Services. For example, the IRS-III bro-
ker can match the inputs of the source component with the inputs of the mediation
service when deciding which values will be mediated. In a similar fashion, mediators
are used for dataflow between sub-goals during orchestration.

We have presented a case study on e-government, which offers a motivating sce-
nario for the use of mediators. Further work is under development regarding the de-
velopment of a design tool for generating mapping rules for mediators.

Acknowledgements

This work is supported by DIP (Data, Information and Process Integration with
Semantic Web Services) (EU FP6 - 507483) and AKT (Advanced Knowledge Tech-
nologies) (UK EPSRC GR/N15764/01) projects. We also thank the contribution of
Mary Rowlatt, Robert Davies and Leticia Gutierrez from Essex County Council in
UK to the case study.

References

1. Altenhofen, M., Borger, E., Lemcke, J. (2005). A High-level specification for mediators.
Accepted at 1st International Workshop on Web Service Choreography and Orchestration
for Business Process Management.

2. Bouquet, P., Serafini, L. and Zanobini, S. (2004). Coordinating Semantic Peers. In proceed-
ings of the 11th Int. Conf. AIMSA 2004, Varna, Bulgaria. LNAI 3192

Page 15

3. Cabral, L., Domingue, J., Motta, E., Payne, T. and Hakimpour, F. (2004). Approaches to
Semantic Web Services: An Overview and Comparisons. In proceedings of the First Euro-
pean Semantic Web Symposium, ESWS 2004, Heraklion, Crete, Greece. LNCS 3053, pp.
225-239

4. Cimpian, E.; Mocan, A. (2005): WSMX Process Mediation Based on Choreographies. 1st
International Workshop on Web Service Choreography and Orchestration for Business
Process Management, 2005.

5. Constantinescu, I., Faltings, B., Binder, W. (2004). Large scale, type-compatible service
composition. In IEEE International Conference on Web Services (ICWS 2004, San Diego,
CA, USA.

6. Domingue, L. Cabral, F. Hakimpour,D. Sell and E. Motta (2004). IRS-III: A Platform and
Infrastructure for Creating WSMO-based Semantic Web Services. Proceedings of the
Workshop on WSMO Implementations (WIW 2004) Frankfurt, Germany. CEUR Work-
shop Proceedings, Vol. 113

7. Euzenat, J. (2004). An API for Ontology Alignment. In proceedings of ISWC 2004,
Third International Semantic Web Conference, Hiroshima, Japan. LNCS 3298.

8. Gruber, T. R. (1993) A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition, 5(2)

9. Heller, B. and Herre, H. (2004). The Theory of Top-level Ontological Mappings and its
Application to Clinical Trial Protocols. In proceedings of the 14th Int. Conf. EKAW 2004,
Whittlebury Hall, UK. LNAI 3257

10. Kotis, K., Vouros, G. and Stergiou, K. (2004). Capturing Semantics Towards Automatic
Coordination of Domain Ontologies. In proceedings of the 11th Int. Conf. AIMSA 2004,
Varna, Bulgaria. LNAI 3192

11. Mocan, A.; Cimpian, E. (2005): D13.3v0.2 WSMX Data Mediation, WSMX Working Draft
2005, available at: http://www.wsmo.org/TR/d13/d13.3/v0.2/

12. Motta, E. (2004) Reusable Components for Knowledge Modelling: Case Studies in Para-
metric Design Problem Solving. IOSPress.

13. Omelayenko, B., Crubezy, M., Fensel, D., Benjamins, R., Wielinga, B., Motta, E., Musen,
M., Ding, Y. (2003). UPML: The language and Tool Support for Makiing the Semantic
Web Alive. In: Fensel, D. et al. (eds.): Spinning the Semantic Web: Bringing the WWW to
its Full Potential. MIT Press 141–170

14. Paolucci. M, Srinivasan, N. and Sycara, K (2004). Expressing WSMO Mediators in OWL-
S. In proceedings of the Workshop on Semantic Web Services: Preparing to meet the
World of Business Applications, in conjunction with ISWC 2004, Hiroshima, Japan.
http://CEUR-WS.org/Vol-119/

15. OWL-S Coalition (2003). OWL-S 1.0 Release. http://www.daml.org/services/owl-s/1.0/.
16. Van Elst, L. and Kiesel, M. (2004). Generating and Integrating Evidence for ontology map-

pings. In proceedings of the 14th Int. Conf. EKAW 2004, Whittlebury Hall, UK. LNAI
3257

17. WSMO Working Group (2004). D2v1.0. Web Service Modeling Ontology (WSMO).
WSMO Working Draft. http://www.wsmo.org/2004/d2/v1.0/

18. WSMO Working Group (2004). D13.3v0.1 Mediation in WSMX. WSMX Working Draft.
http://www.wsmo.org/2004/d13/d13.3/v0.1/

Page 16

Process Mediation in
an Extended Roman Model

Gösta Grahne and Victoria Kiricenko

Department of Computer Science and Software Engineering
Concordia University

Montreal, Quebec, Canada H3G 1M8
grahne,kiricen@cs.concordia.ca

1 Introduction

A mediator is a software module that provides sharing of services and and ag-
glomeration of resources into complex services. Mediators will play a pivotal
role in successful infrastructures for Semantic Web Services. Process media-
tion in Web Services involves issues of process compatibility and composability.
Evolving standards of web services, such as the web service Execution Environ-
ment (WMSX [21]) focus mostly on compatibility issues in a B2B environment,
whereas the problem of dynamic composition of web services is still maturing in
the research community. In this paper we contribute to the composition aspect
of process mediation.

Web service process specification has reached well accepted standards, such as
the Business Process Execution Language (BPEL4WS [9]). Moreover, it has re-
cently been shown that process algebra provides a useful interpretation of BPEL
specifications. Works such as [12, 19] provide the mapping from BPEL to process
algebra, and show how the algebra can be used to describe Web Services during
design stage. These works also demonstrate how process algebraic descriptions
can be extracted from existing Web Services for reverse engineering purposes.
This enables the use of numerous verification tools that are available for process
algebra (e.g. LOTOS) in web service development.

When it comes to the question of composability of web services some of the
most fruitful results have been achieved within the Roman model [3, 2, 7, 11, 14,
5], an evolving framework that takes a highly computational approach to Web
Service composition. In this paper we extend the Roman model by incorpo-
rating features from process algebra that will allow a fuller use of important
functionalities of Web Services, such as parallelism, nondeterminism, and task
decomposition.

Our contributions are as follows:

1. We develop a rigorous extension to the Roman model, and give a formal
semantics based on the process algebraic notion of simulation. Our exten-
sion not only allows for fuller coverage of the standard languages used for
description and execution of web wervices in practice, but also unifies the
approaches of modeling and mediating web services. Moreover, our extension

Page 17

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

allows for formal verification of mediated web services though the use of the
numerous tools available for process algebra.

2. We give an algorithm for mediating a requested Web Service from a resource
pool of more basic services.

Process mediation is a complex task, and our work certainly does not address
all the problems and all the mediation scenarios that may appear in the Web
Service context. In the concluding section we outline some extensions that we
are currently investigating.

2 Behavioral Models of Web Services

Web Services are distributed and independent pieces of software working to-
gether to achieve given tasks. The Business Process Execution Language (BPEL
[9]) is a notation for describing executable business process behaviors. Such be-
havioral signatures provide the foundation for composing Web Services.

Behavioral signatures are often formalized as state based (infinite) labeled
transition systems, i.e. (infinite) labeled graphs. Vertices represent processes and
labeled edges represent activity. The node that an edge is incident upon repre-
sents the state that the process has evolved to, after performing the action of
the label. This approach is also adopted in the Roman model [3, 2, 7, 11, 14, 5],
with the restriction that the transition graphs are tree structured.

Process algebra is a mathematical framework for reasoning about behavioral
signatures. Numerous processes algebras have been proposed and studied in the
literature. Basic ones include CCS, CSP, ACP, extensions are π-calculus and
timed CSP [10]. LOTOS [16] is for one of the most expressive process algebras,
and it comes with an industrial strength suite of tools for specification and
verification. Recently, Ferrara [12] has given a two-way mapping that allows an
automated translation between BPEL and LOTOS, thus making the LOTOS
suite available for Web Service development.

The “urelements” in all process algebras is a finite set of atomic processes.
Although syntactically different, all process algebras share a core set of basic con-
structs for process evolution, namely, sequential composition, non-deterministic
choice, parallel composition, communicating (synchronized) composition, and
recursion [10]. In our framework we use these core constructs, We build on the
Roman model, which provides a basic framework for Web Service specification
and verification. The Roman model is a robust foundation, and it is currently
being extended with e.g. asynchronous message exchange [6], value passing [5],
temporal constraints [14], Presburger constraints, discrete time, and non-regular
processes [11].

In the next section we give our extension of the Roman model. In order to
have a uniform framework, we build our extension from “first principles.” Due
to space limitations, some proofs are omitted. They can be found in a longer
version of the paper at the authors’ websites.

Page 18

3 An Enhanced Roman Model

Let N = {1, 2, 3, . . . , }. By N∗ we denote the set of all finite strings over N. The
empty string over N∗ is denoted by ε. A tree domain D is a non-empty subset of
N∗ that is closed under the prefix relation. (i.e. if u.w ∈ D then u ∈ D).

Now let Q be a state space, F ⊆ Q a designated set of final states, and Σ a
finite set of actions, Then an execution tree T is a function T : D → Q× (Σ∪λ),
such that T (ε) = (q, λ), for some q ∈ Q. The root of T is ε. A leaf node of T is
an element w ∈ dom(T), such that for all i ∈ N, wi /∈ dom(T).

The intuition is that the root is the start state of the service, and if (p, b) is a
child of (q, a), then the service was in state p, and went into state q after having
executed action a. It came into state p after having executed action b, and at
the root it has not yet executed any actions. When the service is satisfying a
request, it moves from the root state to some final state, while executing the
actions along the path.

We shall in the sequel denote D by dom(T). Figure 1 shows an example of a
(finite) execution tree. For this T , we have dom(T) = {ε, 1, 2, 11, 12, 13, 21, 121},
shown to the left, F = {p0, p1, p3}, Q = {p0, p1, p2, p3, }, and Σ = {a, b, c}. To
the right we show the function T graphically, e.g. T (12) = (p2, a). The leaves are
{11, 121, 13, 21}. Thus this service T can satisfy the requests {b, bb, bab, ba, ca}.

��

�� ��

�

���

�� ��

���������	��
�

�����
� �������

�����
�

�����
�

������� �������

Fig. 1. A tree domain and a tree

To compare the capabilities of Web Services, we need a notion of equivalence,
that tells us when two Web Services can perform the same tasks. Research in
process algebra has revealed a wide spectrum of equivalences [10]. At one end
is trace equivalence: two processes are considered equivalent if they can per-
form the same sequence of tasks. Trace equivalence represents a black box view
of the processes. At the other end of the spectrum is simulation equivalence.
This equivalence comes in various flavors, but the basic idea represents a game
theoretic view: two processes are equivalent if they can match each others task
sequences action by action.

Previously, in works on the Roman model [3, 2, 11, 14], a notion corresponding
to trace inclusion has been used implicitly or explicitly. However, research in
formal specification (see e.g. [10]) has shown that trace equivalence (two-way
trace inclusion) is not always adequate. Consider the following example.

Page 19

Example 1. An on-line computer store allows its users to search its product
catalogs, to make a selection and then buy the selected item, or to save the
results of the search for later use. Both execution trees in Figure 2 could be the
web service for (this aspect of) the online computer store, as they both contain
the same sets of traces ({search.buy, search.save}). However, in the execution
tree to the right, lets call it T ′, a user has a choice of executing either buy or
save after performing the search action, while in the execution tree to the left,
called T , the web service makes a nondeterministic choice when a user initiates
the search action. Note that one of the nondeterministic choices in T allows
the user to subsequently initiate only the buy action and the other choice allows
him to initiate only the save action, whereas in T ′ both the buy and the save
action are enabled after the search action. It is clear that a notion of inclusion
finer then trace inclusion is needed to distinguish between these two execution
trees. ut

��������	
����
�����	
��

�������

�������������������

��
�����	
��

�������

��������������������
�

�
�

�
�

�
�

Fig. 2. Forward simulation T � T ′

We shall therefore use a notion derived from bisimulation, called forward sim-
ulation [17]. While bisimulation and its variants have received intense attention
in the research community, forward simulation is much less investigated.

To define forward simulation formally, let Q and Q′ be state spaces, with
final states F and F ′, respectively, and let Σ be an alphabet. Let T : dom(T)→
Q × Σ and T ′ : dom(T ′) → Q ′×Σ be execution trees. We say that T can be
forward simulated by T ′, denoted T � T ′ if there exists a simulation relation
R ⊆ dom(T)× dom(T ′), satisfying:

1. (ε, ε) ∈ R
2. If (w,w ′) ∈ R, for some w ∈ dom(T), w ′ ∈ dom(T ′), and T (wi) = (s, a),

for some i ∈ N, then there exists j ∈ N and s ′ ∈ Q ′ such that (wi, w′j) ∈ R
and T ′(w′j) = (s ′, a).

3. For all (w,w′) ∈ R, where T (w) = (p, a), T ′(w ′) = (q, b), for some a, b ∈ Σ,
if p ∈ F then q ∈ F ′.

Example 2. Consider again the two execution trees given in Example 1. Forward
simulation requires that the simulating web service can simulate the simulee
in a lock-step fashion. As we can see from the Example 1, T cannot simulate
T ′. On the other hand T ′ can simulate T . For every action that T takes,

Page 20

T ′ can take the same action, and has at least the options of T for subse-
quent actions. In Figure 2 the dotted lines illustrate the simulation relation
R = {(ε, ε), (1, 1), (2, 1), (11, 11), (21, 12), . . .}. ut

Finite State Machines. So far, we have described web services on an abstract
semantic level. In practice, web services need to be finitely specified or imple-
mented. Following the Roman model, we shall represent a web service by a finite
state machine.

Let Σ be a finite set of actions, as before. Actions will be denoted by letters
a, b, c . . ., and the empty string over Σ is denoted λ. A (nondeterministic) Finite
State Machine (FSM) is a quintuple A = (Q,Σ, δ, p0, F) where Q is the finite
set of states of A, Σ is the finite set of possible actions, δ ⊆ Q × Σ × Q is the
transition relation, s ∈ Q is the initial state, and F is the set of final states of A
(see e.g. [15]).

��������������

��	��
� �������

��	����

��	����

��

�� �

�� ��

���������������������������� ���������	��
�

�

�

�

�

�

�

�

Fig. 3. An FSM an its execution tree

It should be noted that as opposed to the initial Roman model [3], our de-
finition of an FSM allows for nondeterminism. This approach is more realistic
as it is computationally closer to the specification languages typically used for
description of the web services. Moreover, it better captures the dynamic, not
always fully reliable, and partially redundant nature of web services. Nondeter-
minism has also been adopted in e.g. [11, 14], within the scope of the Roman
model.

Page 21

Given an FSM A = ({p0, p1, . . . , pn}, Σ, δ, p0, F), its execution tree TA is
mapping TA : dom(TA) → Q × Σ, where TA and dom(TA) are defined induc-
tively as:

1. dom(TA) = ε and TA(ε) = (p0, λ)
2. If w is a leaf of dom(TA), with TA(w) = (pj , a), and (pj , b1, pi1),

(pj , b2, pi2), . . . , (pj , bk, pik
) ∈ δ are all the transitions emanating from pj ,

with i1 < i2 < . . . < ik, then extend dom(TA) and TA as follows:
(a) Add w1, w2, . . . , wk to dom(TA).
(b) Extend TA by setting TA(w1) = (pi1 , b1), TA(w2) = (pi2 , b2), . . ., TA(wk) =

(pik
, bk).

Figure 3 shows an FSM and part of its execution tree.
We can now use forward simulation to compare FSM’s. We say that a web

service specified by an FSM A can be forward simulated by a web service specified
by an FSM A ′, if T (A) � T (A ′).

Given the fact that execution trees are (typically) infinite, we are interested
in a finite characterization of when T (A) � T (A ′).

Let A = (Q,Σ, δ, p0, F) and A ′ = (Q ′, Σ, δ ′, q0, F
′). We denote (with slight

abuse of notation) A � A ′, if there exists a simulation relation R ⊆ Q × Q ′

between the states of A and A ′, satisfying:

1. (p0, q0) ∈ R
2. If (p, q) ∈ R, and (p, a, s) ∈ δ, for some s ∈ Q, then there exists a t ∈ Q ′,

such that (q, a, t) ∈ δ ′ and (s, t) ∈ R.
3. For all (p, q) ∈ R, if p ∈ F then q ∈ F ′.

Example 3. Consider the two web services defined by FSM’s A and B in Figure 4.
These FSM’s are specifications of the execution trees in Figure 2. As expected,
B can forward simulate A, but not vice versa. The dotted lines illustrate the
simulation relation R = {(p0, q0), (p1, q1), (p2, q1)}. ut

��

������������
�����	

�� ��

��

������
�����	

��

Fig. 4. Forward simulation A � A ′

It is easy to show that the two notions of forward simulation coincide.

Lemma 1. A � A ′ ⇔ TA � TA ′

Page 22

4 Web Service Communities

A Web Service Community is a set of cooperating Web Services {T1, T2, . . . , Tk},
where each sub-service Ti is an execution tree with state space Qi and action
alphabet Σi. The action alphabet of the community is Σ = Σ1 ∪ . . . ∪Σk.

Intuitively, actions of a Web Service Community are enacted by executing
actions of the sub-services, either sequentially, or in parallel. This is formalized
using a merge operator, inspired by [18].

The merge operator is a significant extension to the classical Roman model.
Firstly, it allows for simultaneous execution of actions by two or several different
services. This is a feature that is as essential to Web Services as it is to any
distributed computations. Note that BPEL supports the <flow> construct that
allows the specification of one or more activities to be performed concurrently.

Secondly, the merge allows us to define processes that are composed of two or
more sub-processes. This feature can be achieved in BPEL by using links within
concurrent activities of the <flow> construct.

Formally, let a and b be actions. Then the merge of a and b, denoted a||b,
consists of either executing a followed by b, denoted a.b, or by executing b.a,
(both a.b and b.a are sequential executions), or executing them in parallel. For
the parallel execution we need a partial function γ : Σ ×Σ → Σ. If γ(a, b) = c,
then the parallel execution of a and b is visible externally as an action c. We
demand that, if defined, γ(a, b) = γ(b, a), and γ(a, γ(b, d)) = γ(γ(a, b), d), for all
a, b, d ∈ Σ, as γ models parallel execution (see [18]).

We now have two types of uses of the merge operator: The first is a parallel
execution of one action. In this case we have γ(a, a) = a, as in the search action
in Figure 5. The second use of merge is for task decomposition. When γ(a, b) = c
we take this to mean that externally visible action c is achieved internally by the
community through executing a and b in parallel. The buy computer action in
Figure 5 is an example of an action achieved internally by two parallel actions,
namely buy tower, and buy monitor.

Example 4. Consider the two Web Services defined by the FSMs A and A ′ given
in the Figure 5 to the left and to the right, respectively. The two web services
together form an web service community {A,A ′} and the figure also shows the
merge capabilities of the community in the form a Table for the γ function.

The service A allows the user to search for and buy computer towers, while
A ′ provides the same options for computer monitors. Now, what would be the
semantics of this community? Intuitively, the executions of the individual web
services can be interleaved in any possible order. In addition, with respect to the
defined γ searches can be done in parallel, and simultaneously buying a tower
and a monitor amounts to buying a computer. The merge of the A and A ′, with
respect to the given γ is illustrated in Figure 6, ut

Page 23

��

������
��	
��
��

��

��

������
��	
�������

��

Action Action Compound action

search search search

buy tower buy monitor buy computer

Fig. 5. Community of FSM’s

������

��������	
��
��

������

������

��	
�������

������

������ ��	
��
��

������

������

��	
�������

������

��	
��������

Fig. 6. Merge of community FSM’s

5 Semantics of Web Service Communities

As the meaning of Web Service processes is given in terms of process trees, we
need to define the community merge in terms of trees. We do this by extending
the language-theoretic shuffle [15] with the γ-function. (Note that in classical
process algebra the merge is defined axiomatically [10].)

Let T : dom(T) → Q × Σ, and T ′ : dom(T) → Q ′×Σ, be trees, with final
states F ⊆ Q ⊆ {1, . . . , k}∗, and F ′ ⊆ Q ′ ⊆ {1, . . . ,m}∗. To define the merge,
T ||T ′, of trees T and T ′ we need to specify dom(T ||T ′). For this, let w ∈ dom(T)
and u ∈ dom(T ′). We set:

1. ε||w = {w}, ε||u = {u}, and ε||ε = {ε}
2. if w = w ′ .i and u = u ′ .j, for some i ∈ {1, . . . , k}, j ∈ {1, . . . ,m} then

w||u = (w ′ ||u)i ∪ (w||u ′)k + j.
Furthermore, if γ(t(w), t′(u)) is defined, then add the element (w ′ ||u ′)k +
m + 2i · 3j to w||u.

Page 24

We can now define

dom(T ||T ′) = {w||u : w ∈ dom(T), u ∈ dom(T ′)}.

We regard dom(T ||T ′) as a subset of {1, . . . , k + m + 2k · 3m}∗.

Lemma 2. dom(T ||T ′) is a tree domain.

For an arbitrary string w over dom(T ||T ′), we define wl as the projection of
w to the subsequence of symbols ≤ k, and wr as the projection of w onto the
symbols > k and ≤ m.

By TQ(w) we mean p, where T (w) = (p, σ), and by TΣ(w) we mean σ.
Similarly for T ′.

Now we can define T ||T ′(ε) as (〈TQ(ε), T ′
Q(ε)〉, λ), and for all wi ∈ dom(T ||T ′),

T ||T ′(wi) =



(〈TQ(wli), T ′
Q(wr)〉, TΣ(wli)), i ≤ k

(〈TQ(wl), T ′
Q(wri)〉, T ′

Σ(wri)),
k < i ≤ k + m

(〈TQ(wli), T ′
Q(wri)〉, γ(TΣ(wli), T ′

Σ(wri)),
i ≥ k + m + 6.

Example 5. Let us return to the community of the two services in Examples 4.
Two execution trees T and T ′, corresponding to A and A ′ are given in Figure
7. The semantic merge of these two trees are shown in in Figure 8.

The semantic merge has the following properties:

Theorem 1. T ||T ′ = T ′ ||T , up to isomorphism.

Theorem 2. (T ||T ′)||T ′′ = T ||(T ′ ||T ′′), up to isomorphism.

Given a web service community (T1, . . . , Tk), we can now define its behavior
as T1|| . . . ||Tk

Theorem 3. The semantics T1|| . . . ||Tk is uniquely defined, up to isomorphism.

When the web services in a community are defined as finite state machines
A = (Q, Σ, δ, p0, F), and A′ = (Q′, Σ′, δ′, q0, F

′), we can construct an FSM
A||A′ = (Q||, Σ||, δ||, s||, F||), where Q|| = Q×Q ′, Σ|| = Σ∪Σ ′, s|| = (p0, q0), F|| =
F×F ′, and δ|| ⊆ (Q×Q ′)×(Σ∪Σ ′)×(Q×Q ′) is defined as follows: ∀ (p, a, q) ∈ δ,
∀ (q, b, q ′) ∈ δ ′, we have the transitions (〈p, q〉, a, 〈p ′, q〉) and (〈p, q〉, b, 〈p, q ′〉)
in δ||. Furthermore, if γ(a, b) = c then δ|| also contains (〈p, q〉, c, 〈p ′, q ′〉).

By an encoding similar to those used in the proofs of Theorems 1 and 2 the
following can be shown.

Theorem 4. TA||A′ = TA||TA ′ ut

Page 25

��������	
��

��
����

��
����������	�

�
�

��������	
��

��������	
��

��
����

��
������������	�

�
�

��������	
��

Action Action Compound action

search search search

buy tower buy monitor buy computer

Fig. 7. Web service community

�������������	
��
 �������������������

�
�

�������������	
��

���������� ��

����������������������

�
�

�������������������

 ���������������������

�������������	
��
 ���������������������

�������������	
��
�������������	
��

�
�

�
�

�
�

�
�

�
�

Fig. 8. Web service community execution tree

6 Synthesizing and Orchestrating Client Requests

The raison d’être of a Web Service community is to provide services to their
clients. When a client requests a certain service there might be no individual
Web Service in the community that can deliver it directly. However, as we al-
ready discussed in the previous section, the actions of individual Web Services
in the community can be interleaved in any order and also executed in parallel.
Therefore, it is possible that a composite Web Service can satisfy the client’s
request.

Service composition involves two main issues. The first, often called compo-
sition synthesis, is concerned with synthesizing a new composite Web Service,
thus producing a specification of how to coordinate the Web services available
in the community to provide a specified service. (This is the “compile time”
phase.) The second, referred to as orchestration, is concerned with coordinating
the correct execution of of an instance of a client request in the synthesized
composition. (That is, the “run time” phase.)

Page 26

Let us first formally define a service requested by a client, and what it means
for Web Service community to be able to satisfy the request.

A client request is an execution tree T0 : dom(T0)→ Q0 ×Σ. We say that a
web service community {T0, . . . , Tk} can satisfy the client if T0 � T1||T2|| . . . ||Tk.

��

������

��

��	
��
�� ��	
�������

��

������

��

��	
��������

Fig. 9. Two web service clients

In practice each subservice Ti is specified by an FSM Ai, and the client by
an FSM A0. We are thus interested in whether TA0 � TA1 ||TA2 || . . . ||TAk

. For
this we need

Theorem 5. TA0 � TA1 ||TA2 || . . . ||TAk
if and only if A0 � A1||A2|| . . . ||Ak.

Proof. By Lemma 1, we have A0 � A1||A2|| . . . ||Ak iff TA0 � TA1||A2||...||Ak
.

By repeatedly applying Theorem 4 we have that TA1||A2||...||Ak
is isomorphic to

TA1 ||TA2 || . . . ||TAk
. The claim now follows. ut

Let the client FSM be A0 = (Q0, Σ, δ0, p0, F0) and let the community be
A = {A1, . . . , Ak}, where Ai = (Qi, Σi, δi, q0i , Fi). We denote by −→q0 the tuple
〈q01 , q02 , . . . , q0k

〉, where q0i ∈ Qi is the start state of Ai. Similarly, −→q denotes
a tuple of states (not necessarily initial) from A1, A2, . . . An.

The following algorithm computes the simulation relation A � A .

Forward-Sim(A,A)
1 U ← ∅

� pairs of states (p, q) such that p cannot be simulated by q.
2 repeat
3 R ← ∅

� simulation relation
4 W ← ∅

� pairs of states (p, q) visited more than once
5 S ← {(p0,

−→q0)}
� pairs of states (p, q) in the currently checked sequence
Reliability ← true

6 Result ← Check(p0,
−→q0)

7 until Result = false ∨ Reliability = true
8 if Result = false
9 then R ← ∅

10 return R

Page 27

Check(p,−→q)
1 if p ∈ F ∧ ∃qij

∈ −→q such that qij
/∈ Fj

2 then U ← U ∪ {(p,−→q)}
3 S ← S \ {(p,−→q)}
4 return false
5 if {(p, a, p ′) : (p, a, p ′) ∈ δ, a ∈ Σ, p ′ ∈ Q} = ∅
6 then R ← R ∪ {(p,−→q)}
7 S ← S \ {(p,−→q)}
8 return true
9 for each (p, a, p ′) ∈ δ

10 do V ← {(qmo , . . . , qlj , . . . , qnk
) :

−→q = (qmo , . . . , qij , . . . , qnk
) ∧ (qij , a, qlj) ∈ δj}

∪
{(qmo

, . . . , qrj
, . . . , qsh

, . . . , qnk
) :

−→q = (qmo
, . . . , qij

, . . . , qlh , . . . , qnk
)∧

(qij
, b, qrj

) ∈ δj ∧ (qlh , c, qsh
) ∈ δh ∧ γ(b, c) = a}

11 if V = ∅
12 then U ← U ∪ {(p,−→q)}
13 S ← S \ {(p,−→q)}
14 if (p,−→q) ∈W
15 then Reliability = false
16 return false
17 Flag ← false
18 while V 6= ∅
19 do
20 V ← V \ {−→q ′}
21 if (p ′,−→q ′) 6∈ U
22 then if (p ′,−→q ′) ∈ R
23 then Flag ← true
24 else if (p ′,−→q ′) /∈ S
25 then S ← S ∪ {(p ′,−→q ′)}
26 Flag ← Flag ∨check(p ′,−→q ′)
27 else W ←W ∪ {(p ′,−→q ′)}
28 Flag ← true
29 if Flag = false
30 then S ← S \ {(p,−→q)}
31 U ← U ∪ {(p,−→q)}
32 if (p,−→q) ∈W
33 then Reliability = false
34 return false
35 R ← R ∪ {(p,−→q)}
36 return true

The algorithm is based on the partial depth first search approach used for
“on-the-fly” verification of behavioral equivalences introduced in [13].

Page 28

The procedure Check starts with a pair of start states and traverses the
client FSM constructing “on-the-fly,” as needed, part of the community FSM in
depth first order. The construction of the next state of A is based on the tran-
sitions of the component FSMs A1, . . . Ak, and on the γ-table of the community.

First the procedure checks that if the state of A0 is a final state then the
corresponding state of A is also a final state, that is, all of the component states
are final. Next, the procedure checks whether the state of A0 has any outgoing
transitions, and, if this is not the case, then the corresponding state of A can
definitely simulate it. After that, it picks one after another the transitions going
out of the state of A0 and checks if there is at least one corresponding transition
in A . If the algorithm finds such transition, it checks the pair of states that
these transitions are incident upon. If no corresponding transition exists in A ,
then, obviously, A cannot simulate A0

The list S of transitions that are considered in the current traversal is main-
tained in order not to go in cycles. When the algorithm sees the same pair of
states again it does not visit them again, but starts returning and constructing
the simulation relation. Thus, the pairs of states are visited in prefix order, while
the conditions for the simulation relation are checked in postfix order. Conse-
quently it is possible to reach a pair of states (p,−→q) which have already been
visited, but not yet determined to be in the simulation relation. In this case the
algorithm makes an optimistic assumption that (p,−→q) will be determined to be
in R at a later time. When this pair is eventually analyzed by the algorithm
(the algorithm maintains a set W of such pairs), if it is determined not to belong
to the simulation relation, then the procedure sets the flag Reliability to false,
which means that the simulation relation that the algorithm has constructed is
not guaranteed to be correct as the optimistic assumption used by the algorithm
was wrong.

If the algorithm decided that A0 cannot be simulated by A this decision
is always reliable because not assumptions are used to decide the false. How-
ever, if the procedure Check returned true the Reliability has to be true as
well, otherwise the simulation relation constructed by the procedure has to be
discarded and Check has to be called again. In order to omit repeating the
same dead-end traversals the algorithm maintains global list U of pairs that are
determined to be not in the simulation relation by previous calls to Check.

We note that Shukla et al. [20] previously have given a decision procedure for
testing whether one FSM can be forward simulated by another. This is achieved
by a reduction to a variant of Horn clause satisfiablity. However, their procedure
does not construct an actual simulation relation.

Theorem 6. Algorithm Forward-Sim(A0,A) runs in time O(|δ0|×|δ|), where
|δ0| and |δ| denote the sizes of the transition relations in A0 and A , respectively.

Since the size of the community FSM A is at most exponential in the size
of the component FSM’s A1, . . . , Ak, the following holds.

Corollary 1. The algorithm Forward-Sim runs in EXPTIME.

Page 29

Client Action Community Action

r0
search−→ r1

p0
search−→ p1

q0
search−→ q1

r1
by tow
−→ r0 p1

by tow
−→ p0

r1
by mon
−→ r0 q1

by mon
−→ q0

Fig. 10. Orchestration of left client

Fig. 11. from Figure 9

Client Action Community Action

s0
search−→ s1

p0
search−→ p1

q0
search−→ q1

s1
by comp
−→ s0

p1
by tow
−→ p0

q1
by mon
−→ q0

Fig. 12. Orchestration of right client from
Figure 9

Theorem 7. The algorithm Forward-Sim is sound and complete.

Example 6. Consider a client given by the FSM on the left in the Figure 9, and
the Web Service community {A1, A2} from Figures 5 and 6.

Since we have γ(search, search) = search, allowing the searches to be exe-
cuted in parallel on many services, it is easy to see that there indeed is a sim-
ulation relation from A0 to A1||A2, namely R{(r0, 〈p0, q0〉), (r1, 〈p1, q1〉)}. From
this an orchestration engine (a Mealy-machine) can straightforwardly be con-
structed. For simplicity we illustrate the orchestration engine informally in the
table in the Figure 10.

The need for γ can be easily seen, as this client cannot be simulated by the
community in Figure 6, unless we use the look-ahead mechanism from [14]. How-
ever, look-ahead is not always possible, e.g. postponing the payment transaction
in on-line shopping. ut

In the full paper we show how a process algebra description can be obtained
from the simulation relation computed by our algorithm. Then, the process alge-
bra description can be automatically translated to executable BPEL-code, using
the two way mapping between process algebra and BPEL given in [12]. The fol-
lowing example illustrates this, and points out important BPEL constructs that
can be handled by our extended model, and which were not present in the ESC
implementation of the classical Roman model [4].

Example 7. Consider the right client Figure 9. We can satisfy this client, as we
have γ(buy tower, buy monitor) = buy computer. In this case the simulation
relation from the client to A1||A2 is R = {(s0, 〈p0, q0〉), (s1, 〈p1, q1〉)}

Note that γ allows composite services to be merged in the external action
alphabet of a web service community, thereby also achieving ease of integration
of new services into the community. The simulation relation for the right client
is given informally as the table in the Figure 11.

The BPEL pseudo-code for the actual implementation of this service is given
in Figure 13. Note that there are two <flow> constructs in this pseudo-code.
The first one results from γ(search, search) = search The two participating
services are invoked to perform search in parallel. The second corresponds to
γ(buy tower, buy monitor) = buy computer. ut

Page 30

7 Conclusions and Future Directions

We have develop a rigorous extension to the Roman model and given a formal
semantics using a process algebraic approach [18, 10]. Process algebra works well
at the stages of design and formal verification of web services [12, 19]. In our work
we show that this approach gives advantages if used at the process mediation
stage as well. Our extension allows for fuller coverage of the standard languages
used for description and execution of Web Services in practice and unifies the
modeling and mediating aspects of Web Services. Moreover, our extension allows
for formal verification of mediated Web Services though the use of the numerous
tools available for process algebra.

We gave an algorithm for mediating a requested Web Service from a resource
pool of more basic services. The algorithm constructs the required composition
“on the fly” without constructing the FSM for the entire Web Service community.
The produced composition is complete in the sense that it covers all alternatives
and the final decisions can be made at run time, based on the availability of
the component services, network bandwidth, or some cost model. The algorithm
runs in the exponential time which is the same as in the classical Roman model.

To see that the proposed solution is in fact practical consider the complete
mediation procedure, which starts with the executable web services, produces the
abstract descriptions (here is a possibility to formally verify some properties of
the available services, if required), composes the abstract descriptions to produce
a mediated service (at this stage also formally verifiable) and, finally, translates
the mediated service to an actual executable web service.

We are currently working on the implementation of a prototype system where
the mediator extracts algebraic descriptions from existing web services and the
abstract specification of the produced mediated web service is translated into
executable BPEL code, using the techniques in [12]. We are also working on
further extensions of the formal model.

References

1. Marco Aiello, Mikio Aoyama, Francisco Curbera, and Mike P. Papazoglou, editors.
Service-Oriented Computing - ICSOC 2004, Second International Conference, New
York, NY, USA, November 15-19, 2004, Proceedings. ACM, 2004.

2. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic composition of e-services that export their behavior.
In Maria E. Orlowska, Sanjiva Weerawarana, Mike P. Papazoglou, and Jian Yang,
editors, ICSOC, volume 2910 of Lecture Notes in Computer Science, pages 43–58.
Springer, 2003.

3. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. A foundational vision of e-services. In Christoph Bussler, Dieter
Fensel, Maria E. Orlowska, and Jian Yang, editors, WES, volume 3095 of Lecture
Notes in Computer Science, pages 28–40. Springer, 2003.

4. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Esc: A tool for automatic composition of services based on logics

Page 31

of programs. In Ming-Chien Shan, Umeshwar Dayal, and Meichun Hsu, editors,
TES, volume 3324 of Lecture Notes in Computer Science, pages 80–94. Springer,
2004.

5. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and Mas-
simo Mecella. Automatic composition of transition-based semantic web services
with messaging. In Böhm et al. [8], pages 613–624.

6. Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation specification:
a new approach to design and analysis of e-service composition. In WWW, pages
403–410, 2003.

7. Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella,
and Diego Calvanese. Synthesis of underspecified composite -services based on
automated reasoning. In Aiello et al. [1], pages 105–114.

8. Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-
Åke Larson, and Beng Chin Ooi, editors. Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September
2, 2005. ACM, 2005.

9. BPEL. Business process execution language for web services (version 1.1), May
2003.

10. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
North-Holland, 2001.

11. Zhe Dang, Oscar H. Ibarra, and Jianwen Su. Composability of infinite-state activity
automata. In Rudolf Fleischer and Gerhard Trippen, editors, ISAAC, volume 3341
of Lecture Notes in Computer Science, pages 377–388. Springer, 2004.

12. Andrea Ferrara. Web services: a process algebra approach. In Aiello et al. [1],
pages 242–251.

13. Jean-Claude Fernandez and Laurent Mounier. “on the fly“ verification of behav-
ioural equivalences and preorders. In Kim Guldstrand Larsen and Arne Skou,
editors, CAV, volume 575 of Lecture Notes in Computer Science, pages 181–191.
Springer, 1991.

14. Cagdas Evren Gerede, Richard Hull, Oscar H. Ibarra, and Jianwen Su. Automated
composition of e-services: lookaheads. In Aiello et al. [1], pages 252–262.

15. J. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Language, and
Computation. Addison–Wesley, Reading, MA, 1979.

16. ISO. Lotos: a formal description technique based on the temporal ordering of obser-
vational behaviour. Technical Report 8807, International Standards Organisation,
1989.

17. Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I.
untimed systems. Inf. Comput., 121(2):214–233, 1995.

18. R. Milner. A calculus on communicating systems. Lecture Notes in Computer
Science, 92, 1980.

19. Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on
web services using process algebra. In ICWS, pages 43–. IEEE Computer Society,
2004.

20. Sandeep K. Shukla, Harry B. Hunt III, Daniel J. Rosenkrantz, and Richard Ed-
win Stearns. On the complexity of relational problems for finite state processes
(extended abstract). In Friedhelm Meyer auf der Heide and Burkhard Monien, ed-
itors, ICALP, volume 1099 of Lecture Notes in Computer Science, pages 466–477.
Springer, 1996.

21. WSMX. Web service execution environment, June 2005.

Page 32

<process name = "ComputerPurchase" . . .>
. . .

<partnerLinks>
<partnerLink name = "customer" . . ./>
<partnerLink name = "towerStore" . . ./>
<partnerLink name = "monitorStore" . . ./>
. . .

</partnerLinks>
<variables>

<variable name = "searchRequest" . . ./>
. . .

</variables>
. . .

<pick>
<onMessage partnerLink = customer

portType = . . .

operation = "searchRequest"
variable = . . .>
<sequence>

. . .

<flow>
<invoke partnerLink = "towerStore"

portType = . . .

operation = "searchRequest"
. . . />

<invoke partnerLink = "monitorStore"
portType = . . .

operation = "searchRequest"
. . . />

</flow>
. . .

<pick>
<onMessage partnerLink = customer

portType = . . .

operation = " buy computerRequest"
variable = . . .>
<sequence>

. . .

<flow>
<invoke partnerLink = "towerStore"

portType = . . .

operation = "buy towerRequest"
. . . />

<invoke partnerLink = "monitorStore"
portType = . . .

operation = "buy monitorRequest"
. . . />

</flow>
. . .

</sequence>
. . .

</onMessage>
. . .

</pick>
. . .

</sequence>
. . .

</onMessage>
. . .

</pick>
. . .

</process>

Fig. 13. BPEL pseudo-code for the orchestration of the right client in Figure 9

Page 33

Page 34

The mediator centric approach to Automatic

Web Service Discovery of Glue

Emanuele Della Valle, Dario Cerizza and Irene Celino

CEFRIEL - Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy
dellavalle@cefriel.it, cerizza@cefriel.it, celino@cefriel.it

Abstract. Automatizing the Web Service Discovery is crucial for truly
implementing a Service Oriented Architecture. Semantics has been shown
to be useful. Several initiative, namely OWL-S, WSMO and WSDL-
S, are successfully employing ontologies, but we believe that WSMO is
right in highlighting mediation as the missing element. In this paper
we provide a mediator centric re�nement of the conceptual model for
WSMO discovery and the related architecture as well as the prototypical
implementation (named Glue) we are using in the projects COCOON and
Nomadic Media.

1 Introduction

In a Services Oriented Architecture (SOA) a requester entity may not know
which provider entity to engage. A requester entity should only know the func-
tional criteria of the service it wishes to interact with and it can �nd out suitable
candidate services by inquiring a discovery agency. In this way such discovery
agency decouples requester entities from provider ones.

Web Services are meant to enable the implementation of a SOA. As re-
ported in the Web Service glossary1, discovery is \the act of locating a machine-
processable description of a Web Service that may have been previously unknown
and that meets certain functional criteria". UDDI [1] provides a general purpose
model for Web Service discovery by gathering metadata about a collection of
Web Services and making that information available in a searchable way (white,
yellow and green pages). But, as stated in section 1.4.5 \Overview of Engag-
ing a Web Service" of W3C Note on WSA [2], such meta-data requires initial
knowledge about both Web Service existence (e.g., which tModel speci�ed by
EAN/UCC it implements) and location (e.g., the name of a green page cate-
gory). UDDI does not provide any formal and explicit way to exchange such
initial knowledge; therefore today the most common approach to obtain it is
through e-mail exchanges or word of mouth. This requires to keep humans in
the loop and limits scalability as well as economy of Web Services.

The Semantic Web is making available technologies which support (and, at
some degree, automate) knowledge sharing. In particular, several initiatives (e.g.

1 http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

Page 35

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

2 Emanuele Della Valle, Dario Cerizza and Irene Celino

OWL-S2, WSMO3, WSDL-S4) provide evidence that ontologies, with their abil-
ity to interweave human understanding of symbols with their machine process-
ability, can play a key role in automating Web Service Discovery [3][4][5][6][7].
All approaches share the idea that:
{ at publishing time, a set of relevant domain ontologies can be used to seman-
tically annotate Web Service descriptions (i.e., describing the capabilities of
such Web Services),

{ at discovery time, the same set of ontologies can be used to describe the
functional criteria of the service the requester entity wishes to interact with;
therefore, the Discovery engine, accessing the knowledge modeled in the
ontologies, is not limited to syntactic matching techniques, but it can take
into consideration also semantic matching techniques (e.g. subsumption base
matching [5], transaction logic [8]).

The problem is that such approach may work in a small controlled envi-
ronment, but it is unrealistic in open environments in which actors su�ers from
various form of polarization (e.g., philosophical position, sense of belonging,
etc.). We observe that in the real world:
1. in the same domain di�erent proposals for domain ontologies supported by

competing cartels are under development and are likely to be maintained
also in the future.

For instance, in the health care �eld, in which the need for sharing a common
knowledge has been addressed for more than a decade, several competing ter-
minology standards are available for describing pathologies, e.g. International
Classi�cation of Disease5 (ICD) and SNOMED Clinical Terms6.

2. the points of view of providers and requesters on the shared knowledge are
di�erent, and this is re
ected in di�erent ontologies respectively used for
annotating Web Services and for formulating requests.

For instance, consider the knowledge of date-time used in the �eld of arranging
meetings for consultancy. A week-based calendar (e.g. each Thursday after-
noon and Friday morning) may be preferred by provider entities in stating the
nominal availability of a consultant, whereas a Gregorian calendar (e.g. April,
9th from 10.00 to 12.00) may be preferred by a request entity in requiring
advice. Even if both provider and requester entities share the same knowledge
on date-time, they may prefer to use di�erent ontologies.

A possible objection is that OWL already provides constructs to reason on
equality (e.g. sameAs, equivalentClass, equivalentProperty, etc.), but those
are not su�cient to deal with ontology alignment.

The Web Service Modeling Ontology (WSMO) working group has moved a
step forward in the direction of semantic empowered Web Service Discovery [8][9]

2 http://www.daml.org/services/
3 http://www.wsmo.org/
4 http://lsdis.cs.uga.edu/projects/wsdl-s/
5 http://www.who.int/classi�cations/icd/en/
6 http://www.snomed.org/

Page 36

The mediators centric approach to Automatic Web Service Discovery 3

by introducing the notion of mediation [10]. Mediation in WSMO is, together
with strong decoupling, a foundation principle. Mediators address the problem of
handling the heterogeneities that naturally arise in open environments. WSMO
proposes a classi�cation of mediators according to their role in WSMO con-
ceptual model: Ontology to Ontology mediators (ooMediators), Goal to Goal
Mediators (ggMediators), Web Service to Goal Mediators (wgMediators), etc7.

A model for automatic location of services (i.e. service discovery plus service
contracting) in WSMO is introduced in [9] and in [12]. Such model provides
the basis for a variety of solutions that are easy to use for requesters, and that
provides e�cient pre-�ltering of relevant services and accurate contracting of
services that ful�ll a given requester goal. Moreover the preliminary architecture
for WSMO compliant discovery engines is presented in WSMO Discovery Engine
D5.2 [13] and in WSMX Discovery D10 [14].

In this paper we provide a re�nement of WSMO discovery conceptual
model centered on mediators (cf. section 2):
{ by making the notion of class of goals and class of Web Service descriptions
explicit,

{ by using ggMediators for automatically generating a set of goals semanti-
cally equivalent to the one expressed by the requester but expressed with a
di�erent form or using di�erent ontologies;

{ by making wgMediators the conceptual element responsible for evaluating the
matching ;

{ by using ooMediators for solving any terminological mismatch that can ap-
pear with di�erent polarized ontologies for the domains, and

{ by rede�ning the discovery mechanism as a composite procedure where the
discovery of the appropriate mediators and the discovery of the appropriate
services is combined.

Moreover, in section 3, we provide a description of the re�nement of WSMX
Discovery Engine architecture according to our re�ned WSMO discovery
conceptual model both in terms of components and execution semantics (cf.
section 3.1) and we show how we implemented it in Glue8 using F{logic[15]
(cf. section 3.2). In section 4 we introduce a use case of Service Discovery in
the healthcare �eld and we show how we put Glue at work in the projects CO-
COON9 and Nomadic Media10. Finally in section 5 and 6 we respectively present
related works and we draw some conclusions providing insight view of our future
developments.

7 We do not provide here a complete list of them and we prefer to refer to WSMO D.2
[11] for a detailed explanation of their usage.

8 http://glue.cefriel.it
9 COCOON is a 6th Framework EU integrated project aimed at setting up a set
of regional semantics-based healthcare information infrastructure with the goal of
reducing medical errors.

10 The Nomadic Media project resides under the Eureka/ITEA program. Within this
project we addressed the problem of out to provide mobile access to healthcare
services.

Page 37

4 Emanuele Della Valle, Dario Cerizza and Irene Celino

2 The concept

In this paper we strictly refer to the automatic location of services proposed in
[9] for WSMO. We state this because we agree with [16] that when talking about
Web Services many notions (including service) are semantically overloaded and
one should commit to a precise meaning when using such notions.

We agree on the de�nition of Service (including the distinction between ab-
stract and concrete service) and of requester need (that re
ects the conceptual
element of WSMO named goal). We hold with the idea of pre-de�ned goals and
with parameterizing them, so that a requester has only to locate (eventually
unconsciously by interacting with a standard application) one of the pre-de�ned
goals and to provide concrete values for its parameters. But we prefer to reserve
the name goal for a concrete goal whereas we suggest to call class of goals a
speci�c parametrized and pre-de�ned goal.

We agree with the idea of having parametrized and pre-de�ned Web Ser-
vice descriptions that can be instantiated by the provider entities, so that two
concrete descriptions di�er in the values given to the parameters. Consider, for
instance, a scenario where there are some technical specialists o�ering virtual
meetings through a collaboration platform. This platform exposes one distinct
Web Service for booking a meeting with each specialist. The structures of all
these Web Services are similar but the Services provided are di�erent since
they depends on the technical capabilities of each specialist. The Web Service
descriptions of these Web Services are multiple instances of the same class of
parametrized pre-de�ned Web Service description. As we suggest for goals, we
prefer to make explicit the notion of class of Web Service description (a
pre-de�ned Web Service description) and of instance of Web Service description
(a Web Service description).

Having in mind this class-based approach, we can adopt the inheritance
model typical of Object-Oriented programming languages, where a class can
be subsequently re�ned in child classes providing a more speci�c structure and
behavior. In this way, it is possible to extend classes of Web Service descriptions
and classes of goals in a more fashionable manner, useful in domains where a lot
of similar but non-identical Web Services need to be discovered.

In order to describe our concept, we consider the whole process in three
subsequent phases: Set up time, Publishing time and Discovery time.

During Set up time, the system is being initialized with all the necessary
information for performing automatic service discovery in a generic domain D.
This information includes domain ontologies, Web Service description classes,
goal classes and the required mediators. As discussed in the introduction, given
a speci�c domainD, it is natural that provider's point of view is re
ected in a par-
ticular polarized D+ domain understanding and, on the other hand, requester's
point of view is re
ected in a di�erently polarized D{ domain understanding.
Thus, having di�erent points of view the standard process of agreement on an
ontology for the domain D would require a lot of e�ort. Instead of developing
one ontology, we suggest to follow the activities shown in �gure 1. The Semantic
Web service expert (SWS Expert) is the main actor involved, since he is able

Page 38

The mediators centric approach to Automatic Web Service Discovery 5

Domain DD++ Expert Domain DD-- ExpertSWS Expert
Ontology

engineering
process

OntoDD++

Web Services XX
Provider

representative

Goal YY
Requester

representative

Definition of
WSD Classes

WSDClassXX

Ontology
engineering

process

OntoDD--

Definition of
Goal Classes

GoalClassYY
Mediators

development

WXXGXX Mediator

Domain DD Expert

ODD++ODD-- Mediator
GYYGXX Mediator

Fig. 1. The sequence of activities performed by actors at Set up time

to understand the internal semantic notation of the system. Domain ontologies
for D+ and D{ are developed (integrating already available sources) during sep-
arated engineering processes that involve the relative domain experts with the
SWS Expert. When the ontologies are ready, a provider representative and the
SWS Expert de�ne the class of Web Service descriptions for the class X of Web
Services using the ontology for domain D+. Meanwhile, a requester represen-
tative and SWS Expert de�ne the class Y of goals. As highlighted, the SWS
Expert does not have neither to ask provider and requester entities to commit
to the same set of ontologies (which may prove to be an unworkable plan) nor
to develop a complete mediator between all the con
icting ontologies (which
may be unnecessary if only a small portion of such ontologies is involved in the
matching process). For this reason, the SWS Expert needs to be supported by
a non-polarized expert for the domain D, that can help him solving ontology
alignment problems between the two di�erent domains. This process gener-
ally involves the de�nition of various mediators. In our case, a ooMedi-
ator, a ggMediator and a wgMediator will work, but more complex scenarios
can be imagined. The �rst mediator implements the domain-speci�c rules for
solving terminology mismatches between the involved portion of ontology D+

and ontology D{. The ggMediator is developed in order to translate the instance
of goal Y into semantically equivalent instances of goals that are more suitable
for discovery instances of Web Services X (later named goal X). This mediator
uses the functionalities provided by the previously developed ooMediator. The
latter wgMediator implements the domain-speci�c rules for matching instances
of just-translated goal X with instances of Web Service description X.

At publishing time, provider entities publish instances of Web Service de-
scriptions simply by referring to the correct class of Web Service description

Page 39

6 Emanuele Della Valle, Dario Cerizza and Irene Celino

and providing values to all the necessary parameters. The system creates the
instances and register them in its internal repository in order to retrieve them
when a wgMediator will require it.

Finally, at discovery time, when a goal instance is created and submitted, a
look up mechanism can be used for selecting the class of goals (being the sub-
mitted goal an instance of a class). Similarly, a look up mechanism can be used
for selecting the set of appropriate ggMediators able to translate the user goal
in a set of semantically equivalent goals. Then again, the appropriate wgMe-
diators can be looked up and the instances of Web Services descriptions can
be roughly �ltered on the basis of the target of the detected wgMediators. A
set of ooMediators is used to solve any terminological mismatch. And, �nally,
the similarity rules coded in the wgMediators can be used to match
the given goal against the instances of Web Service descriptions obtained by
�ltering, returning an ordered list of references to the concrete Web Services.

3 Glue Architecture and Implementation

The goal of our work was to design and build a system suited for medium scale
deployment (up to some tens of classes of Web Service Description and of classes
of goals, using ontologies of a couple of thousand concepts each, but with some
hundreds of instances of Web Service Description in each class) while providing
a lightweight stand alone implementation11.

3.1 Architecture

Having a such mediator{centric vision in mind, we propose to re�ne the architec-
ture described in WSMO/X Discovery [13][14] accordingly to the re�nement we
propose in section 2. WSMO/X discovery architecture envision the presence of
a Communication Manager (which handles the incoming requests), two WSMO
Element Repositories (one for goals and one for Web Service descriptions), aMes-
sage Parser (which analyzes the incoming message), a Proof Generator (which
constructs logical formulas for running the matchmaker) and a Reasoner Man-
ager (which abstracts from the di�erent interfaces of the reasoners).

We propose to extend the WSMO Discovery Engine architecture, re�ning
several components (see �gure 2). First, we decomposed the Message Parser
into three components: Web Service description constructor, Goal Constructor
and Goal Translator. The two Constructor Components serve for instantiating
respectively the instances of Web Service descriptions and goals of classes regis-
tered at set up time. The Goal Translator looks up ggMediators that are appro-
priate for the goal instance passed by the goal constructor and translates such
goal in a set of provider{oriented goals. Secondly, we re�ne the Proof Genera-
tor component giving it also some of the responsibilities of the Message Parser.
The part we include in the Message Parser is responsible for looking up the

11 In WSMX the discovery engine is part of a much larger architecture and is not
implemented as a stand alone component.

Page 40

The mediators centric approach to Automatic Web Service Discovery 7

External application Glue Web Service Internal Components

WSML Message Domain specific XML messages API based interface

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

Goal mng.WSD mng.

Onto mng.

Re
gi

st
er

Lo
ok

 u
p

Submit GoalPublish WS Desc

Re
gi

st
er

Lo
ok

 u
p

Re
gi

st
er

Lo
ok

 u
p

Re
gi

st
er

Lo
ok

 u
p

Re
gi

st
er

Lo
ok

 u
p

Matchmaker

Reasoner

WS Description
Constructor

Goal
Constructor

Goal
Translator

M
at

ch
Mediator Manager

Re
gi

st
er

Lo
ok

 u
p

Re
gi

st
er

Lo
ok

 u
p

Re
gi

st
er

Lo
ok

 u
p

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

XMLXML

API

XMLXML

API

API
API

WSMO Editor (as tool for SWS Experts)

Front-end ApplicationBack-end Application

Co
m

m
un

ic
at

io
n

M
an

ag
er

W
S

Re
po

si
to

ri
es

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

WSML
msg

M
es

sa
ge

 P
ar

se
r

G
oa

l R
ep

os
it

or
ie

s

Proof
Generator

XMLXML XMLXML

WSML
msg

WSML
msg APIXMLXML

Fig. 2. The architecture of the mediator centric extension to the WSMO Discovery
Engine we propose in this paper. Dashed lines represent the components described in
the original WSMO Discovery Engine described in [14], while the other components
are those we introduce in this paper.

mediators and the ontologies required for executing the matching whereas the
part outside the Message Parser roughly �lters the Web Services descriptions,
it loads them and it executes the logical formulas for running the matchmaker.
Aside, we introduce all those components that satis�es our need for a lightweight
implementation of Glue, even if they are generally envisioned as part of the en-
tire WSMX architecture [17]: the two Repositories, one for ontologies and one
for mediators, and a WSMO Editor (such as WSMO Studio) as tool for SWS
Experts.

In �gure 3, we depict the execution semantics describing the interactions
among the components both in case a new Web Service description is published
(the interactions labeled with `a', `b' and `c') and when a goal is submitted (the
interactions labeled with numbers).

The �rst set of interactions describe how the \publish Web Service description
communication component" invokes the WS Description Constructor passing a
class identi�er and a set of parameters (cf. line `a'), how this component uses the
class identi�er to look up the class of Web Service description (cf. line `b'), how
it instantiates the Web Service description and how it registers the constructed
instance in the Web Service description instances repository (cf. line `c').

Page 41

8 Emanuele Della Valle, Dario Cerizza and Irene Celino

Goal mng.WS mng.

Onto mng.

Re
gi

st
er

Lo
ok

 u
p

Submit GoalPublish WS Desc

Re
gi

st
er

Lo
ok

 u
p

Re
gi

st
er

Lo
ok

 u
p

Proof Generator
F-logic file
composer

WS Description
Constructor

Goal
Constructor

Goal
Translator

M
at

ch
Mediator manager

Re
gi

st
er

Lo
ok

 u
p

a

bc

1

2

6

Re
gi

st
er

Lo
ok

 u
p

Re
gi

st
er

Lo
ok

 u
p

4

8

7

10 3

5

9

<goalClass-URL, Object[]>
{<WS-URL, MatchingDegree>}

3 bis

Matchmaker

Reasoner

Fig. 3. This collaboration diagram depicts the components of Glue and their role in
supporting the discovery process.

The second set of interactions describes our composite discovery procedure
that expects as input an identi�er of a class of goals together with a set of
structured parameters (cf. line 1) and provides, as result (cf. line 10) a list of
pairs in which the �rst element is a reference to a Web Service and the second
element is the degree of matching 12.

The �rst part of the procedure (cf. line 2) consists in looking up the WSML
description of the class of goals corresponding to the given identi�er and instan-
tiating the concrete representation of the goal using the given parameters.

The second part of the procedure concerns the use of ggMediators in trans-
lating the constructed instance of goal in an equivalent instance expressed using
a di�erent terminology (cf. line 4). In turn, each ggMediator optionally uses an
ooMediator for reconciliating semantic heterogeneities (cf. line 5). If necessary,
the Goal Translator component can call back the Goal Constructor (cf. line \3
bis") for instantiating other goals instances.

The third part of the procedure is undertaken by the Proof Generator. This
component is responsible for constructing the formulas for running the match-
making. For each instance of goal, it starts looking up the wgMediators that has
as target the class of goal having such goal as an instance (cf. line 6). Then,
for each wgMediator, the Proof Generator looks up the Web Service description
instances of the class that is the source for such wgMediator (cf. line 7) and it
also looks up all the required ontologies (cf. line 8). All the retrieved ontologies
and instances are sent to the matchmaker (cf. line 9), that uses the reasoner for

12 exact, subsumed, plug-in and intersection as proposed in WSMO D5.1 and in many
other earlier works related to OWL-S [5][6]

Page 42

The mediators centric approach to Automatic Web Service Discovery 9

evaluating the similarity rules coded in each wgMediator, and returns references
to the discovered Web Services and the degree of matching as a list of pairs (cf.
line 10).

3.2 The prototype implementation of Glue

In developing Glue, a prototype of this proposed architecture, we faced two major
choices: the reasoner and the format for the logical language. We knew that we
needed both an ontological language and a rule language, but we were also
constrained by the e�ciency we aim at.

WSML working group13 proposes in [18] a subset of OWL (named OWL{)
that can be translated into f{logic [19]. This, according to WSML working group,
allows for e�cient query answering and for easy implementation of a rule on top
of the ontology. Moreover, we were looking for an expressive datatype support
and WSML working group showed in [20] that OWL{E [21] (a proposal for
extending OWL with expressive datatype expressions) can be added to OWL{

and the resulting ontological language, named OWL-Flight, can still be trans-
lated into f{logic. But, at the time we started developing Glue (September 2004),
WSML e�orts, in providing a language for formalizing WSMO, were a work{in{
progress and the tools for translating WSML into reasoner{speci�c formats were
missing. Therefore we decided to directly use a dialect of f{logic implemented in
Flora{2, an open source f{logic inference engine that runs over XSB14, an open
source implementation of tabled-prolog and deductive database system. This
choice allowed for an early proof of concept without constraining compatibility
with WSML.

Plugging Flora{2 in Glue involved some consequent implementation choices:
the proof generator in the prototype is mainly a f{logic �le composer ; all the
information exchanges, which we envision in the architecture as based on WSML,
are implemented directly using f{logic; and all the WSMO element repositories
manages directly f{logic �les, keeping in the internal SQL syntax the necessary
relationships between mediators, ontologies and classes.

4 A case of mediator centric Discovery for eHealth

Most of times, Service Discovery is treated as a back-end problem, but actually,
if Semantic Web Services e�orts will succeed, the use of Service Discovery tools
in the future will be as frequent as using search tools today. Therefore, in CO-
COON project, beside envisioning a clear back-end use of Service Discovery (in
combination with healthcare application protocols such as HL7), we also envi-
sion a realistic use case of its daily employment. In this section, we describe the
usage scenario for Service discovery as implemented in COCOON project and
some details about the real usage of Glue in this scenario.

13 http://www.wsmo.org/wsml/
14 http://xsb.sourceforge.net/

Page 43

10 Emanuele Della Valle, Dario Cerizza and Irene Celino

4.1 Usage scenario

In COCOON project, we are evolving a usage scenario15 of Web Service Dis-
covery that describes an interaction between a General Practitioner (GP) and
COCOON platform with the intent to �nd medical advice and teaching services
o�ered by specialists organized in communities of practice (CoP). In particular,
Glue takes responsibility for enabling on demand access to services for arranging
virtual meetings; the actual arrangement and the subsequent meeting is sup-
ported by the collaboration services provided by the COCOON platform that
acts as a front-end application from the Glue point of view (see �gure 2).

The general criteria for matching a GP goal against the description of the
services o�ered by a CoP are the correspondence between the GP's problem
and CoP's medical capabilities and the matching between the GPs' date{time
preferences and the nominal availability time of each CoP.

Medical advice will predictably be the most frequent reason for a GP to start
an interaction, as it normally could be triggered during the practice time (e.g.
questions by patients). Most of times, the clinical capabilities of the CoP may be
the ones the GP wishes. But, sometimes (e.g. for more di�cult and rare patient
cases) research capabilities of the specialists involved in a CoP may be sought.

Teaching, on the other hand, will be predictably less frequent and a reason
to start a request to the system could happen in the 1-hour/week time that is
normally reserved for contacting peers16, as it normally could be triggered by
GP's re
ection on his/her week's practice.

In order to facilitate the understanding of this scenario, in �gure 4, we show
Glue surrounded by a set of CoPs (which are provider entities) and a COCOON
platform (which is a requester entity). Each CoP exposes the functionality of
arranging the two types of meeting as a Web Service. As discussed in 2, the
process that enables a GP to arrange a meeting with the most suitable CoP can
be broken down in the following tasks:

{ Set up time:
1. the service provider and requester entities agree on the ontologies to

use for modeling pathologies (e.g. they may agree on using the ICD),
drugs (e.g. they may choose International Nonproprietary Names for
Pharmaceutical Substances { INN17), advice services, date{time, etc.;

2. if they cannot agree on the use of a speci�c set of common ontologies,
the use of mediators is required as discussed in 2 . In this scenario, the
CoP providers and the requester entities cannot agree on the use of a
common date{time ontology. The CoP provider entities prefer to express
the nominal availability of each CoP using a week-based calendar (e.g. the
advice service is available on Thursday afternoon and Friday morning),

15 The various versions of our usage scenarios are publicly available at
http://cocoon.cefriel.it/RD2/usecases/

16 As reported in a February 2005 national survey of Italian GPs.
17 http://www.who.int/medicines/organization/qsm/activities/qualityassurance/inn/

orginn.shtml

Page 44

The mediators centric approach to Automatic Web Service Discovery 11

[…]

Glue

Ontologies Mediators Web Services

WS

WSD

WSD

WSD

INN

WSD

COCOON
platform

1

2 WSD1

3

33

WSD2

WSD3

3

{ ● ● }{ ● ● }

GoalGoal
5

6

A general practitioner
looking for support

InvokeInvoke
8

Goal:
Time: March 10th

10.00 - 13.00

Medical Issue: Atenolol

Type: teachingAdvice
Teaching

CoP1

WS Advice
Teaching

CoP4

WSAdvice
Teaching

CoP2

WSAdvice
Teaching

CoP3

ICD

[…]

[…] […]

WSD4

4

Fig. 4. A case of Service Discovery that enables a general practitioner to �nd the most
appropriate medical advice/teaching service.

whereas the requester entity prefer to express users' preferences using a
Gregorian calendar (e.g. is the service available on April, 9th from 10.00
to 12.00?);

{ Publishing time:
3. each CoP provider entity publishes inside Glue its Web Service de-

scriptions for arranging a meeting, describing the clinical capabilities
the CoP holds and the date{time intervals the CoP is normally avail-
able (the nominal availability for advice and teaching may di�er). For
instance, a CoP provider entity may register its CoP as \a community
that delivers intervention based on alpha and beta blockers with nominal
availability on Monday, Tuesday and Friday in the afternoon for advice
and on Tuesday for teaching";

{ Discovery time:
4. similarly, a GP can discover the most suitable CoP by using a GUI,

provided by COCOON platform, in order to express his/her goal in
term of the available ontologies. For instance the GP asks \a teaching
session on the use of Atenolol, preferring the meeting to be arranged on
June 8th from 10.00 to 13.00 or on June 9th from 13.00 to 16.00";

5. COCOON platform submits the goal to Glue;
6. Glue performs the composite discovery process described in pre-

vious sections matching the GP goal against the descriptions of the
advice/teaching services o�ered by each CoP; then it returns a list of
references to Web Services for arranging a meeting, ordered by decreas-
ing relevance;

7. the results list is displayed to the GP;

Page 45

12 Emanuele Della Valle, Dario Cerizza and Irene Celino

8. the GP interactively selects one of CoPs untill he/she �nds one to ar-
range a meeting with.

4.2 Putting Glue at work

In order to test Glue, we modeled in WSMO the use case just illustrated. We
used f{logic to describe the ontologies, the classes/instances of Web Services
descriptions, the classes/instances of goals and the wgMediators. Then, we pop-
ulated Glue with some tens of realistic descriptions of Web Services for arranging
meetings with a CoP.

The ontologies necessary to support this use case are the COCOON medical
ontology, the advice/teaching services ontology and two calendar ontologies.

COCOON ontology is a demonstrative ontology of hypertension and breast
cancer domains derived from ICD-10 and INN. It contains the de�nition of a hun-
dred concepts (like disease, hypertension, breast neoplasm, etc., medication,
beta-blockers, etc., part of the body, heart, etc., specialist, cardiologist,
etc.) and the relations among them (like beta blockers control hypertension,
cardiologists deal with heart, hypertension affects heart and arteries, etc.).

The advice/teaching ontology describes the concepts of clinical, research and
teaching capabilities of a Community of Practice.
{ Clinical Capabilities describes the CoP in terms of:

� hasClinicalSpecialists: the list of the kind of specialists grouped by
the CoP (e.g. Cardiologist, Urologist, Pneumatologist, Dermatologist,
etc.),

� managesDiseases: the list of diseases managed by the CoP as ICD codes
(e.g. Diabetes { ICD9CM 250.00), and

� deliversInterventions: the list of the diagnostic / therapeutic / pre-
ventive interventions (including pharmaceuticals) delivered by the CoP;

{ Clinical Research Capabilities describes the CoP in terms of
� hasResearchSpecialists: the list of the kind of specialists grouped by
the CoP (e.g. Statistician, Social worker, Psychologist),

� studiesDiseases: the list of diseases which are actively researched by
the CoP (e.g. Gastric ulcer [ICD10{K25] Prevention), and

� studiesInterventions: the list of the diagnostic / therapeutic / pre-
ventive interventions (including pharmaceuticals) which are actively re-
searched by the CoP; and

{ Teaching Capabilities describes the CoP in terms of
� hasTeachingExpertise: the list of teaching roles that the CoP can ful�ll
(e.g. Teacher, OnlineTeacher, Tutor, OnlineTutor, etc.)

� hasAuthoringExpertise: states the availability of online/o�ine collab-
orative working tools (i.e. for teaching) within the CoP (e.g. NetMeeting,
Skype, Messenger, etc.)

Finally, as discussed in 4.1 two calendar ontologies are necessary in our use
case to express the date{time intervals. Therefore an ooMediator has been em-
ployed in translating the date{times from the Gregorian calendar to the week-
based one. In our implementation, this ooMediator was realized with a Java
program exposed as a Web Service used at discovery time by Glue.

Page 46

The mediators centric approach to Automatic Web Service Discovery 13

Having these ontologies, we were able to describe in WSMO the capabilities of
the class of Web Services for arranging a meeting with a CoP. We de�ne a class
hierarchy of Web Service descriptions with a generic class on top (for meeting
arrangement in a given set of date{time intervals) and two speci�c classes below
(for arranging respectively advice and teaching meetings).

The description of the generic meeting arrangement class of Web Service
asserts that:
{ the pre-conditions are: the input has to be the information about an advice
request, the general practitioner has to ask an advice on one of the medical
issues treated by the various CoPs; and the booking date has to be after the
current date;

{ the only assumption is that the general practitioner has the right to use the
advice service;

{ the post-conditions describe the possible meetings the CoP is available for:
it can o�er support that regards its capabilities and it can provide support
only during its nominal available times;

{ the e�ect is that the agendas of both the GP and the specialists in the CoP
are updated with a reference to the scheduled meeting.

In a similar manner, we de�ned a hierarchy of classes of goals that asserts
GP's need of �nding a CoP that can provide advice or teaching support on a
given medical issue in the date{times intervals the GP prefers.

As described in section 4.1, in our use case no agreement was reached in
the date{time ontology to use. To bypass such heterogeneity we de�ned also a
parallel hierarchy of classes of goals that express the GP goal in terms of the
week-based calendar ontology (the one chosen by CoP providers) and we used a
ggMediator for translating instances of goal from one class to the other. This
ggMediator, when invoked, simply rewrites the goal formulated by the GP using
Gregorian dates (e.g. June, 8th 2005), translating it into days of the week (e.g.
Wednesday) through the ooMediator illustrated above.

Finally, as we described in section 3.2, we expect SWS Expert to encode in
Glue a set of wgMediators with the similarity rules for matching a class of
goals against a class of Web Services descriptions. For instance, the rule that
performs an exact match between what the GP is asking for and the medical
capabilities of a CoP says that there is an exact matching when:
{ the GP is asking for a specialist and

� the CoP has that clinical specialist,
� or the CoP manages a disease that a�ects a body part dealt by the
specialist the GP is asking for,

� or the CoP delivers an intervention that controls one of diseases
treated by the specialist the GP is asking for,

{ the GP is asking for a disease and
� the CoP has a clinical specialist that deals with a body part af-
fected by the disease the GP is asking for,

� or the CoP manages the disease that the GP is asking for,
� or the CoP delivers an intervention that controls the disease the
GP is asking for,

Page 47

14 Emanuele Della Valle, Dario Cerizza and Irene Celino

{ the GP is asking for an intervention and
� the CoP has a clinical specialist that deals with a body part af-
fected by a disease controlled by the intervention the GP is asking for,

� or the CoP manages a disease controlled by the intervention the GP
is asking for,

� or the CoP delivers the intervention that the GP is asking for.

The rules for subsume and plug-in matching mainly di�er from the one pre-
sented above because they broaden the search space to subconcepts and super-
concepts respectively, navigating the COCOON domain ontology. Beside these
rules that match medical capabilities, there are other di�erent rules that matches
date-time intervals between goal and Web Services description.

Having two parallel hierarchies of classes, we wrote three wgMediators: one
links a generic service for arranging a meeting to a generic goal for requesting
support, while the other two link respectively a service for arranging advice
meetings to a request for advice and a service for arranging a teaching meeting
with a request for teaching support. Since the rules in the three wgMediators
largely overlap, we found useful the possibility of building also hierarchies of
wgMediators, so that the two speci�c wgMediators can be de�ned by extending
the generic one and reusing its rules.

For lack of space we don't present in this paper all the internal f{logic syntax
of our scenario. Readers can refer to Glue Web site18 for more detailed informa-
tion.

5 Related works

The work we present in this paper is strictly related to the activities of WSMO/L/X
working groups. Like other articles proposed in the context of WSMO, it moves
away from OWL-S. In OWL-S approach goals and Web Service description must
be de�ned using the same ontologies and the automation of Web Service discov-
ery normally relays on subsuption reasoning (e.g. [4][22][6]). In WSMO, on the
other hand, goals and Web Services can be annotated using di�erent ontologies
and the relationships between them can be captured by the mean of wgMedia-
tors. This, clearly, requires to step aside the lack of rules in the OWL languages.
In this paper, we proposed to use f{logic rules within the wgMediator to cap-
ture the knowledge for reconciliating the con
icts that arise when goal and Web
Service descriptions are not annotated using the same ontologies. This approach
is similar to an early work on OWL-S, in which the service discovery problem is
formulated as a rewriting problem where requests are attempted to be rewritten
in terms of available services [3], but it takes a much easier approach in coding
the matching rules directly in the wgMediator.

The relatively easiness in describing classes of Web Service description and
of goals and in coding the matching rules makes the approach we propose very
e�cient. We easily modeled the presented use case and the performances19 of
18 http://glue.cefriel.it/
19 the machine we used for the tests is a 2800MHz Pentium 4 processor with 1 gigabyte

of RAM

Page 48

The mediators centric approach to Automatic Web Service Discovery 15

the COCOON Glue Discovery Engine with 50 Web Service descriptions remains
under 3 seconds. However one can move to our approach the criticism that it
does not relies on generic notion of matching such as subsumption reasoning
or transaction logic. Our position is that such criticism is only partially true,
because one can encode in the wgMediator a subsumption based matching, but
at the time we are writing this article we cannot provide evidence that such
approach is convenient.

6 Conclusion and future work

The main lesson we are learning bin applying WSMO in the healthcare �eld is
that the clear separation between the ontologies used by each entity simpli�es
and speeds up the gathering of consensus, which is alway di�cult to reach in large
groups, and especially in healthcare �eld. This is mainly due to the adoption, in
WSMO, of mediators. In particular, wgMediators appear to o�er a
exible way
for describing similarities between goals and Web Service descriptions, hence for
enabling a semantic match between them.

Finally, the tasks that are currently being the subject of our research are:
{ WSMO discovery

1. extending our approach with the notion of intention as presented in [9],
such extension will provide COCOON Glue WSMO Discovery Engine
with more degrees of matching and it will enable future support for
contracting;

2. aligning our work with the WSML family of languages that are currently
being de�ned as part of the WSML working group activity, in particular
with WSML-rule; and

3. aligning our work with the WSMX architecture providing COCOON
Glue WSMO Discovery Engine as a WSMX plug-in.

{ the COCOON project
1. selecting and adjusting the ontologies required for describing the other

healthcare services o�ered in COCOON, through the development of
(possibly ad-hoc) mediation services to overcome heterogeneity of the
various healthcare related ontologies;

2. extending the test cases of our Discovery Engine to include the other
components still under development in COCOON project (i.e. seman-
tic information retrieval and clinical guideline based decision support
system); and

3. extending the approach to the regional eHealth services (starting from
the SISS in Lombardy - Italy).

Acknowledgements

The research has been supported by the COCOON (IST FP6-507126) integrated
project and Nomadic Media ITEA (Information Technology for European Ad-
vancement) project, �nanced by the Italian Public Authorities. We thank Prof.
Stefano Ceri, Doc. Michele Tringali, Lara Gadda, Maria Rodriguez and Irene
Celino for their precious comments and support.

Page 49

16 Emanuele Della Valle, Dario Cerizza and Irene Celino

References

1. OASIS: The uddi technical white paper. Technical report, OASIS (2004)
2. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-

chard, D.: Web services architecture. Technical report, W3C (2004)
3. Benatallah, B., Hacid, M.S., Rey, C., Toumani, F.: Request rewriting-based web

service discovery. In: International Semantic Web Conference. (2003) 242{257
4. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A semantic web approach to

service description for matchmaking of services. In: SWWS. (2001) 447{461
5. L. Li, I. Horrocks: A software framework for matchmaking based on semantic web

technology. (2003)
6. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web

services capabilities. In: International Semantic Web Conference. (2002) 333{347
7. Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: Meteor-s web service annotation

framework with machine learning classi�cation. In: SWSWPC. (2004) 137{146
8. Kifer, K., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., Fensel, D.: A

logical framework for web service discovery. In: Semantic Web Services Worshop
at ISWC. (2004)

9. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic location of
services. In: ESWC. (2005) 1{16

10. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer 25 (1992) 38{49

11. Roman, D., Lausen, H., Keller, U.: D2 web service modeling ontology (WSMO).
Technical report (2005)

12. Keller, U., Lara, R., Polleres, A., Toma, I., Kifer, M., Fensel, D.: D5.1 WSMO
Web Service Discovery. Technical report (2004)

13. Keller, U., Lara, R., Lausen, H., Polleres, A., Predoiu, L., Toma, I.: D5.2 WSMO
Discovery Engine. Technical report (2004)

14. Keller, U., Lara, R., Lausen, H., Polleres, A., Predoiu, L., Toma, I.: D10 WSMX
Discovery. Technical report (2005)

15. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42 (1995) 741{843

16. Preist, C.: A conceptual architecture for semantic web services. In: International
Semantic Web Conference. (2004) 395{409

17. Cimpian, E., Moran, M., Oren, E., Vitvar, T., Zaremba, M.: D13.0 overview and
scope of WSMX. Technical report (2005)

18. de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: Owl-. Technical report, WSML
(2004)

19. Angele, J., Lausen, G.: Ontologies in f-logic. In: Handbook on Ontologies. (2004)
29{50

20. de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: D20.3 OWL
ight. Technical
report, WSML (2004)

21. Pan, J. Z., Horrocks, I.: OWL-E: Extending owl with expressive datatype ex-
pressions. Technical report, IMG/2004/KR-SW-01/v1.0, Victoria University of
Manchester (2004)

22. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil: METEOR-S WSDI: A scal-
able p2p infrastructure of registries for semantic publication and discovery of web
services. (2003)

Page 50

Mediating Capabilities with Delta-Relations

Michael Stollberg1, Emilia Cimpian2, and Dieter Fensel1,2

1 Digital Enterprise Research Institute Innsbruck (DERI Austria),
Institute for Computer Science, University of Innsbruck,

Technikerstrasse 21a, A-6020 Innsbruck, Austria
2 Digital Enterprise Research Institute (DERI Ireland),

IDA Business Park, Lower Dangan, Galway, Ireland

Abstract. Mediation is concerned with handling heterogeneities that
potentially occur between resources that shall interoperate. Heterogene-
ity being an inherent characteristic of open and distributed environments
like the Internet, mediation becomes a core issue for next generation
Web technologies. Recent developments around the Semantic Web and
Semantic Web services address mediation on the data level and on the
process level. This paper identifies the teleological level as a novel level of
mediation that deals with heterogeneities of capabilities as the functional
descriptions of Web services and service requests. The central mediation
technique therefore are so-called ∆-relations that explicitly denote the
logical relationships between capabilities. These can be used to perform
central reasoning tasks for Semantic Web Services by simple inferences
instead of more complex reasoning procedures, hence allow gaining effi-
ciency in Semantic Web service technologies.

1 Introduction

The initial Web service technology stack around SOAP, WSDL, and UDDI re-
mains on a syntactic level for describing Web services that limits Web service
usage to manual inspection and integration. As this is considered to fail as a basis
for dynamic service-oriented architectures, the emerging discipline of Semantic
Web services develops semantically enabled technologies for automated discov-
ery, composition, communication, cooperation, and execution of Web services.
On basis of exhaustive semantic description frameworks and usage of ontologies
as the underlying data model, Semantic Web services strive towards an inte-
grated technology for realizing the vision of the Semantic Web [19], [6].

Apart from enabling advanced techniques for automated Web service usage,
a main merit of Semantic Web service technology is the inherent support for han-
dling heterogeneities on a semantic level [8]. Heterogeneity is an inherent char-
acteristic of the Internet that hampers successful and efficient inter-operation
of Web services, requests, and other resources. Semantic resource descriptions
allow utilization of semantically enabled techniques for depicting and resolving
heterogeneities. This is commonly referred to as mediation, wherefore different
levels are distinguished with respect to the type of heterogeneities that can occur
and techniques used for handling these.

Page 51

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

The most prominent frameworks for Semantic Web services address media-
tion as follows. OWL-S [18] defines an ontology for semantically describing Web
services that is comprised of Service Profiles, Service Models, and Grounding
as top-level elements. Mediation is not considered as a central element but as
an architectural aspect arising in concrete Web service systems. However, the
intention of OWL-S is to provide a semantic description model for Web services
while leaving technology development open to respective efforts; following this,
OWL-S is declared to be orthogonal to mediation [23]. In contrast, the Web
Service Modeling Ontology WSMO [16] depicts mediation as an integral aspect
and hence defines an architectural model for mediators along with techniques
for handling heterogeneities at different levels.

Ongoing research and development efforts on mediation address the data
level including heterogeneities on terminologies and representation formats, and
the process level as mismatches in Web service communication and cooperation.
This paper identifies an additional level of mediation that deals with hetero-
geneities between functional descriptions of Web services and requests. Arising
from decoupled and decentralized development, these might not hamper Web
service usage but can cause significant decelerations in automated Web service
technologies. This can be overcome by explicitly defining the logical relation-
ship between functional descriptions that allow replacing complex procedures
for central reasoning tasks by simpler inferences. We refer to this as the teleo-
logical level of mediation wherefore this paper presents so-called ∆-relations as
the main mediation technique and usage in mediators for gaining efficiency in
Semantic Web service technology.

This paper is structured as follows: Section 2 recalls the state of affairs in
mediation techniques developed for Semantic Web services and introduces the
teleological level of mediation; Section 3 presents the definition of ∆-relations
and their usage in mediators; Section 4 exposes the benefits of teleological level
mediation within exemplary scenarios; Section 5 discusses related work, and
Section 6 concludes the paper.

2 Mediation Levels and Techniques

In order to motivate the new level of mediation introduced in this paper, the
following recalls the need for mediation within Semantic Web services and depicts
the potential benefits and requirements for teleological level mediation.

Semantic Web services aims at developing integrated technology for automat-
ing the complete Web service usage process [12]. This consists of the following,
possibly iterative steps wherefore semantically enabled mechanisms are devel-
oped. At first, create Web service implementations along with their semantic de-
scription and make them accessible (publication), then detect appropriate Web
services for solving a given request (discovery) or combine several services there-
fore (composition), choose the most adequate Web service out of the applicable
ones for a request (selection), and finally access the chosen Web service (invoca-
tion) and control the information interchange for completing the service usage

Page 52

(conversation). Orthogonal to this, heterogeneities might occur that hamper
automated Web services usage. Handling these is subject to mediation that be-
comes a major concern in Semantic Web and Semantic Web service technologies
with regard to the open and decentralized nature of the Web.

Hence, architectural models for Semantic Web services are proclaimed that
treat mediation as a first class citizen [8]. Following [25], a mediator is an ar-
chitectural component capable of establishing interoperability of resources if not
given a priori by resolving heterogeneities. Aiming at generic, domain and appli-
cation independent mediation facilities, mediation techniques are envisioned that
work declarative resource descriptions for detecting and handling heterogeneity
on the semantic level. The ultimate aim of an integrated mediation framework
as aspired in WSMO [20] is to provide means for handling and resolving all
kinds of heterogeneities that might hamper Web service usage. Therefore, po-
tentially occurring heterogeneities are classified into different levels with respect
to the distinct mediation techniques and architectural requirements needed for
handling these. The following inspects heterogeneity types and respective medi-
ation levels along with recent developments and then reveals the necessity for
teleological level mediation.

2.1 Data and Process Level Mediation

One kind of heterogeneity that can occur is usage of different terminologies by
entities that shall interchange information. Within ontology-based environments
like Semantic Web services, this means that heterogeneous ontologies are used
as the terminological basis for element descriptions which hinders prosperous
information interchange. Mediation techniques for handling terminological mis-
matches on an ontological level are ontology mapping, merging, and alignment,
collectively referred to as ontology integration techniques [1]. Mismatches that
hamper information interchange can also result from usage of different data rep-
resentation formats or technical transfer protocols. A suitable way of resolving
such heterogeneities is to lift the data from the syntactic to an ontological level,
resolve the mismatches on this level, and then lower them again to the syntactic
representation [22]. Because these two types of heterogeneity can be handled by
similar techniques, they are consolidated as data level mediation [21].

Another type of heterogeneity can occur on the behavioral level that hamper
entities from interacting successfully with respect to their individual business
processes. For instance, at some point during the interaction of a requester R
with a Web service S, R expects an acknowledgement while S waits for the next
input; so, the interaction process between R and S runs into a deadlock situa-
tion. Such heterogeneities can be resolved by inspecting the individual business
processes of the entities that shall interact and establish a valid process for in-
teraction on basis of generic mediation operations on business processes. This is
referred to as process level mediation [4].

The need for data and process level mediation for establishing interoperability
of Web services and related elements if not given a priori has already been
indicated in [8].

Page 53

2.2 Functional Heterogeneity

Realization of Semantic Web technology reveals another type of heterogeneity
that occurs as functional differences between Web services and requests. With
respect to the distributed nature of the Web and the accompanying dispersed
description of Web services and requests, the usual case is that the requested
functionality does not precisely match with the one provided by a Web service.
If we would have additional information on the relationship between functional
descriptions, we could use this for improving the efficiency of semantic match-
making components.

Consider the following example that we examine in Section 4 in more detail.
There is a request R of ’finding information on Italian restaurants in Innsbruck’
and some available Web services: WS1 offers a hotel and restaurant guide for
Innsbruck, WS2 is a Tyrol restaurant guide, and WS3 provides information
on restaurants with traditional Tyrolean cuisine in Innsbruck. For detecting
the Web services WS1 and WS2 to be usable for achieving R, we need to run
a discovery procedure between R and each service. Existing developments for
discovery with semantic matchmaking consist of complex, expensive reasoning
procedures (see [17], [13], [15], [24]).

This effort can significantly be reduced when knowing and considering the
relationship between R and the Web Services. Imagine that we have the fol-
lowing additional information: R is a specialization of another request RO for
finding information on restaurants, and from a previous discovery run, we know
WS1,WS2, and WS3 are usable for resolving RO. If we compute ∆R,RO as the
logical relationship between the requests, we can determine the Web services
usable for resolving R as those usable for resolving RO that also satisfy ∆R,RO .
Hence, we can replace costly discovery runs for determining usable Web services
for R by a much easier, straightforward, more efficient inference.

This is the motivation and aim of what we refer to as teleological level media-
tion. Heterogeneities as in the example appear as differences between functional
descriptions, i.e. between OWL-S service profiles or WSMO capabilities. Speci-
fying the functionality of a service or the one required for satisfying a request,
these descriptions are concerned with the application purpose of Web services
which can be referred to as the teleological level of Semantic Web service de-
scription ontologies. Knowing the explicit differences between functional descrip-
tions of Web services and requests allows increasing the efficiency of Semantic
Web service technologies by replacing complex reasoning tasks by simpler ones
throughout the Web service usage process.

3 Teleological Level Mediation Techniques

With regard to the above examinations, the following introduces techniques for
teleological level mediation. The basis of our approach are so-called ∆-relations
that explicitly denote the logical relationship between functional resource de-
scriptions. We provide the definition of∆-relations, expose their beneficial usage,
and integrate them into the WSMO mediator architecture.

Page 54

3.1 ∆-Relations Definition

As a basis for efficient resource management by additional information on the
teleological level as outlined above, a ∆-relation denotes the explicit logical re-
lationship between functional resource descriptions. Following [2], this can most
appropriately be described as the logical difference.

Hence, we refer to this a ∆-relation that consists of two elements: the ∆-
expression states the logical difference between functional descriptions, and
the ∆-situation that denotes the type of the relationship between them. Both
can be computed for given functional descriptions. In order to provide a general
definition that is adaptable to the semantics of functional descriptions in respec-
tive frameworks, we apply a set-theoretic model. Referring to [14] for details, the
set-theoretic model defines that if φ is a functional description it is interpreted
as a subset of the universe U (that is all possible instances of the ontologies used
as terminologies in φ) that satisfies φ, i.e. φ ⊂ U .

Following this, the ∆-expression between two given arbitrary logical formulas
φ and ψ is their union without their intersection: ∆φ,ψ = φ ∪ ψ \ (ψ ∩ φ). This
means that ∆ contains those elements that are models for either φ or ψ and not
common to them. Considering the above example of two requests Rφ = ’finding
restaurants in Innsbruck’ and Rψ = ’finding Italian restaurants in Innsbruck’,
∆Rφ,Rψ would be ’all restaurants in Innsbruck that are not Italian’. Using de
Morgan’s laws, we can simplify this formula as follows: ∆φ,ψ = φ∪ψ \ (ψ∩φ) =
φ \ (ψ ∩ φ) ∪ φ \ (ψ ∩ φ) = φ\ψ ∪ ψ\φ. This states that the desired logical
difference between φ and ψ is the union of φ without ψ and ψ without φ.

The ∆-situation denotes the type of relationship between formulas, respec-
tively functional descriptions by commonly used keywords. In the example, Rψ
is a subset of Rφ; we denote is a subsumption relation between Rφ and Rψ.
As it holds in this situation that only those Web services usable for Rφ might
be usable for Rψ by no others, the information on the ∆-situation appears to
be relevant with respect to the aspired usage for efficient resource management
outlined above. Hence, we define five ∆-situations that naturally comply with
the degrees of matching identified in [17], [14]. While in discovery these are used
for denoting the type of commonality between logical expressions, we use them
to denote the type of difference. The following defines the ∆-situations and the
simplified computation of the corresponding ∆-expression:

1. equal: φ = ψ => ∆ = ∅.
this means that the models for φ and ψ are exactly the same so that there
does not exists any logical difference between them.

2. plugin: φ ⊂ ψ => ∆ = ψ\φ.
this means that all models of φ are also models for ψ but not vice versa. We
can also say that φ is subsumed by ψ.

3. subsume: φ ⊃ ψ => ∆ = φ\ψ.
as the opposite of the plugin situation, this means that all models of ψ are
also models for φ but not vice versa. We say that φ is subsumes ψ. (the
differentiation of the situations ”subsume” and ”plugin” gets important for
enabling efficient reasoning mechanisms, as discussed below).

Page 55

4. intersecting: φ ∩ ψ �= ∅ => ∆ = φ\ψ ∪ ψ\φ.
if there is no proper specialization or generalization but there exist models
common for φ and ψ, then the ∆ between them is their union without their
intersection - i.e. we cannot simplify the computation of the ∆-expression.

5. disjoint: φ ∩ ψ = ∅ => ∆ = ∅.
if there does not exist any common model for φ and ψ, then we consider the
∆-expression to be empty as there is no correlation between the formulas.

The above definitions provide a general definition of ∆-relations between ar-
bitrary logical formulas that can be applied for WSMO capabilities as follows.
As the description of the functionality provided by a Web service as well as for
the requested functionality in Goals, a WSMO capability is comprised of shared
variables, preconditions and assumptions that denote the pre-state, and postcon-
ditions and effects that denote the post-state. While the four latter elements are
defined by axioms, the scope of shared variables is the complete capability that
allows specifying the coherence between the pre-state and post-state description
elements of a capability. The intended semantics is that if the input provided
is a valid model for the pre-state, then the execution of the Web service or the
solution of the Goal will result in a post-state that is dependent of the respec-
tive pre-state. A formal semantics is under development at the point of writing,
which is based on the notion of Abstract State Spaces wherein a Web service
is understood as a set of state transitions from an initial to a termination state
(see [7] for details).

Following this, we cannot write a WSMO capability definition in a single log-
ical formula - at least not without respective signature renaming. Hence, we de-
note the∆-relations between two WSMO capabilities C1 = (φpre, φass, φpost, φeff)
and C2 = (ψpre, ψass, ψpost, ψeff as a tuple of the ∆-relations between the cor-
responding description elements whereby the distinct ∆-relations are computed
by the above methods. Hence, under consideration of all ontologies O and me-
diators M used in the description of two WSMO capabilities C1, C2, the logical
relationship between them is defined as follows:

O,M, C1, C2 |= ∆C1,C2 = (∆φpre,ψpre ,∆φass,ψass ,∆φpost,ψpost ,∆φeff ,ψeff) (1)

This allows performing the desired reasoning tasks for improving the effi-
ciency of resource management in Semantic Web service technologies. Thereby,
we can compute the ∆-relations between the description elements of capabili-
ties and reason on these. Dependent on what is to be achieved by working with
delta-relations, we can also transform WSMO capability definitions into single
logical formulas. ∆-relations between OWL-S Profile descriptions can be defined
in a similar way.

The set-theoretic definition for computing the ∆-expression is transformed
into the respective description language. For instance, when dealing with first-
order logic expressions φ and ψ the ∆-expression between them is defined by
∆φ,ψ = (φ∧¬ψ)∨ (¬φ∧ψ); the definition is analogue for functional descriptions
that use description logics or logic programming with respect their semantics.

Page 56

3.2 Using ∆-Relations for Gaining Efficiency

After identifying the potential of teleological level mediation and definition of
∆-relations as the main mediation technique, the following exposes the benefits
attainable for Semantic Web service technologies.

As outlined introductory, the main merit of teleological level mediation is to
increase efficiency in Semantic Web service technologies. With respect to this, we
distinguish two functional purposes for beneficially utilization: (1) support for
problem and functionality specification by reuse and refinement, and (2) creation
of element ontologies with additional information on the teleological level. While
the former purpose mainly refers to support for creating the semantic description
of goals and Web services, the latter facilitates efficiency in mechanisms for
automated discovery and composition of Semantic Web services. We explain
this in more detail.

For illustration purpose, let’s consider the following example. A goal G1

defines buy product, and another goal G2 defines buy ticket, whereby ticket is
sub-class of product in the used domain ontology. Considering the capability
specification of G1 to be φ, and the one of G2 to be ψ, then there is a subsume
situation φ ⊃ ψ so that ∆ = φ\ψ. For the first usage scenario, imagine that
G1 already exists and some user wants to define G2. As G2 is a teleological re-
finement of G1 (means: both goals have the same structure, but the object of
interest in G2 is narrower than the one of G1), we can use a mediator MG1,G2

that contains ∆G1,G2 for automatically deriving the specification of G2 as it
holds: G2 = G1\∆G1,G2 . Similar, we can create the capability specifications of
interrelated Web services. Following the concept of weakening and strengthen-
ing for describing Problem Solving Methods [10], this simplifies the creation of
problem and functionality descriptions.

Besides, we attain additional information on the teleological relationship be-
tween elements that are interconnected by mediators with ∆-relations. Consid-
ering such an element collection as a graph, the goals and Web services represent
the nodes and the mediators with ∆-relations denote the arcs that explicitly de-
fine the teleological relationship between the goals and Web services. We refer
to such collections of semantically interlinked elements as teleological element
ontologies that provide additional teleological level information and can be used
for improving efficiency of central reasoning tasks for Semantic Web services.

For instance, referring to the above example, imagine that from previous
runs of a Web Service discovery engine we have determined a set of Web Ser-
vices that are applicable for resolving goal G1: WSG1 = (WS1,WS2, ...,WSn).
Because of the situation G1 ⊃ G2 we know that the set of applicable Web
Service for resolving G2 can only be equal or a subset of those applicable for
G1: WSG2 ⊆ WSG1 . Hence, we can derive WSG2 as those Web services out of
WSG1 that satisfy ∆G1,G2 in the mediator MG1,G2 outlined above as it holds:
WS ∈ WSG2 ← WS ∈ WSG1 ∧ satisfy(WS,∆G1,G2). Although becoming
more complicated when taking ∆-relations between the goals and Web services
into account (see Section 4), this shows that we can omit invocation of a discov-
erer for determining Web services satisfying G2 - which most presumably is more

Page 57

expensive than checking this simple inference. Hence, teleological level mediation
significantly decreases the reasoning effort in Semantic Web service technology
by following the approach of gaining efficiency for automated problem solving
by additional constraints between resource descriptions as presented in [9].

3.3 Integrating Teleological Level Mediation in WSMO

Completing teleological level mediation techniques, the following incorporates
the outlined usage of ∆-relations into the WSMO mediators architecture in
order to attain an integrated mediation model for Semantic Web services [20].

As shown in Figure 1, WSMO distinguishes four mediator types: OO Me-
diators that connect ontologies and provide data level mediation facilities. GG,
WG, and WW Mediators connect goals and Web services. Each mediator con-
nects source and target components denoted by the denomination prefix, and
applies respective mediation techniques in order to resolve and handle the het-
erogeneities that can potentially arise between the source and target.

As mediation facilities, GG, WG, and WW Mediators can use OO Mediators
for handling data level heterogeneities and may contain ∆-relations as the teleo-
logical level mediation definition. In addition, WG Mediators and WW Mediators
can use a process mediator for resolving behavioral mismatches in communica-
tion or cooperation. We consider this mediation framework to be complete for
Semantic Web services as it defines architectural components that apply appro-
priate mediation facilities for all heterogeneity types that can appear between
the core elements of Semantic Web service systems.

Fig. 1. WSMO Mediator Topology

There are two aspects to be mentioned for teleological level mediation in GG
Mediators, WG Mediators, and WW Mediators. At first, we need to define the
correlation between ∆ and the source and target components of the mediator. As
discussed above, WSMO capabilities are self-contained logical statements so that
∆-relations refer to complete capability. In consequence, we define the semantics
of ∆-relations in WSMO mediators as follows:

Page 58

– ∆ defines the explicit logical relationship as the difference between the ca-
pabilities of the source S and the target T of a mediatorMS,T as defined in
formula 1

– the ∆-situation is defined from the source component of a mediator to its
target component (e.g. plugin(S, T) denotes that S ⊂ T); as this information
is needed for prosperous reasoning on teleological element ontologies, it is
denoted in a non-functional type property of the ∆-relation definition

– in case of a proper generalization plugin(S, T) or specialization subsume(S, T),
we can automatically attain Tcap from Scap via ∆ and vice versa:
1. if Scap ⊃ Tcap, then Tcap = Scap\∆S,T and Scap = Tcap ∪∆S,T

2. if Scap ⊂ Tcap, then Tcap = Scap ∪∆S,T and Scap = Tcap\∆S,T

3. otherwise, T can not be attained directly from S via ∆S,T or vice versa.

Secondly, there is a correlation between ∆-relations in GG, WG Mediators
and WW Mediators denoted by the doted lines in Figure 1. In case the same goals
and Web services are connected by respective mediators, we can derive new ∆-
relations out of existing ones. For instance, referring to the introductory example
of finding restaurants in Innsbruck, it holds that ∆R,WS1 = ∆RO,R ∪∆RO,WS1 .
Such correlations depend on the ∆-situations in the respective mediators and
require further investigation that is out of the scope of this paper. However, this
property allows learning mechanisms for ∆-relations for incrementally increasing
the efficiency of Semantic Web service technology.

4 Evaluation by Example

This section demonstrates the usage and benefits of teleological level within
exemplary scenarios in order to verify the above theoretical explorations. We
first depict a simple scenario for improving the efficiency of Web service discovery
along with exhibiting the modeling of ∆-relations in WSMO mediators, After
that, we discuss more complex scenarios.

The following exemplifies the benefits of teleological level mediation for im-
proving efficiency in Web service discovery as a core reasoning tasks within
Semantic Web services. Discovery is concerned with detecting appropriate Web
services for a given request or application scenario [14]. Therefore, we re-consider
the introductory example of finding restaurant information in Innsbruck with the
following goals and Web services involved:

1. GO: a goal for finding a restaurant in Innsbruck
2. G1: a goal for finding an Italian restaurants in Innsbruck
3. WS1: a Web service ’Innsbruck Hotel and Restaurant Guide’ that provides

information on all hotels and restaurants in Innsbruck
4. WS2: a Web service ’Tyrol Restaurant Guide’ that covers restaurants in

Tyrol (the state of Austria where Innsbruck is located in)
5. WS3: a Web service ’Traditional Cuisine in Innsbruck’ that provides infor-

mation on Tyrolean restaurants in Innsbruck

Page 59

Obviously, these goals and Web services are related to each other. For the
goals, G1 appears to be a specialization of G0, and the Web services seem to be
applicable for resolving these goals. If we would have no additional teleological
information, we would have to create each goal separately and run a complete,
most likely complex discovery process for determining which Web services can be
used for resolving the goals. We assume the following situation for demonstrating
how the efficiency improvement by teleological mediation: G0 already exists, and
we know from a previous discovery run that all Web services WS1,WS2,WS3

can be used for resolving G0. Now, a user wants to create G1 and find usable
Web services. Therefore, we define a teleological element ontology that consists
of the goals, the Web services, GG and WG Mediators. Figure 2 shows this,
including the ∆-situation and the direction of the mediators.

Fig. 2. Teleological Element Ontology Example

The following specifies the goals, Web services, and mediators as WSMO ele-
ments using the Web Service Modeling Language WSML [5], and exemplifies the
modeling of ∆-relations. The listing below shows the ontology used as the ter-
minology in this example, the goals G0 and G1, and the GG Mediator ggMG0,G1

(all elements are intended for academic demonstration purpose only and hence
are very limited).

// Ontology used as terminology in example
namespace { ”http://www.wsmo.org/ontologies/mediate05example#”,

dc ”http://purl .org/dc/elements/1.1#”,
loc ”http :://www.wsmo.org/ontologies/location#”}

ontology ”http://www.wsmo.org/ontologies/mediate05example”
importsOntology ”http://www.wsmo.org/ontologies/location#”
// an ontology for locations and addresses
concept restaurant

name ofType string
type ofType restaurantType
address ofType loc#address

// pre−defined instances
austria memberOf loc#country
tyrol memberOf loc#state

name hasValue ”Tyrol”
inCountry hasValue austria

innsbruck memberOf loc#city

Page 60

name hasValue ”Innsbruck”
inState hasValue tyrol

// Goal definitions (only postconditions modeled here)
namespace { ”http://www.wsmo.org/mediate05/G0#”,

o ”http://www.wsmo.org/ontologies/mediate05example#”}
goal ”http://www.wsmo.org/mediate05/G0”
// G0 − find a restaurant in Innsbruck
importsOntology ”http://www.wsmo.org/mediate05/G0#”
capability
postcondition

definedBy
?x[address . inCity hasValue = innsbruck] memberOf o#restaurant .

namespace { ”http://www.wsmo.org/mediate05/G1#”,
o ”http://www.wsmo.org/ontologies/mediate05example#”}

goal ”http://www.wsmo.org/mediate05/G1”
// G1 − find Italian restaurants in Innsbruck
importsOntology ”http://www.wsmo.org/mediate05/G0#”
capability
postcondition

definedBy
?x[type hasValue italian ,

address . inCity hasValue innsbruck]
memberOf o#restaurant .

// GG Mediator between G0 and G1
namespace { ”http://www.wsmo.org/mediate05/ggm#”,

o ”http://www.wsmo.org/ontologies/mediate05example#”}
ggMediator ”http://www.wsmo.org/mediate05/ggm”
importsOntology ”http://www.wsmo.org/mediate05/G0#”
source ”http://www.wsmo.org/mediate05/G0”
target ”http://www.wsmo.org/mediate05/G1”
∆−relation
nonFunctionalProperties
dc#type hasValue subsume

endNonFunctionalProperties
definedBy

?x [type hasValue ?type,
address . city hasValue innsbruck
] memberOf o#restaurant and
not(?type = italian) .

The GG Mediator ggMG0,G1 has the source goal G0 and the target goal G1.
The difference between them is that G0 defines all restaurants as the desired
information, while G1 only desires Italian restaurants in Innsbruck. Hence, as
G0 ⊃ G1, the ∆-relation is a subsumption from the source to the target goal.

The following shows the capabilities of the three Web services and the ∆-
relations of the respective WG Mediators with a Web service as the source
and G0 as the target component. Each WG Mediator carries a ∆-relation that
denotes the explicit difference between the capabilities of the respective Web
service and GO. The ∆-situation as defined in Figure 2 become obvious when
considering the capabilities of GO and the respective Web services. We here
omit structural WSML definitions due to length limitations and only model Web
service capability postconditions as this is sufficient for demonstration purpose.

// WS1 ’Innsbruck Hotel and Restaurant Guide’ capability postcondition
capability

postcondition
?x[address . inCity hasValue innsbruck] and
(?x memberOf o#restaurant or ?x memberOf o#hotel).

Page 61

// WS2 ’Tyrol Restaurant Guide’ capability postcondition
capability

postcondition
?x[address . inState hasValue tyrol] memberOf o#restaurant.

// WS3 ’Traditional Cuisine in Innsbruck ’ capability postcondition
capability

postcondition
?x[class hasValue traditional , address . inCity hasValue innsbruck] memberOf o#restaurant.

// WG Mediator between WS1 and G0
wgMediator ”http://www.wsmo.org/mediate05/wgm1”
source ”http://www.wsmo.org/mediate05/WS1”
target ”http://www.wsmo.org/mediate05/G0”
∆−relation
nonFunctionalProperties
dc#type hasValue intersecting

endNonFunctionalProperties
definedBy
?x[address . inCity hasValue innsbruck] memberOf o#hotel.

// WG Mediator between WS2 and G0
wgMediator ”http://www.wsmo.org/mediate05/wgm2”
source ”http://www.wsmo.org/mediate05/WS2”
target ”http://www.wsmo.org/mediate05/G0”
∆−relation
nonFunctionalProperties
dc#type hasValue subsume

endNonFunctionalProperties
definedBy
?x[address . inCity hasValue ?city] memberOf o#restaurant and not(?city = innsbruck).

// WG Mediator between WS3 and G0
wgMediator ”http://www.wsmo.org/mediate05/wgm3”
source ”http://www.wsmo.org/mediate05/WS3”
target ”http://www.wsmo.org/mediate05/G0”
∆−relation
nonFunctionalProperties
dc#type hasValue plugin

endNonFunctionalProperties
definedBy
?x[type hasValue ?type] memberOf o#restaurant and not(?type = traditional).

Now we can discuss how the additional teleological mediation information
can be beneficially utilized for gaining efficiency in reasoning tasks for Semantic
Web services. As a major one, discovery is concerned with determining appropri-
ate Web services for resolving a given goal. Therefore, semantic techniques are
applied that determine logical relationship between functional service and goal
descriptions in order to increase the accuracy of discovery results. As several
aspects like valid pre-state and post-state detection need to be taken into ac-
count, adequate discovery engines for Semantic Web services consists of complex
reasoning procedures (see [17], [13], [15], [24]).

For explaining how the need for such expensive discovery procedures can be
omitted, we assume that all elements of the teleological element ontology shown
in Figure 2 are given (i.e. all goals, Web services, and mediators). Also, we as-
sume to know from a previous discovery run that WS1,WS2,WS3 are usable
for resolving GO; it holds that only these or a subset can be usable for resolv-
ing G1 because the subsume situation between the capabilities of GO and G1.
For a Web service to be usable for the G1 it has to satisfy its object defini-
tion that is strengthened, i.e narrowed in comparison to the one of GO. This

Page 62

can be determined via the ∆ defined in the GG Mediator ggMGO,G1 . If a Web
service that is in the discovery result of GO satisfies ∆GO,G1 , then it is usable
for resolving G1 so that: GO ⊃ G1 ∧ (usable(WS,G1) ← usable(WS,GO) ∧
satisfied(WS,∆GO,G1)). Evaluating this rule determines WS1,WS2 to be us-
able for resolving G1 while WS3 does not satisfy the ∆GO,G1 .

This example has discussed the simplest setting of efficient Web service dis-
covery on basis of ∆-relations. However, the procedure can get more complex
in case that a different ∆-relation exists between the source and target goal in
a GG Mediator. While there can not exist any Web service that is usable for
resolving Gy but not for Gx if the ∆-situation is subsume(Gx, Gy), this can be
the case for different ∆-situations. In such cases, the relationship between the
∆-relations in GG Mediators and those in WG Mediators needs to be taken
into consideration. If there is a concatenation of subsumption ∆-relations be-
tween goals and Web services we do not even need to evaluate the ∆-relations as
subsume(WS,Gy)← subsume(Gx, Gy)∧subsume(WS,Gx); on the other hand,
in case of a concatenation of intersecting ∆-situations we possibly need to use a
discoverer as the teleological mediation information are not sufficient for ensur-
ing correctness of the discovery results. Hence, beneficial usage of ∆-relations for
efficient discovery require more complex algorithms with respect to all possible
combinations of ∆-situations that can occur in GG and WG Mediators. We do
not discuss this any further as it exceeds the aim and scope of this paper.

We have demonstrated efficiency improvement for discovery as one main
reasoning tasks for Semantic Web services. However, we can follow the same ap-
proach for improving efficiency within other mechanisms that are concerned with
teleological level information like service composition. Therefore, we can define
GG Mediators that establish a collection of sub-goals Gsub1(Gx), Gsub2(Gx), ...
for some complex goal Gx in the sense of a functional decomposition. If we do
not discover any Web service that is capable of resolving Gx but some services
for its sub-goals, we have determined the input required by a Web service com-
position engine for dynamically constructing a suitable execution model of the
services usable for the sub-goals. Such application scenarios of teleological me-
diation need to deal with more complex relationships of ∆-relations that we
consider to be future work.

5 Related Work

We are not aware of any other approach that identifies the need for mediation on
the teleological level for Semantic Web services or provides support for this. Nev-
ertheless, the following outlines work that has inspired the approach presented
in this paper.

The need for efficient resource management has been revealed throughout
our work on reasoning mechanisms for Semantic Web services with respect large-
scale applicability and the performance problem of complex reasoning systems.
Existing approaches like [11], [24] address this by defining classifications or ar-
chitectural constraints as the basis for layered architectures that subsequently

Page 63

narrow the search-space, i.e. reducing the number of elements that needs to
be inspected in complex reasoning mechanisms. However, these techniques do
not explicitly express the teleological relationship between resources and thus
do not adequately support reasoning on additional teleological information in a
way comparable to the one we have presented.

Our approach for teleological mediation has been inspired by the concept of
refinement in the UPML framework for describing Problem Solving methods [10].
Therein, so-called Refiners define additional constraints referred to as ∆ that
bridge the teleological gap between goals or tasks to be achieved, the problem
solving method that specifies the reasoning process, and the domain knowledge
used for achieving the task [2]. This significantly decreases the required coverage
for functionally describing a problem solving method as several aspects can are
eliminated by ∆s, hence allows gaining efficiency in the reasoning process for au-
tomatically resolving a goal [9]. This work has served as a basis for our definition
of ∆-relations and their usage for improving efficiency in reasoning mechanisms
for Semantic Web Services.

The idea of using information on the difference between resources for increas-
ing efficiency in handling them is also applied in other technologies. For instance,
video compression techniques like MPEG use so-called delta frames that only
specify the changes between consecutive pictures; these are significantly smaller
with respect to the amount of data required for specification and hence reduce
the file size of videos [3]. This coincides with the approach of additional teleo-
logical information for reducing the reasoning effort for Semantic Web service
techniques as we have presented here.

6 Conclusions and Future Work

This paper has introduced the teleological level as a novel aspect of mediation for
Semantic Web services. This level deals with heterogeneities that arise between
functional descriptions of Web services and related elements. We have defined
∆-relations that explicitly denote the teleological difference between functional
element descriptions, integrated them into the mediation framework of the Web
Service Modeling Ontology WSMO, and outlined how these additional informa-
tion can be beneficially utilized for improving the efficiency of reasoning mech-
anisms for Semantic Web services.

Teleological level mediation as presented here is different from data and pro-
cess level mediation. While the latter are concerned with techniques for estab-
lishing interoperability if this is not given a priori by resolving mismatches,
teleological level mediation is concerned with improving the efficiency of Seman-
tic Web service technologies. The elements that are connected via mediators in
a teleological element ontology can reside in a functional manner without the
additional teleological information. In the example on efficiency improvement
for discovery we can accomplish the same correct discovery result by invoking
a discovery engine instead of evaluating the ∆-relations. However, efficiency of
core technologies for handling Semantic Web services is a crucial issue with re-

Page 64

spect to large-scale, industrial strength applicability. As teleological mediation
with ∆-relations can significantly improve efficiency, we consider this to be a
beneficial mediation technique for Semantic Web services.

While this paper presents the foundation of teleological level mediation, fu-
ture efforts will be concerned with integrating this technique into functional
components for discovery and composition of Semantic Web services as well
as elaboration of advanced algorithms for enhanced reasoning on teleological
element ontologies. In a longer term, we will also consider techniques for auto-
matically learning ∆-relations within Semantic Web service environments that
enable dynamic improvement of a system’s efficiency during its life time.

Acknowledgements

This material is based upon work funded by the EU under the DIP project (FP6 -
507483) and by the Science Foundation Ireland under Grant No. SFI/02/CE1/I131.
The authors would like to thank the members of the WSMO working group
(www.wsmo.org) and dedicate special thanks to Uwe Keller for fruitful advice
and input to the presented work.

References

1. V. Alexiev, M. Breu, J. de Bruijn, D. Fensel, R. Lara, and H. Lausen. Information
Integration with Ontologies. Wiley, West Sussex, UK, 2005.

2. V. R. Benjamin, D. Fensel, and R Straatman. Assumptions of Problem-Solving
Methods and their Role in Knowledge Engineering. In Proceedings of the European
Conference on Artifical Inteliigence (ECAI 1996), Budapest, Hungary, 1996.

3. A. C. Bovik (ed.). Handbook of Image and Video Processing. Academic Press,
2000.

4. E. Cimpian and A. Mocan. WSMX Process Mediation Based on Choreographies.
In Proceedings of the 1st International Workshop on Web Service Choreography
and Orchestration for Business Process Management at the BPM 2005, Nancy,
France, 2005.

5. J. de Bruijn (ed.). The Web Service Modeling Language WSML.
WSML Deliverable D16.1 final version 0.2, 2005. available from
http://www.wsmo.org/TR/d16/d16.1/v0.2/.

6. J. B. Domingue, D. Roman, and M. Stollberg (eds.). Web Service Modeling On-
tology (WSMO) - An Ontology for Semantic Web Services. Position Paper at the
W3C Workshop on Frameworks for Semantics in Web Services, June 9-10, 2005,
Innsbruck, Austria, 2005.

7. Lausen (ed.). Functional Description of Web Services. WSML Deliverable D28.1,
2005. Most recent version available at: http://www.wsmo.org/TR/d28/d28.1/.

8. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2), 2002.

9. D. Fensel and R. Straatman. The Essence of Problem-Solving Methods: Mak-
ing Assumptions to Gain Efficiency. International Journal of Human-Computer
Studies, 48(2):181–215, 1998.

Page 65

10. D. Fensel et al. The Unified Problem Solving Method Development Language
UPML. Knowledge and Information Systems Journal (KAIS), 5(1), 2003.

11. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient Semantic Matching. In
Proceedings of the 2nd European Semantic Web Conference (ESWC 2005), Crete,
Greece, 2005.

12. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A Semantic
Service-Oriented Architecture. In Proceedings of the International Conference on
Web Service (ICWS 2005), Orlando, Florida, 2005.

13. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of
Services. In Proceedings of the 2nd European Semantic Web Conference (ESWC
2005), Crete, Greece, 2005.

14. U. Keller, R. Lara, and A. Polleres (eds.). WSMO Web Service Discovery. Deliv-
erable D5.1, 2004. available at: http://www.wsmo.org/TR/d5/d5.1/.

15. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A
Logical Framework for Web Service Discovery. In Proc. of the ISWC 2004 workshop
on Semantic Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan, Nov. 2004, 2004.

16. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling On-
tology (WSMO). W3C Member Submission 3 June 2005, 2005. online:
http://www.w3.org/Submission/WSMO/.

17. L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the 12th International Conference on the World
Wide Web, Budapest, Hungary, 2003.

18. D. Martin (ed.). OWL-S: Semantic Markup for Web Services. W3C Member Sub-
mission 22 November 2004, 2004. online: http://www.w3.org/Submission/OWL-S.

19. S. McIlraith, T. Cao Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, Special Issue on the Semantic Web, 16(2):46–53, 2001.

20. A. Mocan, E. Cimpian, and M. Stollberg (eds.). WSMO Mediators. Deliverable
D29, 2005. Most recent version available at: http://www.wsmo.org/TR/d29/.

21. A. Mocan (ed.). WSMX Data Mediation. WSMX Working Draft D13.3, 2005.
available at: http://www.wsmo.org/TR/d13/d13.3/v0.2/.

22. M. Moran and A. Mocan. Towards Translating between XML and WSML based on
mappings between XML Schema and an equivalent WSMO Ontology. In Proceed-
ings of the WIW 2005 Workshop on WSMO Implementations, Innsbruck, Austria,
2005.

23. M. Paolucci, N. Srinivasan, and K. Sycara. Expressing WSMO Mediators in OWL-
S. In Proceedings of the workshop on Semantic Web Services: Preparing to Meet
the World of Business Applications held at the 3rd International Semantic Web
Conference (ISWC 2004) , Hiroshima, Japan, 2004.

24. M. Stollberg, U. Keller, and D. Fensel. Partner and Service Discovery for Collabora-
tion Establishment on the Semantic Web. In Proceedings of the Third International
Conference on Web Services, Orlando, Florida, 2005.

25. G. Wiederhold. Mediators in the architecture of the future information systems.
Computer, 25(3):38–49, 1994.

Page 66

Mediation and Enterprise Service Bus
A position paper

Colombe Hérault, Gaël Thomas, and Philippe Lalanda

Université Joseph Fourier,
Laboratoire Logiciels Systèmes Réseaux, Équipe Adele

F-38041 Grenoble Cedex 9, France
firstname.name@imag.fr

Abstract. Enterprise Service Buses (ESB) are becoming standard to
allow communication between Web Services. Different techniques and
tools have been proposed to implement and to deploy mediators within
ESBs. It turns out however that current solutions are very technology-
oriented and beyond the scope of most programmers. In this position
paper, we present an approach that clearly separates the specification of
the mediation operations and their execution on an ESB. This work is
made within the European-funded S4ALL project (Services For All).

1 Introduction

The integration of business activities is a long standing problem that has been
tackled with different approaches (asynchronous middleware, Enterprise Integra-
tion application, etc.). The integration issue is perceived today through a new
angle with the need to integrate distant applications available on the Internet.
This raises challenging new problems related to communication over a public
network, security and of course interoperability.

Service-oriented architectures constitute a very promising approach to in-
tegrate Internet applications: they actually provide the level of flexibility and
scalability required to build industrial e-applications. However, service-oriented
computing is today essentially technology-driven. Most available platforms focus
on the technology allowing to publish and compose services and to make them
communicate (i.e. SOAP [1], WSDL [2], UDDI [3], etc.). Different services may
manipulate similar data or services under very different formats. The problem
of data and interfaces heterogeneity is not directly addressed and left to the
e-applications programmers.

As a remedy to this issue, several research areas are explored, including
work about the semantic Web and ontologies1 [4]. In this paper, we focus on
an emerging middleware called Enterprise Service Bus (ESB [5] [6]). ESBs are
providing technological solutions to intercept messages between Web Services
and to translate or route them to help the integration of business applications.
1 http://protege.stanford.edu/publications/ontology development/ontology101-noy-

mcguinness.html

Page 67

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

In this paper, we argue that this technological solutions must come with models
and tools allowing developers to describe the mediation operations at a higher
level of abstraction. This work is carried out within the European ITEA project
S4ALL (see www.itea-office.org), which aims at creating tools and models to
build services using data from many heterogeneous sources from IT servers to
industrial devices.

The paper is organized as it follows. The next section describes the notion
of mediation and generalizes this notion to different non-functional behaviors.
The section 3 presents a toy application as part of the European S4ALL project.
The section 4 presents the global vision that we plan to implement. Finally, the
section 5 concludes this paper.

2 From mediation to ESB

The concept of mediation is primarily an answer to the lack of interoperability
between clients and data sources in Information Systems. Early mediation so-
lutions evolved in order to also enhance the global quality of service provided
by large scope of database systems. More recently the ESB (Enterprise Service
Bus) concept has emerged in the context of B2B (Business to Business [7]). The
ESB incorporates the concept of mediation to facilitate the design of application
based on Webservices.

2.1 Mediation

Definitions As defined by G. Wiederhold in [8, 9], mediation is ”a layer of
intelligent middleware services in information systems, linking data resources
and application programs”. the integration of various data resources (databases,
Webservices or devices) and application programs (Webservices, enterprise ap-
plications, etc) raise a number of issues, essentially due to heterogeneity (see
fig. 1).
The mediation layer is made of many mediators that are light weight compo-

nents (e.g. independent black boxes that can be composed) and are composed to
form mediation chains between client applications and data sources. G. Wieder-
hold defines a mediator as ”software module that exploits encoded knowledge
about certain sets or subsets of data to create information for a higher layer of
applications. It should be small and simple, so that it can be maintained by one
expert or, at most, a small and coherent group of experts” [8].

Mediators capabilities Mediation includes tasks such as transformation and
synthesis of data that can go from basic format translation in order to match
a particular standard, to more sophisticated analysis using ontology or expert
knowledge, adding new values to the data. Synthesis may be done over multiple
data sources, having heterogeneous data type. For example, one may have to
apply a currency conversion between services from different countries or may
want to extract the global evolution of the activity of a plan over a week period

Page 68

Fig. 1. Mediation layer

from a database containing daily information.
The aim of mediation is thus to abstract data and extract the domain knowledge
[8] in order to ease the decision making by providing operations such as :

– selection upon different data;
– transformation from a data type to an other;
– integration of different data sources;
– selection of data source when there are many data sources available;
– resolution of inconsistent data.

Mediation added value The mediation code can be seen as code that is
particular to a specific exchange between a client and a data source. Motivations
to dissociate mediation code and business code are obviously to increase the
separation of concerns and to decrease the coupling between client and data
sources. Mediators are seen as elements which are not really part of the client,
nor part of the data source but much more of the ”binding” between them.
Mediation improves:

– reusability : you may reuse a particular mediator in several mediation chains,
for example an XML validation service.

– evolution of code : when a new client or a new data source appears, or even
when there is a simple modification of one of them, it is not necessary to
modify the code its interlocutors; only a new mediation element is added to
the mediation chain.

– scalability : as mediation allows to integrate new clients and data sources
progressively.

Using mediation concepts makes it easier to integrate code that enterprises do
not want to modify, because of the cost (legacy code). It also avoids to product
a client or a data source that would be able to interact with only one specific
interlocutor.

Page 69

Mediator patterns In the service based application life cycle, a new business
arises : the mediator chain designer. Its task consists in finding appropriate
mediators and detail their sequence. From [10] and [6], a basic mediator pattern
list can be established :

– examiners modify the content of the request (e.g. validation, authentication,
authorization, or monitoring);

– transformation mediators modify the content of the request (e.g. data type
mapping and enhancement);

– transcoder mediators modify the format of the request but not its content.
They allow requests to go through different transport protocol to interact;

– cache mediators stock results of already executed requests in order to save
time and resources;

– routers chose the service they are giving the request to, depending on the
content of the request. Discovery mediators do the same thing using besides
a trader to dynamically chose the right service.

– operator mediators (e.g comparator, union, intersection, combination or ag-
gregation);

– clone mediators dispatch a unique request to several services.

Related works Most interesting solutions in data mediation field are based
on ontologies mapping. Indeed the heterogeneity of data leads to the need for
semantic information. In order to deal with it, applications have been enhanced
with ontologies. But it leads to the multiplication of ontologies in information
systems regrouping many applications. Solutions such as WSMX2 and TSIM-
MIS3 [11], FOAM4 or [12] provide abstractions and tools to generate mediators
implementing the mappings between ontologies.

2.2 Mediation in ESB

Initially used for the integration of heterogeneous data store (databases, files,
etc), the concept of mediation takes a new breath with SOA and Webservices.
Mediation has thus become an essential part of ESBs (Enterprise Service Buses)
(see fig. 2 inspired from [5] and IBM/SOA5).
An ESB is actually a middleware providing integration facilities built on top of
industrial standards such as XML, SOAP, WSDL, WS-Addressing, WS-Policy,
WS-Security and WS-ReliableMessaging, J2EE Connector Architecture [13]. Be-
sides mediation functionalities, the ESB provides:

– a trading service in order to find appropriate services;
– communication service (mostly asynchronous with MOM and publish/subscribe);
– orchestration service (based on BPEL [14]).

2 http://www.wsmo.org/TR/d13/d13.3/v0.2/
3 http://www-db.stanford.edu/tsimmis/tsimmis.html
4 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/
5 http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

Page 70

Fig. 2. Enterprise Service Bus

In ESB, the term mediation has a larger acception. In addition to transformation
functionalities, mediation also includes :

– Security (e.g. cryptography, authorization, etc) which is a major preoccupa-
tion when different companies, using heterogeneous security systems need to
interact.

– Dynamic routing and dispatch of requests potentially to multiple receivers
in order to perform load balancing or to respond to failure of a data source
for instance.

– Other non-functional actions related to QoS management such as incom-
plete data management, quality measurement, tracing, caching, or failure
detection and recovery.

In the context of the ESBs, there are two different approaches to implement
mediators. Mediators can be ad hoc pieces of code that intercept requests and
process them. Mediators are dispatched over the network, some elements being
closer to the client side (such as transformation to proprietary data format) other
to data source side (such as synthesis, reducing network congestion). The second
approach is to implement mediators as Webservices. Then, they are integrated to
the service-based application as any other service. In any case, their requirements
are to be available, reliable and easily maintainable. In the architecture, there
are no constraints on whom the mediation components belong to or on their
implementation.

Page 71

2.3 limits of ESB

Despite these new approaches, there is no unique definition of ESB. ESB so-
lutions are closer to commercial products packaging ad-hoc tools, than to a
structured architectural layer. First ESBs were proprietary tools (Sonic ESB6,
Fiorano ESB7, Cape Clear8, PolarLake Integration Suite9, etc). They were us-
ing proprietary solutions that were managed only at implementation level, such
as the mediations in WebSphere [15]. Now these companies make an effort to
capitalize there work into projects such as :

– projects directly working on mediation solution such as Apache Synapse.
Synapse is a really recent project that emphasizes the role of mediation in
SOA solutions;

– projects focusing on a larger scope that mediation such as new Open-source
ESBs (e.g. Celtix10 and Petals11 from Objectweb, Mule12 and ServiceMix13)
from CodeHaus, OpenESB14 from Sun). These projects provide code and
tools (container, communication service, trader, etc) to build specific well-
suited ESB. For the moment, they do not really focus on modeling the medi-
ation. In the ObjectWeb consortium, researchers working on ESBs capitalize
their results the ESB Initiative (ESBi15).

– a project that does not relate directly to mediation seems to overcome the
ESB domain at the moment : the Sun Java Enterprise Service Bus API16

(JBI). This API mostly defines a standardized container for services. It may
have an impact on mediation because it also standardizes the exchanges
between services (the sequence and format).

ESBs do not provide sufficient software engineering abstractions to give a high
level comprehension of the architecture and the interactions of this layer. It
focuses on development and administration and leads to lack of maintainability,
whether it is a dynamic or a statical administration of the system.

3 Projet S4ALL

3.1 Project summary

The S4ALL project has been active since July 2005. It is funded by the European
Community and brings together major industrial actors interested in delivering
6 http://www.sonicsoftware.com/products/sonic esb/
7 http://www.fiorano.com/products/esb key for bca.htm
8 http://www.capeclear.com/products/ccESB4ws.shtml
9 http://www.polarlake.com/en/html/resources/esb/

10 http://celtix.objectweb.org/
11 http://petals.objectweb.org/
12 http://mule.codehaus.org/
13 http://servicemix.org/
14 https://open-esb.dev.java.net/
15 https://wiki.objectweb.org/ESBi/
16 http://www.jcp.org/aboutJava/communityprocess/edr/jsr208/

Page 72

new services to their customers, including Alcatel, Nokia, Schneider Electric.
The high level objectives of S4ALL are the following :

– To study the process of service creation, taking into account end-users, man-
ufacturers and service providers requirements and to implement service cre-
ation and customization tools for different audience and supporting environ-
ments, that are the professionals, the end-users on PC and the end-users on
mobile devices,

– To specify and implement the appropriate service execution infrastructure.
In particular, the partners will focuse on the delivery of open sources OSGi
platforms, a J2EE server and an Enterprise Service Bus.

– To demonstrate selected vertical applications in the telco and industrial fields
illustrating all aspects developed within the project.

Applications that have been provided by the telco (Alcatel and Nokia) and by
Schneider Electric (a world leader in power distribution) cannot be disclosed for
the moment. In the following section we thus present a toy example (dealing
with supermarkets and bakeries) that exhibits the main characteristics of the
industrial applications studied in the project.

3.2 An example to illustrate the problem

The purpose of this section is to present a simple example and show how medi-
ation techniques can be used in the Webservice context.
Figure 3 presents a simple scenario where a cybermarket provides a web service
to buy different kinds of products, including bread. The cybermarket actually
buy its bread from two different bakeries. Relationships between the cybermar-
ket and the bakeries are implemented with Webservices. As it can be expected,
data exchanged and interfaces used by these two bakeries aren’t the same. In
this example, the cybermarket wants to find the n least expensive bread sorts.
Bakery 1 can directly answer to this question, but bakery 2 can only send the
list of all its prices.

Bakery 2Bakery 1

Cybermarket

Web Service Interface

Web Service Request

Fig. 3. A simple scenario

Page 73

Using an ESB approach, the two bakeries are integrated using proxies that act
as mediation elements. Two proxies are used in the cybermarket to encapsulate
the calls to the bakeries and the cybermarket. With workflow languages, we can
model our application but we can’t separate the proxies from the application
model: the proxy are inserted in the application model either like Web Services
or by using language extensions.None of these two solutions is satisfying: by
mixing at the same level the mediation and the process, an application designer
can’t understand the logical of the application (the model of the application)
because there is no difference between the high level description of the application
(what the application does) and the implementation of this description (how this
application is implemented). The consequence of this lack of separation between
the model and the implementation are principally:

– A lack of reusability of the application. Indeed, if a bakery server changes
the designer should change the functional description of the application,
although the model of the application doesn’t change. In the same way, the
mediation chain to access a bakery can’t be reused in another application
because it is mixed in the functional description of the application.

– A difficult design of the application because the application designer should
simultaneously design the model of the application and the way it is imple-
mented.

To improve these two aspects, our first goal is to provide a complete separa-
tion between the application model and the implementation view of this appli-
cation. The second requirement of our work is to reuse the ESB tools : indeed,
our purpose is not to re-engineer the already existing execution models, but the
separation between these models and implementation aspects like mediation. By
generalizing the notion of mediation to other non functional aspects of the appli-
cation, like the quality of service, we are also improving the separation between
the application model and its implementation.

3.3 An solution based on mediation

Figure 4 presents an architecture including mediation. A first mediator is used to
aggregate the different bakeries. The aggregator gives the n lowest bread prices
by mixing the data received from the two bakeries. Then, two mediators are
used to hide the heterogeneity between the bakeries. Bakery 1 translator sends
a request to find the n least expensive breads from bakery 1 to save bandwidth.
Bakery 2 translator sends a request to find all the prices and gives only the n
least expensive prices.

On the cybermarket side, a unique data format and a unique interface is
then used to question the bakeries. By using mediation, the server (the bakeries)
and the client (the cybermarket) don’t have to be modified to incorporate new
non-functional properties.

This solution based on mediation shows the complexity of the mediation
chain. Indeed, we are only managing two bakeries and the chain remains simple.

Page 74

Bakery 2Bakery 1

Cybermarket

Web Service Interface

Web Service Request

Mediator

Translator Translator

Aggregator

Fig. 4. A simple scenario with mediation

To really construct mediation chains, we should separate what does a mediation
element from how it is connected: this separation between the chain and the
implementation of mediation elements improve also the reusability. A mediation
element can be reused in other application and we are separating the work of
designing a mediation element from the work of composing these mediation
elements. The architecture of the mediation chain also allows the insertion of
other non functional element, like monitoring, security or verification elements:
as explained before, these elements shouldn’t appear in the application model,
but in the mediation chain.

One of the possibility introduced by modeling the mediation chain between an
executable model and the services that we plan to implement is the distribution
of such mediation element in a network of hosts. Indeed, for load balancing,
proximity or bandwidth reasons, it is more efficient to execute the mediation
elements in a network of machine instead of using a single machine. A language
to deploy the chain in a real network (a distributed ESB in our case) is thus
necessary.

The last requirement of our mediation architecture is the dynamic adapta-
tion of a mediation chain. Indeed, by separating the executable model of the
application from its implementation, we doesn’t have to stop the executable
model to change how a service call is made. In our bakery scenario, dynamic
adaptation allow, for example, the insertion of new bakeries to provide bread in
the cybermarket without interrupting it. This possibility avoids the interruption
of service time during a reconfiguration.

4 Our approach

4.1 A first experience

The purpose of this position paper is to promote the idea that it is important
to specify the mediation operations in an abstract fashion, decoupled from the

Page 75

execution environment (the ESBs in our case). To do so, our goal is to extend a
mediation tool developed by the Scalagent company [16]. This tool allows to :

– describe mediation chains with an ADL (Architecture Definition languages)
where mediation operations are performed by software components

– describe the execution environment and the way the mediation components
have to be deployed on it

– automate the deployment and administration of the code installed on the
network

This tool has been used successfully to develop (and industrialize) e-services in
the domain of power distribution [17]. In this context, mediation is used be-
tween applications run on a J2EE infrastructure and OSGi-based gateways (see
www.osgi.org). We are now exploring, in the S4All project, the way to extend
this tool to deal with the connection of applications and Web services through
ESBs and to automate the code generation and to allow dynamic reconfigura-
tion.
The reminder of this section describes our new proposition. It presents the ar-
chitectural and deployment views that we plan to model and implement.

4.2 Decoupling mediation

Figure 5 gives an overview of our model. First, we have defined a Platform
Independent Model (PIM)17 [18][19] in order to specify mediation chains inde-
pendently of the ESBs and of the execution process: the model of the application
and the implementation are separated, and the implementation of the mediation
chain between the execution process and the services is modeled in a high level
language. Our purpose is to increase understandability and reusability. This
model includes the following elements:

– Service: any data source (Webservice, equipment, etc);
– Client: any application (Webservice or other) requesting a Service;
– Mediators: a component that is able to receive 1 to n pieces of data and send

1 to n pieces of data; it can be seen as a binding between Clients (1..n) and
Services (1..n);

– Mediator component binding: link between Mediator components.

Through a dedicated tool, it is possible to assemble these elements to form
mediation chains. The implementation of mediation elements themselves aren’t
modeled. Only the links between these elements are described in a high level
language. A Mediation chain is close to the concept of ”parternlink” in BPEL [14]
but there are two main differences that come from the lack of integration of
mediation in BPEL:
17 http://www.omg.org/mda/

Page 76

Architectural View

Deployment View

Web Service

Service Requester

Mediator

Middleware (administration + communication)

(User of Web Services)

Application

Web Service X

Web Service Y

Host 1 Host 2 Host 3 Host 4

A B

C

E
D

F
G

H
I

C E H G IFD A B

Web Service Z

Fig. 5. Global architecture

– the data type is not necessarily the same on the client side of the link and
on the server side because transformations are done on data;

– the Mediator chain is much more complex than the parterlink; it allows
to describe processings done on data and the binding (e.g . synchronous,
asynchronous, etc).

Another model is used to describe the execution environment, that is the ESB.
In the current version of the mediation suite, the execution environment is pro-
vided by Scalagent under the form of an adapted version of the open source
Joram middleware18. The challenge of the current project is to allow the exe-
cution of the mediation chains on an ESB. To meet the needs of the mediation
suite, the ESB has to able to load dynamically new mediators and to take deci-
sion during a reconfiguration. This execution environment should also provide a
middleware layer to interconnect the different execution environment. Figure 6
summarizes this execution environment. The middleware will be used to manage
the monitoring, but also to interconnect the different mediators. It is important
to note that the ESBs presented in the previous sections meet these technical
requirements.
To automatically deploy and manage the set of mediators on ESBs, a specific
language has to be developed. This language gives information about the loca-
tion of mediators. This language will only describe where are physically located
the mediators. This language has to remain very simple: it simply does the cor-
respondence between a symbolic name of a mediator (used also in the ADL)
and a host. We believe that is should be based on XML because. Through an
extensible XML Schema, it allows to construct structured files to describe the
mediation chain, that may be shared between the mediation actors, using a com-
18 www.objectweb.org

Page 77

mon vocabulary and grammar.
We also plan to extend ESBs functions in order to improve dynamism. To do

IN Mediator OUTAdmin

Mediator Execution Environment

Mediator Middleware

Fig. 6. The Mediation Middleware

so, we will use OSGi which provides a good solution to dynamically load and un-
load code. OSGi provides also a good solution to dynamically link the mediator
with the execution environment. Inside the execution environment, a remotely
administrable part should be planned. This part will communicate through the
middleware.

5 Conclusion

Today’s solutions for Web Service orchestration do not integrate heterogeneity
of data type. At runtime, mediation operations have to be added to the system
in order to ensure interoperability between Web Services. But mediation solu-
tions are very technology-oriented. They do not provide abstractions that would
facilitate the design and the administration of mediation chains. Dealing with
distribution over heterogeneous networks and appearance of new Web Services
becomes a hard task.
We propose then a higher abstraction model for mediation. Our model defines
two levels: (i) a Platform Independant Model that provides an architectural view
of the mediation chain. It defines the elements of the chain (Service, Client, Me-
diator component and Mediator component) that may be mapped automatically
to the second level (ii) a framework that should provide a deployment language,
a runtime environment and tools to dynamically administrate and reconfigure
the platform by generating the communication code.
The architecture and the model presented in this paper meet the requirements of
services integration: (i) the execution process is independent from the mediation

Page 78

chain model to improve the reusability of the two elements, (ii) the mediation
chain model separates the implementation of the mediation elements from their
bindings, also to improve the reusability of this two elements, (iii) a mediation
chain is projected on a distributed ESB to balance the load, (iv) a mediation
chain can be updated during the execution of the execution process to avoid
interruption of services during reconfigurations.
Our work builds on top of the mediation suite provided by the Scalagent company
that has been used successfully in several device-oriented domain. The challenge
is to replace the proprietary execution environment by ESBs (commercial or
open source) while keeping the abstract, platform independent description of
mediation chains. We are also exploring new ways to express business and medi-
ation code. A promising approach is to use BPEL, that allows to describe Webs
Services choreography, or another choreography language like APEL [20].
Another objective is to extend the ESBs execution capabilities in order to make
them more dynamic regarding administration and configuration. To do so, we
plan to integrate OSGi as an execution platform for the asynchronous middle-
ware runtimes.

References

1. W3C. Simple object access protocol (soap) 1.2. Technical report, W3C, June 2003.

2. W3C. Web services description language (wsdl) 1.1. Technical report, March 2001.

3. OASIS. Uddi executive overview: Enabling service-oriented architecture. Technical
report, OASIS, 2004.

4. T.R. Gruber. A translation approach to portable ontology specifications. Academic
Press, 1993.

5. David A. Chappell. Enterprise Service Bus. O’reilly Media, 2004.

6. M.-T Schmidt, B. Hutchinson, P. Lambros, and R. Phippen. The enterprise service
bus: Making service-oriented architecture real. IBM System Journal, 44(4):781,
2005.

7. C. Bussler. B2B Integration. Springer-Verlag, June 2003.

8. Gio Wiederhold. Mediators in the architecture of future information systems. In
Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents, pages 185–
196, San Francisco, CA, USA, 1997. Morgan Kaufmann.

9. Gio Wiederhold and Michael Genesereth. The conceptual basis for mediation
services. IEEE Expert: Intelligent Systems and Their Applications, 12(5):38–47,
1997.

10. John Todd, Christian Och, Roger King, Richard Osborne, Jr. William J. McIver,
Nathan Getrich, and Brian Temple. Building mediators from components. In
DOA ’99: Proceedings of the International Symposium on Distributed Objects and
Applications, page 352, Washington, DC, USA, 1999. IEEE Computer Society.
ISBN 0-7695-0182-6.

11. J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. Information translation, mediation, and mosaic-based browsing in the
tsimmis system. In Exhibits Program of the Proceedings of the ACM SIGMOD
International Conference on Management of Data, page 483, San Jose, California,
June 1995.

Page 79

12. F. Scharffe and J. de Bruijn. A language to specify mappings between ontologies.
In IEEE SITIS’05, Yaoundé, Cameroon, November 27th - December 1st 2005.

13. Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Don-
ald F. Ferguson. Web Services Platform Architecture : SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall,
March 2005.

14. Microsoft SAP AG Siebel Systems IBM BEA Systems. Business process execution
language for web services version 1.1. Technical report, July 2002.

15. Rachel Reinitz and Andre Tost. Building an enterprise service
bus with websphere application server v6 – part 4– http://www-
128.ibm.com/developerworks/websphere/techjournal/0505 reinitz/0505 reinitz.html.
IBM WebSphere Developer Technical Journal, May 2005.

16. Philippe Lalanda, Luc Bellissard, and Roland Balter. An asynchronous mediation
suite to integrate business and operational processes. In IEEE Internet Computing,
January-February 2006.

17. Philippe Lalanda. E-services infrastructure in power distribution. In IEEE Internet
Computing, May-June 2005.

18. J. Miller and J. Mukerji. Model driven architecture (mda) omg tc document
ormsc/2001-07-01. Technical report, Object Management Group (OMG), July
2001.

19. Frankel David. Model Driven Architecture. John Wiley and Sons Ltd, January
2004. ISBN 0471319201.

20. Jacky Estublier, S. Dami, and M. Amiour. Apel: a graphical yet executable for-
malism for process modeling. In Automated Software Engineering, ASE journal,
volume 5, 1998.

Page 80

Alignment infrastructure for ontology mediation and
other applications

Jérôme Euzenat

INRIA Rhône-Alpes, Montbonnot, France,
Jerome.Euzenat@inrialpes.fr

Abstract. Web services are not the only application requiring ontology matching
and mediation. Agent communication, peer-to-peer systems, etc. also need to find
relationships between ontologies. However, they do not necessarily require the
same kind of mediation as web services. In order to maximise the utility of the
semantic web infrastructure, it seems reasonable to share the mediation services
among these applications. To that extent we propose an infrastructure based on
the reified notion of alignments and show how it can be used in these various
cases.

1 Introduction

Like the web, the semantic web will have to be distributed and heterogeneous. Its main
problem is the integration of the resources that compose it. For contributing solving this
problem, data is expressed in the framework of ontologies. However, ontologies them-
selves can be heterogeneous and some work has to be done to achieve interoperability.

Web services and semantic web services suffer from the same problems. There is
no reason to think that the resources required, provided and consumed by services are
described in the same ontology by services. Requiring this would be a threat to inno-
vation in the domain. In consequence, before comparing or composing services, it is
necessary to find correspondences between the heterogeneous ontologies that are used
for describing them.

Semantic interoperability can be grounded on ontology reconciliation: finding rela-
tionships between concepts belonging to different ontologies.

We call this process “ontology matching”. The ontology matching problem may be
described in one sentence: given two ontologies each describing a set of discrete entities
(which can be classes, properties, rules, predicates, or even formulas), find the corre-
spondences (e.g., equivalence or subsumption) holding between these entities. This set
of correspondences is called an alignment. Since the terminology is not shared between
everyone, here are the definitions of the various terms used in this paper:

matching is the task of comparing two ontologies and finding the relationships be-
tween them;

alignment is the result of the matching task: it is a set of correspondences;
correspondence the relation holding (or supposed to hold according to a particular

matching algorithm or individual) between two entities of different ontologies.
These entities can be as different as classes, individuals, properties or formulas.
Some authors use the term “mapping” or “mapping rule” that will not be used here.

Page 81

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

2 Jérôme Euzenat

transformation a program that transforms an ontology from one ontology expression
language to another;

translation a program that transforms formulas with regard to some ontology into for-
mulas with regard to another ontology (translation can be implemented by a set of
translation rules, an XSLT stylesheet or a more classical program).

bridge axioms are formulas in an ontology language that expresses the relations as
assertions on the related entities. They are used when merging ontologies.

mediator in web services a mediator is a translation of an information stream, in query
application it is a dual pair of translations that transforms the query from one on-
tology to another and that translate the answer back.

This has been identified in some frameworks as ontology mediation [4]. Ontology
mediation consists of taking advantage of the relations between ontologies for compos-
ing services. The semantic web service concept depends on the availability of mediators
anywhere and anytime.

So it seems that the solution is in sharing these alignments. We pretend that semantic
web services should benefit from a wider infrastructure than ontology mediation tools
built for semantic web services only. There are several reasons for this:

Each application can benefit from more algorithms Many different applications have
needs similar to those of web services. It is thus appropriate to share the solutions to
these problems. This is especially true as alignments are quite difficult to provide.

Each algorithm can be used in more applications Alignments can be used for dif-
ferent purposes and must be expressed in a more general way than web service
mediators so that they could be used in other contexts.

Each individual alignment can be reused by different applications There is no magic
algorithm for quickly providing a useful alignment. Once high quality alignments
have been established – either automatically or manually –, it is very important to
be able to store, share and reuse them.

We present in the next section various contexts in which aligning ontologies are
necessary (§2) and what are the needs of these applications (§3). We then describe an
alignment infrastructure for the semantic web (§4) that can be used, in particular, for
ontology mediation in semantic web services.

2 Ontology heterogeneity problems on the semantic web

In this section we introduce a number of examples of semantic heterogeneity on the
semantic web and the benefit they can have from some alignment services. This section
can be skipped by those already convinced of the ubiquity of this problem and that
alignments can be applied to solve it.

2.1 Editing

The first place where ontology heterogeneity can be found is while designing an appli-
cation. If it makes heterogeneous resources interoperate, finding the correspondences

Page 82

Alignment infrastructure for ontology mediation 3

between ontologies in order to include some data transformation in the applications is
an option. In this simple case, the application developer can find the correspondences
by hand and design the corresponding transformations.

Some tools provide support for finding the correspondences, like Protégé through
the Prompt suite of tools [15]. This is a first step towards the integration of mediators.
However, if the alignments between widely accepted ontologies are required, there are
chances that they will have to be found over and over again. An infrastructure capable
of storing the alignments and/or transformations and of providing them on demand to
other users would be useful.

Newer ontology development environments whose goal is to take into account, from
the beginning, networked ontologies take this step. These systems provide together with
the ontologies, the mediators for having their data interoperating, both ontologies and
mediators being distributed on the web.

This first kind of application is simple because it is static: ontologies are encoun-
tered at design time and mediators can be built at that moment. However, in an evolving
world, it is better to design adaptive applications that can dynamically take advantage
of non expected resources and ontologies.

2.2 Semantic web services

Web services have clearly been designed for being independent and replaceable. So,
web service processors are open to incorporate new services in their workflow. For that
purpose, they must be able to compare the description of these services (in order to
know if they can be used and for what) and to route the knowledge they process (in
order to compose different services together).

However, in case of semantic web services, which can be described with regard to
different ontologies, imposing a central common ontology does not seem realistic and
would freeze the possibility of such services. So ontologies used in descriptions must be
matched and mediators must be able to translate the output of one service in a suitable
input for another service [4]. This task can be carried out by hand or by a programme,
online or off-line.

It is thus necessary to generate and store these mediators. Although this can be done
within some static web service workflows, dynamic composition of services requires
a more open infrastructure in which the mediator is defined and involved at run time.
We think that it is preferable to be able to take advantage of what can be provided by
the environment. For that purpose, the environment must store this mediator or some
independent representation from which a mediator can be generated on demand.

2.3 Meaning negotiation in multi agent systems

Agents communicate by exchanging messages. The content of these messages is ex-
pressed in some language, very often with regard to some ontology accessible to the
agent. The FIPA Agent Communication Language [10, 9] makes provision for declar-
ing within messages, the ontology in which their content is expressed.

In a society of independently developed agents, it may happen that agents using
different ontologies have to communicate. Several proposals have been made to address

Page 83

4 Jérôme Euzenat

this situation [1, 17, 16] and we recently proposed ours [8]. Their goal is to assess the
correspondences between the terms of the ontologies. However, these correspondences,
once established (through negotiation or other means), are not stored and cannot be
used in further dialogues or by other similar agents.

In order to share the benefits of the agreed alignments, it is useful to have an infras-
tructure able to find and deliver these alignments. To avoid having all agents embed-
ding heavy matching methods, it is more convenient to have agents and services able to
share stored alignments and matching capabilities. Moreover, having a specific repre-
sentation of alignments enables agents to negotiate them through argumentation before
using them [8].

2.4 Matching contexts in ambient computing

In ambient computing, applications take advantage of the environment for providing
services to users. This environment changes, e.g., with regard to the user location, and
applications must always keep track of the changing environment involving new de-
vices and sensors. By doing so, they will provide context aware solutions. If one wants
to design flexible and smart ambient computing applications, it is necessary to take ad-
vantage of ontologies of these various devices, sensors and their capabilities [5]. Like in
web service descriptions, these ontologies will provide description of the devices (even
abstract devices like a temperature service) and the way to interact with them.

Again, it is expected that device providers will develop different ontologies adapted
to their products or will extend some standard ontologies. Moreover, since applications
evolve in ever changing environments in which devices fail and new ones are added,
there is no way to freeze once and for all the considered ontologies.

In order to properly operate ambient computing environments, applications have
to be expressed in terms of generic features that are matched against the actual envi-
ronment. This matching process can take advantage of ontology matching. Because the
same devices will be met by similar applications, providing a service for reconciling the
various ontologies and storing the result will help these application to share established
alignments.

2.5 Peer to peer mediation

Peer-to-peer systems, when used for sharing discrete resources (files containing images,
music, texts, etc.), are organised independently by each peer. Currently, their descrip-
tions correspond to a hierarchy in which the files are stored. However, improving the
search on these systems requires a finer description of items. Anyone wanting to share
their pictures with their family wants to index them by the name of depicted people, the
place where it is, the sights in the pictures, etc. This tagging scheme will benefit from
using some ontological description (for retrieving the pictures of “one of your daughters
on a horse” by opposition to “Jenny on Tornado”).

Individuals have no or little reasons to commit to the same ontology (like they do
not do in current peer-to-peer systems) and they cannot be prevented from modifying
and refining their current lightweight ontologies [3].

Page 84

Alignment infrastructure for ontology mediation 5

So the use of peer-to-peer systems consists of querying for information and re-
sources to a network of peers, which are all described in autonomous ontologies; in this
situation the queries (and sometimes the answers) must be translated from peer to peer.

This is up to the peer-to-peer systems (with the help of their users) to find the cor-
respondences between ontologies that enable answering queries. This need was explicit
in projects like Edutella [14].

For that purpose, it is useful to be able to propose similar ontologies to users if
they feel like adopting some standard ontologies. It is also useful to provide them with
alignments when they want to issue some query towards other peers and to keep track
of these alignments in order not to bother users again and again. These alignments can
be used in the reverse direction and shared among the peers.

2.6 Emergent semantics between users

In most of the mentioned applications, nodes have their own ontologies and share align-
ments between these ontologies. Because individuals and organizations can have differ-
ent needs and different standpoints, it may be uncomfortable to commit to a single
common ontology. However, the social action of constantly aligning ontologies can be
the occasion to confront and revise these ontologies. So, in an even more dynamic way,
users may want to establish more consensual ontologies from this confrontation [18].

There are several ways in which this can be helped by some alignment infrastruc-
ture:

– Producing alignments contributes to solve the gap between ontologies. The align-
ments are a basis from which some discussion can start (like agent protocol for
arguing about correspondences, see § 2.3);

– Alignment algorithms are very often able to compute a distance between ontolo-
gies. This is useful when one wants to find the closest ontology.

– By building some network of ontologies and alignments in which the alignments
measure the distance between ontologies, it is possible to find out the proximity be-
tween people and agents with the help of social network analysis techniques. They
will provide indication that can help customising the query process, the matchmak-
ing process between people and even the consensus building.

These results will help users and community consolidating their ontologies by first
achieving consensus among the more similar representations. This can also be used for
selecting the most central ontology (in social network analysis terms).

2.7 Safe composition infrastructure

Last, but not least, we proposed in [6] a transformation infrastructure for the semantic
web. Its goal is to provide transformations between heterogeneous ontologies that guar-
antee the properties satisfied by the transformations. These properties can be semantic
properties like model or consequence preservation, or the preservation of some types
of formulas or that only some types of entities are aligned. An organisation can also
certify the alignment.

Page 85

6 Jérôme Euzenat

In a web context, transformations, their properties and their proofs can be made
available on the network. Knowing the semantics of languages and the proofs of the
transformation enables the application of the “proof-carrying code” idea [13] to knowl-
edge exchange. Consequently, the user can be sure that the result of the transformation
is the transcription of the initial knowledge with the desired properties.

In applications like semantic web services, it is critical, before launching some com-
plex workflow to know that it satisfies some properties. In particular, it is important to
assess the level of correctness of mediators (i.e., that an entity is not translated into an-
other entity that will lead the web service to perform inadequately): the correspondences
between ontologies cannot be assumed correct. Proving them would be a must.

3 Towards a common solution

It is clear, from the above examples, that matching ontologies is a major issue on the
semantic web. It is not circumscribed to semantic web services, but applies to any ap-
plication that communicates through ontologies.

3.1 Global needs. . .

As heterogeneous ontologies are a global problem of the semantic web, this calls for an
infrastructure able to help these different applications to deal with it. In such a way, the
effort of interoperating ontologies does not need to be solved in each kind of use made
of this semantic web.

Moreover, given the difficulty of the matching tasks, there are a few algorithms
available and when good alignments are available, it would be very useful to share them
among applications. Hence a global solution requires sharing among various instances
of applications and not only within each kind of application (web services, agents, etc.).

Given that the task (finding correspondences between ontologies) is very basically
the same, it seems possible to use the same tools for that purpose.

3.2 . . . but heterogeneous needs

However, if all these applications require ontology matching, they require it for different
purposes:

– edition requires the ability to transform some ontology in order to integrate it or to
generate a set of bridge axioms that will help identify corresponding concepts (the
transformations act at the ontological level);

– agent communication requires translators for messages sent from one agent to an-
other (they act at the data level); similarly, semantic web services require one-way
data translations for composing services;

– peer-to-peer systems and more generally query systems require bidirectional medi-
ators able to translate queries (ontological level) and translate back answers (data
level).

Page 86

Alignment infrastructure for ontology mediation 7

So, sharing between the applications mentioned here is difficult at the level of the par-
ticular reconciliation services they require. For these reasons, it is certainly more con-
venient to share the matching results themselves (i.e., the alignments) and to ask the
infrastructure to be able to generate the appropriate mediators.

3.3 Requirements

This infrastructure should be able to store and retrieve alignments as well as providing
them on the fly. We call it an infrastructure because it will be shared by the applica-
tions using ontologies on the semantic web. However, it may be seen as a directory or
a service by web services, as an agent by agents, as a library in ambient computing
applications, etc.

Services that are necessary in such an infrastructure are:

– The ability to store alignments, whether they are provided by automatic means or
by hand;

– Their proper annotation in order for the clients to evaluate the opportunity to use
one of them or to start from it (this starts with the information about the matching
algorithms, the justifications for correspondences that can be used in agent argu-
mentation, as well as properties of the alignment, see § 2.7);

– The ability to produce alignments on the fly through various algorithms that can be
extended and parameterized;

– The ability to generate knowledge processors such as mediators, transformations,
translators, rules as well as to process these processors if necessary;

– The possibility to find similar ontologies and to contact other such services in order
to ask them for operations that the current service cannot provide by itself.

In addition, it is necessary that services be able to exchange between them the align-
ments they found and select them on various criteria.

4 Architecture proposal for an alignment infrastructure

We argue below that alignments are the necessary structure for supporting this infras-
tructure. We propose an infrastructure made of a network of services that can be invoked
with some particular commands. These services will manipulate alignments through an
embedded implementation of our Alignment API.

4.1 Alignments

[2] tried to provide some strict definition of the alignment structure so as to be able
to use and reuse it in various situations. Given two ontologies O and O′, alignments
are made of a set of correspondences (called mappings when the relation is oriented)
between pairs of (simple or complex) entities 〈e, e′〉 belonging to O and O′ respectively.

A correspondence is described as a quadruple:

〈e, e′, R, n〉
where:

Page 87

8 Jérôme Euzenat

– e and e′ are the entities (e.g., formulas, terms, classes, individuals) between which
a relation is asserted by the correspondence;

– R is the relation holding between e and e′, asserted by the correspondence. For in-
stance, this relation can be a simple set-theoretic relation (applied to entities seen as
sets or their interpretation seen as sets), a fuzzy relation, a probabilistic distribution
over a complete set of relations, a similarity measure, etc.

– n is a degree of confidence in that correspondence (this degree does not refer to the
relation R, it is rather a measure of the trust in the fact that the correspondence is
appropriate – “I trust 70% the fact that the correspondence is correct/reliable/. . . ” –
and can be compared with the certainty measures provided by meteorological agen-
cies). The trust degree can be computed in many ways, including users’ feedback
or log analysis.

So, the simplest kind of correspondence (level 0) is:

URI1 = URI2

while a more elaborate one could be:

URI1(x, y, z)⇐.85 URI2(x, w) ∧ URI3(z, concat(y, w))

The first one express the equivalence (=) of what is denoted by two URIs (with full
confidence), while the second one is a Horn-clause expressing that if there exists a
w such that URI2(x,w) and URI3(w, concat(y, z)) is true in one ontology then
URI1(x, y, z) must be true in the other one (and the confidence is here quantified with
a .85 degree).

As can be observed from these two examples, alignments in themselves are not tied
to a particular language. But in order to use complex alignments like the second one,
systems must be able to understand the language in which formulas and relations are
expressed. This is supported through the definition of a particular subtype of alignment
(the first example resorting to the level zero of alignment).

We claim that alignments are more intelligible than transformations: they only ex-
press correspondences between ontology entities, not the way they must be used. This
can be the basis for studying their properties (moreover, these properties can also be
inferred from the methods used for generating alignments).

In order to help developing applications based on alignments, we designed the
Alignment API [7]. It has been developed in the aim of manipulating a standard align-
ment format for sharing among matching systems. But it provided the features required
for sharing them more widely. The API is a JAVA description of tools for accessing
alignments in the format presented above.

The Alignment API as been implemented on top of the OWL API (other implemen-
tations could be based on totally different languages). This implementation offers the
following services:

– Storing, finding, and sharing alignments;
– Piping alignments algorithms (for improving an existing alignment);
– Manipulating (trimming and hardening) and combining (merging, composing) align-

ments;

Page 88

Alignment infrastructure for ontology mediation 9

– Generating “mediators” (transformations, axioms, rules in format such as XSLT,
SWRL, OWL, C-OWL, WSML);

– Comparing alignments (like computing precision and recall or a symmetric distance
with regard to a particular reference alignment).

The API also provides the ability to compose matching algorithms and manipulating
alignments through programming. Part of the interface of the API is presented in Ta-
ble 1. The API can be used for producing transformations, rules or bridge axioms inde-
pendently from the algorithm that produced the alignment. Since its definition, several
matching systems have been developed within this API (OLA, OMAP) and more of
them are able to generate its format (FOAM, Prompt, Falcon, etc.).

4.2 Alignment services

Our architecture is based on Alignment services. These services are able to perform a
number of alignment tasks and offer them to the other agents or services. These tasks
are summarised in Table 1.

Service Syntax
Finding a similar ontology O′ ⇐ Match(O, T)

Align two ontologies A′ ⇐ Align(O, O′, A, P)
Thresholding A′ ⇐ Threshold(A, V)

Generating code P ⇐ Render(A, language)
Translating a message m′ ⇐ Translate(m, A)

Storing alignment n ⇐ Store(A, O, O′)
Suppressing alignment Delete(n)

Finding (stored) alignments {n} ⇐ Find(O, O′)
Retrieving alignment: 〈O, O′, A〉 ⇐ Retrieve(n)

Table 1. Services provided by the alignment service and corresponding API primitives (O denotes
an ontology, A an alignment, P parameters, n an index denoting an alignment, P a programme
realising the alignment and T and m some expressions).

Most of these services correspond to what is provided by any implementation of the
Alignment API. They are exposed to clients through various communication channels
(FIPA ACL, SOAP messages) so that all clients can effectively share the infrastructure.

The alignments are indexed by ontology pairs and by surrogates allowing fast re-
trieving. To one surrogate corresponds only one alignment while for an ontology pair,
there can be several such alignments. There is no constraint that the alignments are
computed online or off-line (i.e., they are stored in the alignment store) or that they are
processed by hand or automatically. This kind of information can however be stored
together with the alignment in order for the client to be able to discriminate among
them.

The main principle of the Alignment API is that it can always be extended. In partic-
ular, it is possible to add new matching algorithms and mediator generators that will be

Page 89

10 Jérôme Euzenat

accessible through the API. They will also be accessible through the alignment services.
Services can thus be extended to new needs without breaking the infrastructure.

Moreover, the kind of annotations put on alignments is also extensible. So far, align-
ments contain information about:

– the kind of alignment it is (1:1 or n:m for instance);
– the algorithm that provided it (or if it has been provided by hand);
– the language level used in the alignment (level 0 for the first example, level 2Horn

for the second one);
– the confidence in each correspondence.

Other valuable information that may be added to the alignment format are:

– the parameters passed to the generating algorithm;
– the properties satisfied by the correspondences (and their proof if necessary);
– the certificate from a issuing source;
– the limitations of the use of the alignment;
– the arguments in favour or against a correspondence [8].

4.3 End-user support

The main purpose of the alignment infrastructure is to be invoked by applications that
use the alignments for themselves and generally hide the alignments away from users.

However, in some cases, it is necessary that users have access to these alignments
and the alignment services. This is particularly the case in the editor application in
which it may be useful to allow users to display and modify the alignments by hand.
More generally, it is useful for any application in which alignments can be computed
and reviewed off-line. Edition facilities must enable to provide high quality reviewed
alignments to the infrastructure.

This is also useful in the emergent semantics application when it involves users,
because inspecting alignments can help providing arguments for reaching consensus.

Again, using alignments by opposition to more operational transformation or me-
diators opens the opportunity to share the same tools all over the infrastructure (which
does not exclude, in addition, to use some more specific editors). It will thus be useful
to provide standard tools for ontology editing that can be shared among these various
applications. The VisOn1 tool developed by University of Montréal is such a tool that
can be used for editing alignments in the Alignment API format. Other tools such as
the WSML Mapping language editor [11] could be adapted.

4.4 Inter-service communication

Alignment services must be found on the semantic web. For that purpose they can be
registered by service directories (e.g., UDDI for web services). Services or other agents
should also be able to subscribe some particular results of interest by these services.

1 http://www.iro.umontreal.ca/˜owlola/visualization.html

Page 90

Alignment infrastructure for ontology mediation 11

These directories are useful for other web services, agents, peers to find the align-
ment services. They are even more useful for alignment services to basically outsource
some of their tasks. In particular, it may happen that:

– they cannot render an alignment in a particular format;
– they cannot process a particular matching method;
– they cannot access a particular ontology;
– a particular alignment is already stored by another service.

In these events, the concerned alignment service will be able to call other alignment
services. This is especially useful when the client is not happy with the alignments
provided by the current service, it is then possible to either deliver alignments provided
by other services or to redirect the client to these services.

Moreover, this opens the door to value-added alignment services which use the re-
sults of other services as a pre-processing for their own treatments or which aggregates
the results of other services in order to deliver a better alignment.

Such an organisation takes full advantage of the goal assigned first to the Align-
ment API, namely, the ability to compose matching algorithms, here under the form of
alignment services.

5 Example

We provide below an example of the use of this alignment infrastructure in the context
of agent communication. All actors are agents which communicate through messages
using a small set of FIPA Agent Communication Language message types. The com-
munication rules obey a precise protocol that has been defined in [8].

The scenario presented here involves four agents: two agents a and b are commu-
nicating but agent a uses ontology O while agent b uses O′. b will call two alignment
services c and d with c being a powerful aligner with a restricted access to b environ-
ment (it cannot access O′) and d having a broader access. Lines beginning with “//”
provide explanations for the dialogue moves.

// Agent a is looking for a book and asks agent b
a−query-ref(:ontology O

:language RDQL
:content "SELECT x WHERE x O:autobiography http://www.bertrandrussell.com"
:reply-with 1)→ b

// Agent b does not understand ontology O and asks service c to align it with O′

b−request(:content align(O,O′,∅,∅) :reply-with 1)→ c
// Service c cannot reach ontology O′

b←failure(:in-reply-to 1 :content unreachable(O′))−c
// Agent b asks d to find a similar ontology

b−request(:content find(O′,m) :reply-with 2)→ d
O′′ ⇐Match(O′,T)

// Service d found O′′

b←inform(:in-reply-to 2, :content O′′)−d

Page 91

12 Jérôme Euzenat

// Agent b asks service d to align O′ with O′′

b−request(:content is-align(O′,O′′) :reply-with 3)→ d
s⇐ Find(O′,O′′,∅,∅)

// Service d had already stored such an alignment and returns it
b←inform(:in-reply-to 3, :content s′)−d

// Agent b asks service c to align O with O′′

b−request(:content align(O,O′′,∅,∅) :reply-with 4)→ c
A⇐ Align(O,O′′,∅,∅)
s⇐ Store(O,O′′, A)

// Service c computes the alignment
b←inform(:in-reply-to 4, :content s)−c

// Agent b asks service c to translate the message with the found alignment
b−request(:content translate(m, s) :reply-with 5)→ c
〈O,O′′, A〉 ⇐ Retrieve(s)
m⇐ Translate(m, A)

b←inform(:in-reply-to 5
:content "SELECT x

WHERE x O′:biography http://www.bertrandrussell.com.
x O′:author http://www.bertrandrussell.com.")−c

// Agent b asks service d to translate the result with the O′ to O′′ alignment
b−request(:content translate(m′, s′) :reply-with 6)→ d

〈O′, O′′, A′〉 ⇐ Retrieve(s′)
m′′ ⇐ Translate(m′, A′)

b←inform(:in-reply-to 6
:content "SELECT x

WHERE x rdf:type O′:biografia.
x dc:subject http://www.bertrandrussell.com.
x dc:creator http://www.bertrandrussell.com.")−d

// The returned query is evaluated by agent b
QueryResult(m′′)⇒ x=http://isbn.org/2-436-4428-1

// which returns the answer to agent a
a←reply-ref(:content "x=http://isbn.org/2-436-4428-1" :in-reply-to 1)−b
// a is satisfied and wants to know the publisher of the book
a−request-ref(:content "http://isbn.org/2-436-4428-1 O:publisher x" :reply-with 2)→ b
// b had not recorded the alignment surrogate and asks it to c

b−request(:content align(O,O”,∅,∅) :reply-with 7)→ c
// which only have to retrieve it in its store

s⇐ Find(O,O”,∅,∅)
b←inform(:content s :in-reply-to 7)−c

// b asks c for a program in order to translate the messages by itself
b−request(:content render(s, C-OWL) :reply-with 8)→ c

// but c cannot deliver this format
b←failure(:content unsupported(C-OWL) :in-reply-to 8)−c

// so b ask for another one
b−request(:content render(s, XSLT) :reply-with 9)→ c

Page 92

Alignment infrastructure for ontology mediation 13

〈O,O′′, A〉 ⇐ Retrieve(s)
P ⇐ Render(A, XSLT)

b←inform(:content P :language XSLT :in-reply-to 9)−c
// which is delivered and used by b to translate the message

m′ ⇐ P (m)
// The translation goes once again through d

b−request(:content translate(m′, s′) :reply-with 10)→ d
〈O′, O′′, A′〉 ⇐ Retrieve(s′)
m′′ ⇐ Translate(m′, A′)

b←inform(:in-reply-to 10
:content "SELECT x

WHERE http://isbn.org/2-436-4428-1 dc:publisher x")−d
// and the query is processed by b

QueryResult(m′′)⇒ "x=http://www.example.com/#Routledge"
// which returns the result
a←reply-ref(:content "x=http://www.example.com/#Routledge" :in-reply-to 2)−b

We have not described the use of these services for semantic web services. However,
any application for composing web services may use exactly the same services for
generating mediators.

6 Related work

Most of the work on general organisation of alignments is tied to some kind of appli-
cation (e.g., C-OWL for peer-to-peer applications, WSMX for web services, Edutella
for emerging semantics). The work most similar to the one presented here is that on
MAFRA [12]. MAFRA proposes an architecture for dealing with “semantic bridges”
that offers many functions such as creation and storing of such bridges. The dimension
that distinguishes both works is the insistence of MAFRA to have a transformation as-
sociated with bridges. Although the transformations can take very different forms, this
prevents the use of the same alignment for different purposes: the very benefit of the
proposed architecture.

7 Conclusion

In the semantic web, ontologies are used by different kinds of applications and they
all suffer from ontology heterogeneity. Henceforth, we have considered the problem
of generating mediators for semantic web services as a global problem for the seman-
tic web rather than a specific web service problem. Doing so enables semantic web
applications to share ontology alignments instead of developing concurrent pieces of
infrastructure.

A common infrastructure have to rely on alignments instead of mediators because
alignments can be used by any application. We proposed an alignment infrastructure

Page 93

14 Jérôme Euzenat

based on our Alignment API. The API already implements most of the functions re-
quired for the alignment service. It has been enhanced by an agent interaction protocol
that enables communicating with it and we are developing a web service interface. The
API has been used by various groups, in particular for plugging in their matching algo-
rithms. This API is extensible and can deliver alignments for many different languages.

It is too early to consider the scalability of this approach. On the one hand, aligning
on the fly and using many different ontologies seems a threat to scalability. On the other
hand this may be regarded as a lightweight process with regard to the cost of some
heavy standardisation process. We think that the factor that will help this alignment
infrastructure to scale is its flexible nature.

Of course, the proposed architecture, beside the alignment format and the inter-
action primitives, is open. This means that any other implementation than the current
alignment API can be provided as one service and interact with the other ones.

The same service can be shared by all in a natural way (for agent, the alignment
service is another agent, for services, it is a web service). The fact that the same service
is used throughout the semantic web multiplies the chances that required alignments
are already available and prevents the waste of resources.

We hope to have been convincing that such an infrastructure is worthwhile and
would contribute to the growth of the semantic web and semantic web services.

Acknowledgements: This work has been partly supported by the European network
of excellence Knowledge Web (IST-2004-507482).

References

1. Sidney Bailin and Walt Truszkowski. Ontology negotiation: How agents can really get to
know each other, 2002.

2. Paolo Bouquet, Jérôme Euzenat, Enrico Franconi, Luciano Serafini, Giorgos Stamou, and
Sergio Tessaris. Specification of a common framework for characterizing alignment. deliv-
erable D2.2.1, Knowledge web NoE, 2004.

3. Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic coordination: A new ap-
proach and an application. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,
Proceedings of the 2nd International Semantic Web Conference (ISWC), volume 2870 of
Lecture Notes in Computer Science, pages 130–145, Sanibel Island (FL, USA), October
2003. Springer Verlag.

4. Chris Bussler, Dieter Fensel, and Alexander Mädche. A conceptual architecture for semantic
web enabled web services. SIGMOD Records, 31(4):24–29, 2002.

5. Joelle Coutaz, James Crowley, Simon Dobson, and David Garlan. Context is key. Commu-
nications of the ACM, 48(3):49–53, 2005.

6. Jérôme Euzenat. An infrastructure for formally ensuring interoperability in a heterogeneous
semantic web. In Isabel Cruz, Stefan Decker, Jérôme Euzenat, and Deborah McGuinness,
editors, The emerging semantic web, pages 245–260. IOS press, Amsterdam (NL), 2002.

7. Jérôme Euzenat. An API for ontology alignment. In Proc. 3rd international semantic web
conference, Hiroshima (JP), pages 698–712, 2004.

8. Jérôme Euzenat, Loredana Laera, Valentina Tamma, and Alexandre Viollet. Negotia-
tion/argumentation techniques among agents complying to different ontologies. deliverable
D2.3.7, Knowledge web NoE, 2005.

Page 94

Alignment infrastructure for ontology mediation 15

9. FIPA ACL communicative act library specification. Technical report, FIPA, 2002.
http://www.fipa.org/specs/fipa00037.

10. FIPA ACL message structure specification. Technical report, FIPA, 2002.
http://www.fipa.org/specs/fipa00061.

11. Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Chris Bussler. WSMX –
a semantic service-oriented architecture. In Proceedings International Conference on Web
Services (ICWS 2005), Orlando (FL US), 2005.

12. Alexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA – a mapping
framework for distributed ontologies. In Proceedings of the International Conference on
Knowledge Engineering and Knowledge Management (EKAW), pages 235–250, 2002.

13. George Necula and Peter Lee. Efficient representation and validation of proofs. In Pro-
ceedings of the 13th symposium on "logic in computer science", Indianapolis (IN US), pages
93–104, 1998.

14. Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn Naeve,
Mikael Nilsson, Matthias Palmér, and Tore Risch. EDUTELLA: A P2P networking infras-
tructure based on RDF. In Proceedings WWW Conference, Hawaii (HA US), 2002.

15. Natasha Noy and Mark Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In Proc. 17th AAAI, Austin (TX US), pages 450–455, 2000.
http://citeseer.nj.nec.com/528663.html.

16. Jun Wang and Les Gasser. Mutual online ontology alignment. In AAMAS OAS workshop,
2002.

17. F. Wiesman, N. Roos, and P. Vogt. Automatic ontology mapping for agent communication.
Research memorandum, MERIT-Infonomics, Maastricht (NL), 2001.

18. Anna Zhdanova, Reto Krummenacher, Jan Henke, and Dieter Fensel. Community-driven on-
tology management: DERI case study. In Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, Compiegne (FR), 2005.

Page 95

Page 96

Mappings Creation Using a View Based Approach?

Adrian Mocan, Emilia Cimpian

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway, Ireland

adrian.mocan@deri.org, emilia.cimpian@deri.org

Abstract. Solving the heterogeneity problems between semantically enriched
data can only be done by having accurate alignments between the underlying on-
tologies. To obtain 100% accuracy of these alignments the human user (i.e. the
domain expert) has to be kept in the loop in order to validate the mappings part of
these alignments. Since creating mappings between ontologies in a manual fash-
ion can be an error prone and time consuming task, our aim is to provide semi-
automatic mechanisms that reduce the human effort to simple validations and
choices. Furthermore we propose a mechanism for transforming domain experts
inputs placed in graphical interface in formal representations of the semantic re-
lationships between ontologies. The domain expert can choose between different
views, each of them displaying certain relationships and entities in the ontolo-
gies, used for generating different types of mappings. At each step suggestion
algorithms propose possible solutions for creating new mappings.

1 Introduction

Ontology mappings have become a prerequisite in solving data heterogeneity problems
in the context of Semantic Web and Semantic Web Services. Manual, semi-automatic
or automatic approaches have as output a set of so calledmappings, expression of the
semantic relationships existing between the analyzed ontologies. Accordingly, the map-
pings might be 100% accurate (generated by manual and semi-automatic methods) or
could have a lower accuracy (usually generated by automatic methods).

In this paper we present a semi-automatic way of deriving the semantic relationships
existing between two ontologies (i.e. mappings) and expressing these relationships in a
formalized form. We especially emphasize the step in the mapping process that trans-
forms the domain expert inputs provided by using a graphical interface, in formal repre-
sentation of mappings. By this, the human user is abstracted from the peculiarities of a
specific formalism and they can fully focus on the problem to be solved. The proposed
tool offers a set of features meant to reduce the human user efforts during the mapping
process from a laborious and error prone task to simple choices and validations. This is
done by including a set of mechanisms and strategies to guide the domain expert dur-
ing the entire mapping process and to suggest potential relationships between the two
ontologies. Different views on the ontologies to be mapped can be activated, each of

? This material is based upon works supported by the Science Foundation Ireland under Grant
No. SFI/02/CE1/I131.

Page 97

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

them focusing on certain ontology entities and their relationships. By switching views
different types of mappings can be created using the same principles.

The data mediation prototype we propose is part of Web Service Execution Envi-
ronment (WSMX) [7], a framework capable of dynamic discovery, selection, media-
tion and invocation of Semantic Web Services. WSMX has as conceptual model Web
Service Modeling Ontology (WSMO) [3] and as a consequence, in our approach, the
ontologies to mediate between are WSMO ontologies (i.e. ontologies that conform to
WSMO conceptual model for ontologies).

This paper is structured as follows: Section2 gives a short motivation and describes
the context in which this mediator was developed; Section3 presents the strategies and
mechanisms behind the design-time tool we propose; Section4 presents an example
that shows how our approach can be applied and how the generated mapping rules look
like; Section5 briefly describes two of the existing frameworks that relate to our work
and Section6 concludes the paper and indicates some of the future work.

2 Motivation

In the Semantic Web Services context it is mandatory for the exchanged data to be
semantically described by using ontologies. Furthermore, alignments between different
ontologies used for modelling the same domain have to be provided in order to enable
the inter-operation of various parties using these ontologies. Such an alignment has to
contain a set of (bidirectional) mappings that can be applied on the input data (source
data) to produce the corresponding data in terms of the ontologies used by the target
party. If the interchanged data are part of a business process the necessity of 100%
accuracy1 of mappings is obvious. This leads us to the immediate consequence that the
domain expert has to be kept in the loop to validate these alignments and to assure the
100% accuracy.

The ontology mapping tool developed in WSMX is able to offer support to the do-
main experts in their work, to reduce the amount of effort required and to create a formal
representation of the semantic relationships captured between the source and target on-
tologies. The semantic relationships are expressed as mappings in the abstract mapping
language proposed by [1] and stored in a persistent storage. These mappings are to be
used during the run-time when the actual transformations of the interchanged data is
performed. As the abstract mapping language doesn’t associate any formal semantics
to mappings, a grounding to a concrete language has to be provided. More details can
be found in [5].

3 Mappings Creation - A View Based Approach

The mapping creation process represents one of the most important phases in a me-
diator system. It is a design time process and it is well known that in order to obtain

1 By theaccuracywe don’t necessary understand in this work the correctness of the mappings.
Therefore, we consider that the mappings are accurate if they match the human user inputs,
i.e. domain experts inputs are 100% accurate.

Page 98

high accuracy of the mappings the human user has to be present in this process. We
believe that by offering a set of strategies and methodologies for creating these map-
pings, we can reduce this error prone and laborious process from a manual task to truly
semiautomatic one.

In our view, the mapping process (i.e. the design time phase of the mediation pro-
cess) basically requires three types of actions from the domain expert:

Browse the ontologiesThe domain expert has to discover the ontology elements they
are interested in. This step involves different views on the input ontologies, and
strategies for reducing the amount of information to be processed by the human
user (e.g. contexts based browsing).

Identify the similarities This step involves the identification of semantic relationships
between the entities that are of interest in the two ontologies. For doing this the
human user can make use of the suggestions offered by a set of lexical and structural
algorithms for determining semantic relationships.

Create the mappings This last step involves the capturing of the semantic relation-
ships by mappings. This means that the domain expert has to take the proper actions
in order to capture the semantic relationships in the mapping language statements
or maybe in predefined mapping patterns [2].

We propose a way of tackling the existing gap between the identified semantic re-
lationships of the two ontologies and the mapping language (in our case a logical lan-
guage) statements that capture these relationships. Mapping patterns can fill this gap
only partially, the necessary steps from the semantic relationships identified in graphi-
cal tools to these patterns remaining uncovered.

Our approach describes how the input ontologies can be browsed by using different
views, how the same ontological entities can play different roles in different views and
how certain algorithms can be applied on these roles. We identified a set of views that
can play an important role in the mapping creation process:PartOf view, InstanceOf
view, RelatedByview. Each of them will be described in details in this paper.

3.1 Terminology and General Strategies

We identify a set of general strategies that can be applied no matter what views are
used for browsing the ontologies. Before describing these strategies we have to define
several notions that will be used from now on:

Views A View presents a subset of the ontology entities (e.g. concepts, attributes, rela-
tions, instances) and the relationships existing between them. The views can be seen
as vertical subsets of the ontology – all the entities and relationships of a specific
type (dictated by each particular view) from the ontology are taken in considera-
tion. Usually the view used for browsing the source ontology (source view) and the
view used for browsing the target ontology (target view) have the same type but
there could be cases when different view types are used for source and target.

Roles In each of the views there is a predefined number of roles the ontology entities
can have. In general, particular roles are fulfilled by different ontology entities in
different views and in each of the strategies and algorithms described we refer to

Page 99

roles rather than ontology entities. The roles that can be identified in a view are:
Compound Item, Primitive Item, Description Item.

Compound Item A Compound Itemcontains at least one description associated with
it. For example in thePartOf view a compound item would be a concept that has at
least one attribute.

Primitive Item A Primitive Itemdoesn’t have any description associated. For example
in thePartOf view all data types play the role of a primitive item.

Description Item A Description Itemlinks a Compound Item with other Compound
or Primitive Items. By this we can define asSuccessorof a Description Item, the
Compound or Primitive Item it links to (indicated by→ in Figure1).

Figure 1 presents an abstract representation of a view and the main elements it
consists of.

• primitive_item1
• compound_item1

` descriptionItem1 → compound_item2x
descriptionItem2 → primitive_item1

• primitive_item2
• primitive_item3
• compound_item2

` descriptionItem1 → primitive_item3x
descriptionItem2 → compound_item3

• compound_item3
` descriptionItem1 → primitive_item2
` descriptionItem2 → primitive_item1x

descriptionItem3 → primitive_item3

Fig. 1.Abstract View

All the algorithms and the strategies we propose are designed to be applicable to
any view that meets these abstract specifications. By associating different ontological
entities with the roles presented above, different views are obtained, the results being
interpreted differently in respect with each particular view. One of the most important
advantages of this approach is that these algorithms are immediately reflected in the
graphical interface as unique mechanisms that ca be applied no matter of the view used.

Decomposition Algorithm The decomposition algorithm is one one of the most im-
portant algorithms in our approach and it is used to offer guidance to the domain expert
in the mapping process and to compute the structural factor as part of the suggestions
algorithms (described later on in this section). By decomposition we expose the de-
scriptions of a compound item and make them available to the mapping process. That
is, the decomposition algorithm can be applied on description items and it returns the
description items (if any) for the successors of that particular description items. An
overview of this algorithm is presented below: The implementation ofisCompound,
getDescriptions, getSuccessor, andcreateLoopdiffer from one view to another – for
example, the cases when loops are encountered (i.e. the algorithm will not terminate)
have to be addressed for each view in particular.

Page 100

Table 1.Decomposition Algorithm

decompose (Collection collectionOfItems){
Collection result ;
for each item in collectionOfItems do {
if isCompound (item)

Collection itemsDescriptions = getDescriptions (item);
for each description in itemsDescriptions {
Item successorItem = getSuccessor (description);
if (not createLoop (succesorItem))

result = result + successorItem ;
}

}
return result ;

}

Mapping Contexts During the mediation process not all the information available in
the ontology is of interest for each particular phase of the mapping process. Amapping
contextrepresents a subset of a view and presents only the relevant information for the
current step of the mapping process. The notion of mapping context goes hand in hand
with the decomposition algorithm as a mapping context is updated by applying this
algorithm on a set of items. Thereby, by applying it recursively and updating the cor-
responding mapping context, the domain expert is guided through the mapping process
until all the items from the initial context are mapped. A mapping context can be seen
as a horizontal subset of an ontology2.

Please note that when updating mapping contexts the input of the human user has
to be taken in consideration: the domain expert has to choose the source and the target
items on which the decomposition process has to be applied. Of course, this choice can
be done in a semi-automatic manner, the system suggesting the most probable source-
target combinations to be further explored. Depending on the results returned by apply-
ing the decomposition algorithm on the source and on the target items respectively, four
situations might me encountered:

– Both sides decomposition.For both the source and the target items the decomposi-
tion algorithm returned a non empty set of items. As a consequence both the source
and the target mapping contexts are updated.

– One side decomposition - Source decomposition.Only for the source items the
decomposition returned a non empty set of items. This means that only the source
mapping context is updated while the target mapping context remains unchanged.

– One side decomposition - Target decomposition.This is symmetric with the previ-
ous case. Only the target mapping context is updated, the source mapping context
remaining unchanged.

– No decomposition.Successors were found neither for the source nor for the target,
so no mapping contexts can be updated. Usually this ends the decomposition and
the mapping process for the current branches in the source and target views.

2 As the ontologies are browsed using views, the context becomes a horizontal subset of a view

Page 101

Suggestion Algorithms The suggestion algorithms are used for helping the domain
expert in taking decisions during the mapping process, regarding the possible seman-
tic relationships between source and target items in the current mapping context. We
propose a combination of two types of such algorithms: the first one being the lexical
based algorithms while the second type being the structural algorithms that consider the
description items in their computations.

As a result, for each pair of items we compute a so calledeligibility factor (EF),
which indicates the degree of similarity between the two items: the smallest value (0)
means that the two items are completely different, while the greatest value (1) indicates
that the two items are similar. For dealing with the values between 0 and 1 a threshold
value is used: the values lower than this value indicate different items and values greater
than this value indicate similar elements. Setting a lower threshold assures a greater
number of suggestions, while a higher value for the threshold restricts the number of
suggestion to a smaller subset. The EF is computed as an weighted average between
a structural factor(SF), referring to the structural properties and alexical factor(LF),
referring to the lexical relationships determined for a given pair of items. The SF of
two items is recursively determined by calculating the EF for their descriptions and
for the successors of their descriptions. As mapped items have the EF equal with 1, is
interesting to observe that the suggestions become more accurate the further we advance
in the mapping process.

The weights can be chosen based on the characteristics of the ontologies to be
mapped. For example when mapping between ontologies developed in different lan-
guages the weight of LF should be close to 0 in contrast with the case when mapping
between ontology developed in the same working groups or institutions (the usage of
similar names for related terms is more likely to happen) .

Even if the structural factor is computed using the decomposition algorithm, the
actual heuristics used are dependent on the specific views where it is applied. In a
similar manner the current views determine the weight for the structural and lexical
factors as well as the exact features of the items to be used in computations.

Bottom-up vs Top-Down Approach Considering the algorithms and methods de-
scribed above two possible approaches regarding ontology mapping can be differen-
tiated: bottom-up and top-down approaches.

The bottom-up approach means that the mapping process starts with the mappings
of the primitive items (if possible) and than continues with items having more and
more complex descriptions. By this the pairs of primitive items act like a minimal,
agreed upon set of mappings between the two ontologies, and starting from this minimal
set more complex relationships could be gradually discovered. This approach is useful
when a complete alignment of the two ontologies is desired.

The top-down approach implies that the mapping process starts directly with map-
pings of compound items and it is usually adopted when a concrete heterogeneity prob-
lem has to be resolved. That means that the domain expert is interested only in resolving
particular items mismatches and not in fully aligning the input ontologies. The decom-
position algorithm and the mapping contexts it updates will help the user to identify

Page 102

all the relationships that can be captured by using a specific type of view and that are
relevant to the problems to be solved.

In the same way as for the other algorithms, the applicability and advantages/disad-
vantages of each of these approaches depends on the type of view used.

Abstract Mapping Language The scope of the design-time environment presented
in this paper is to produce formal representations of the semantic relationships identi-
fied/validated by the domain expert using a graphical tool. We chose to express these
relationships as mappings in the language proposed in [1]. It is an abstract mapping
language which does not commit to any existing ontology representation languages,
thereby a formal semantic has to be associated with it and to ground it to a concrete
language. Part of our work was to provide a grounding to Flora23 but for space reasons
we are not discussing it in this paper (a full description can be found in [5]). From the
same reasons we provide only a brief listing of some of the abstract mapping language
statements:

– classMapping- By using this statement, mappings between classes in the source
and the target ontologies are specified. Such a statement can be conditioned by
class conditions (attributeValueConditions, attribuiteTypeConditions, attributeOc-
curenceConditions).

– attributeMapping- Specifies mappings between attributes in the source and target
ontologies. This statements usually appears together with classMappings and can
be conditioned by attribute conditions (valueConditions, typeConditions)

– classAttributeMapping- It specifies mappings between a class or an attribute (or the
other way around) and it can be conditioned by both class conditions and attribute
conditions.

– instanceMapping- It states a mapping between two individuals, one from the source
and the other from the target.

In the next sections we illustrate how these mapping language statements are gen-
erated during design time by using our view based approach.

3.2 PartOf View

The PartOf is probably the most popular view on the ontologies to be aligned. The
roles ofPrimitive itemsare taken by theprimitive concepts(i.e. data types) while the
roles ofCompound itemsare taken byconceptsdescribed by at least one attribute. The
descriptionsare represented byattributesand naturally, thesuccessorof a description
is therangeof that attribute. As shown in Figure2 the successor of a description in this
view (i.e. the range of an attribute) can be either a primitive concept or a compound
concept.

Using this view we can create the following set of mappings:

Primitive Concept to Primitive Concept mapping. Such a mapping generates aclassMap-
pingstatement in the abstract mapping language.

3 Available athttp://flora.sourceforge.net

Page 103

http://flora.sourceforge.net�

• primitive_concept (data type)
• compound_concept

` attribute1 → primitive_concept (range)x
attribute2 → compound_concept (range)

Fig. 2. Elements ofPartOf View

Compound Concept to Compound Concept mapping.This mapping generates aclassMap-
ping statement in the abstract mapping language corresponding to the two com-
pound concepts and triggers the decomposition mechanism, followed by a set of
mappings between the attributes of these compound concepts, respectively. Such
mappings between attributes are described below.

Attribute to Attribute mapping. There are four cases that can be encountered in this
situations, generated by the two types of concepts an attribute can have as range:
primitive concept or compound concept (i.e. primitive range or compound range).

– Primitive rangeon the source andprimitive rangeon the target.
An attributeMappingis generated in the abstract mapping language followed
by a mapping between two primitive concepts.

– Primitive rangeon the source andcompound rangeon the target.
This case generates in the abstract mapping language aclassAttributeMapping
between the owner of the source attribute and the target attribute, followed by
a mapping between two compound concepts: the owner of the source attribute
and the range of the target attribute.

– Compound rangeon the source andprimitive rangeon the target.
This case is symmetric with the one presented above and it generates aclas-
sAttributeMappingin the abstract mapping language (actually this is anat-
tributeClassMappingbut there is only one statement in the language for both
situations) and leads to a compound concept to compound concept mapping as
well.

– Compound rangeon the source andcompound rangeon the target.
An attributeMappingis generated in the abstract mapping language followed
by a mapping between the two compound concepts.

Primitive Concept to Compound Concept mapping.The PartOf view does not al-
low this type of mappings. Such mappings that might seem necessary initially, are
covered by considering a compound concept from the source that has (or inherits)
an attribute pointing to the primitive concept and mapping it with the compound
target concept.

Compound Concept to Primitive Concept mapping.This is a situation similar to the
one above and thePartOf view does not allow this type of mapping. The ratio-
nal behind these restrictions is that such combinations would generate artificial
mappings (with no semantics) between primitive concepts and all the compound
concepts that refer, by means of their attributes, to these primitive concepts. For
example, any compound concept that has an attribute with the rangeStringcould
be mapped withString.

Page 104

3.3 InstanceOfView

During the modeling process a set of instances can be used to properly capture some of
the features of the domain. This is the case for enumeration sets, containing for example
geographical locations, categories or even the allowed values for certain data-types (e.g.
true and false for boolean). In thePartOf view these instances are not visible, however
in the InstanceOfview the primitive items’ role is taken by such instances (we call
themprimitive instances). By using these primitive instances more complex instances
(compound instances) could be created, that is, instances of compound concepts whose
attributes have ranges for which primitive or compound instances already exist or can
be created. The compound instances play the role of compound items in this view (see
Figure3). The descriptions for the compound instances are represented by the attributes
and attribute values corresponding to the compound instances. The attribute values are
in fact the successors of compound items descriptions.

Additionally in this view we have to consider the rest of the concepts, for which
no compound instances can be created. They might be either primitive concepts (they
have no attributes at all) or compound concepts (none of their attributes has a range for
which a primitive instance exists or a compound instance can be created) as identified
in the PartOf view. They will play in this view the role of primitive items and all of
them will be calledprimitive concepts.

• primitive_instance
• compound_instance

` attribute1 → primitive_instancex
attribute2 → compound_instance

• primitive_concept

Fig. 3.Elements ofInstanceOfView

InstanceOfview is used for creating conditional mappings and almost all the cases
presented in thePartOf view occur in this view as well but with the difference that
conditions are associated to mappings:

Primitive Instance to Primitive Instance mapping. This mapping generates aninstanceMap-
pingstatement in the abstract mapping language.

Primitive Instance to Compound Instance mapping.Mappings between a primitive
and a compound instance are not allowed in theInstanceOfview from similar rea-
sons as forPrimitive Concept to Compound Concept mappingin thePartOf view.

Compound Instance to Primitive Instance mapping.The same restriction applies as
above.

Compound Instance to Compound Instance mapping.This mapping generates aclassMap-
ping statement in the abstract mapping language corresponding to the two com-
pound concepts that are instantiated by the compound instances and triggers the
decomposition mechanism, followed by a set of mappings between the attribute val-
ues of these compound instances, respectively. Such mappings between attributes’
values are described below.

Page 105

Attribute value to Attribute value mapping. There are four cases that can be encoun-
tered in this situation, generated by the two types of instances an attribute can have
as value: primitive instance or compound instance (i.e. primitive instance range or
compound instance range).

– Primitive instance rangeon source andprimitive instance rangeon target.
An attributeMappingis generated in the abstract mapping language condi-
tioned by twoattributeValueConditions- one for the source and the other one
for the target attribute.

– Primitive instance rangeon source andcompound instance rangeon target.
This case generates in the abstract mapping language aclassAttributeMapping
between the owners of the source attribute and target attribute followed by a
mapping between two compound instances: the owner of the source attribute
and the range of the target attribute. In addition atypeConditionon the target
attribute is applied.

– Compound instance rangeon source andprimitive instance rangeon target.
This case is symmetric with the one presented above and it generates aclas-
sAttributeMappingin the abstract mapping language and leads to a compound
instance to compound instance mapping as well. In addition atypeCondition
on the source attribute is applied.

– Compound instance rangeon source andcompound instance rangeon target.
An attributeMappingand twotypeConditionsone for the source and the other
one for the target attribute, are generated in the abstract mapping language
followed by a mapping between two compound instances.

In this view, no decomposition process can be applied on the primitive concepts and
they can participate in the following types of mappings:

Primitive Instance to Primitive Concept mapping. This type of mapping is not al-
lowed as the scope of primitive instances is to set conditions when mapping be-
tween other ontological entities. In this case, most probably a Compound Instance
(created based on the initial primitive instance) with a Primitive Concept mapping
should be considered.

Primitive Concept to Primitive Instance. The above restriction applies here as well.
Primitive Concept to Compound Instance mapping.This type of mapping will trig-

ger decomposition on the right side and will generate aclassMappingstatement in
the abstract mapping language. After decomposition, a set of mappings between the
primitive concept and the attribute values of the compound instances can follow.

Primitive Concept to Attribute value mapping. Depending on the range of a partic-
ular attribute value (primitive or compound instance) we have two cases:

– Primitive concepton source andprimitive instance rangeon target.
An attributeValueConditionis added to the mapping between the primitive con-
cept and the concept that owns the attribute (used in the above attribute value).

– Primitive concepton source andcompound instance rangeon target.
A typeConditionis added to the mapping between the primitive concept and
the concept that owns the attribute (used in the above attribute value). After
thisprimitive concept to attribute valuemappings are to be considered.

Page 106

3.4 RelatedByView

Another interesting view to consider is the one whereattributesplay the roles of items.
Each item has two fixed descriptions, one calledhasDomainand the other calledhas-
Range, having as successor the domain and the range of the attribute, respectively. Be-
cause of these two fixed descriptions, all the items arecompound items. In addition,
applying the decomposition algorithm to the descriptions and their successors will trig-
ger a change of the view type. As the successors are concepts, by decomposition the
view will switch fromRelatedByview (see Figure4) to thePartOf view.

• attribute1
` hasDomain → compound_conceptx

hasRange → primitive_concept (data type)
• attribute2

` hasDomain → compound_conceptx
hasRange → compound_concept

Fig. 4.Elements ofRelatedByView

We have two interesting types of mappings that can be done using this view: map-
pings between twoRelatedByviews, and mappings between aRelatedByview and a
PartOf view (for the source and target respectively). For the first case we simply have:

– (Compound) Attribute to (Compound) Attribute Mapping. This is a classical
mapping between two attributes, which will be followed after applying the decom-
position algorithm by mappings between their domains and ranges. Such mappings
can be done using thePartOf view as well, with only one difference: when created
using theRelatedByview, inverse attributes can be mapped, simply by mapping
hasDomainfrom the source with thehasRangedescription from the target andhas-
Rangefrom the source withhasDomainfrom the target. One has to keep in mind
that the decomposition will trigger a view switching (fromRelatedByto PartOf
view) so these mappings are affected by the restriction of thePartOf view (i.e. no
mappings between primitive and compound concepts or vice versa are allowed).
This type of mappings generates anattributeMappingand a pair ofclassMappings
statements in mapping language.

When mapping betweenRelatedByandPartOf view (and vice versa) we can have the
following types of mappings:

– (Compound) Attribute (from RelatedBy) to Compound Concept(from PartOf).
This mapping can be followed by any mappings betweenhasDomainandhasRange
descriptions and descriptions of the compound concept from the target (i.e. at-
tributes) as long as the mappings between successors conform to the restrictions
on mappings in thePartOf view. A classAttributemapping will be generated, fol-
lowed by one or more pairs ofclassAttributeMappingandclassMapping.

– Compound Concept(from PartOf) to (Compound) Attribute (from RelatedBy).
This is a similar type of mapping as the one presented above. AclassAttribute
mapping is created, followed by one or more pairs ofclassAttributeMappingand
classMapping.

Page 107

In the next section we exemplify how a small ontology fragment is captured through
the three types of views presented above.

4 Example

Let’s consider the two fragments of ontology in Table2 and try creating different types
of mappings by using different types of views. For each pair of views we will present
the abstract mappings generated from the graphical tool together with the grounding
from this abstract representation to Flora-2.

Throughout the example we will represent the attributes in the following form in
order to make the mappings self-explanatory:

[(attribute_owner) attribute_owner.attribute name => attribute_range]

The concepts will be referred simply by their names. The mapping process can

Table 2.Source and a target ontology fragments to be mapped

concept person
name ofType xsd:string
age ofType xsd:integer
hasGender ofType gender
hasChild ofType person
marriedTo ofType person

concept gender
range ofType xsd:string

instance male memberOf gender
range hasValue "male"

instance female memberOf gender
range hasValue "female"

concept human
name ofType xsd:string
age ofType xsd:integer
noOfChildren ofType xsd:integer

concept marriage
hasParticipant ofType human
date ofType xsd:date

concept man subConceptOf human

concept women subConceptOf human

start by creating mappings using thePartOf view for both ontology fragments (see
Figure5). The mappings generate the abstract mapping language statements illustrated
in Table3. In order to use these mappings in concrete mediation scenarios a grounding
mechanism is necessary to associate formal semantics to them. Table4 shows how these
mappings can be grounded to Flora-2. The dotted lines in Figure5 shows mappings that
are automatically created due to the inheritance relation existing betweenhumanand
manandhumanandwomanconcepts.

Another set of mappings can be created by usingInstanceOfviews (see Figure6).
These mappings create a set of mapping rules and associate conditions to them, meaning
that a particular mapping is valid only if the associated conditions hold.

Table5 shows these mappings in the abstract mapping language while Table6 con-
tains the same mappings grounded to Flora-2.

Page 108

Fig. 5. Example of mappings between twoPartOf Views

Table 3.Abstract mapping language statements generated by usingPartOf views

Mapping (id000001
classMapping (one-way

string string))
Mapping (id000002

classMapping (one-way
integer integer))

Mapping (id000003
classMapping (one-way

person human))
Mapping (id000004

attributeMapping (one-way
[(person) person.name => string] [(human) human.name => string]))

Mapping (id000005
attributeMapping (one-way

[(person) person.age => integer] [(human) human.age => integer]))

Table 4.Flora-2 statements generated from the abstract mappings in Table3

mediated(X_2, string):string :- X_2:string.
mediated(X_3, integer):integer :- X_3:integer.
mediated(X_4, human):human :- X_4:person.
mediated(X_5, human)[human.name -> Y_6] :- X_5[person.name -> Y_6].
mediated(X_7, human)[human.age -> Y_8] :- X_7[person.age -> Y_8].

Page 109

Fig. 6.Example of mappings between twoInstanceOfViews

Table 5.Abstract mapping language statements generated by usingInstanceOfviews

Mapping (id000011
classMapping (one-way

person man)
attributeValueCondition(person [(person) person.hasGender => string] male)

Mapping (id000012
classMapping (one-way

person women)
attributeValueCondition(person [(person) person.hasGender => string] women)

Table 6.Flora-2 statements generated from the abstract mappings in Table5

mediated(X_9, man):man :- X_9:person, X_9[hasGender -> male].
mediated(X_10, woman):woman :- X_10:person, X_10[hasGender -> female].

Fig. 7.Example of mappings between twoRelatedByViews

Page 110

Another set of mappings can be created by usingRelatedByandPartOf views as
depicted in Figure7, for themarriedTorelation.

These mappings generate two oneclassAttributeMappingand oneattributeClassMap-
pingdenoted in the abstract mapping language by the same statement,classAttributeMap-
ping (see Table7). Table8 depicts the grounding of the abstract mappings in Flora-2.

Table 7. Abstract mapping language statements generated by usingRelatedByandIn-
stanceOfview

Mapping (id000021
classAttributeMapping (one-way

[(person) person.marriedTo => person] marriage))
Mapping (id000022

classAttributeMapping (one-way
person [(marriage) marriage.hasParticipant => human]))

Table 8.Flora-2 statements generated from the abstract mappings in Table7

mediated(X_25, marriage):marriage :- Y_26[person.marriedTo -> Z_27],
mediated(X_25, human):human,
Z_27:human, Y_26:person.

mediated(X_24, marriage)[marriage.hasParticipant -> mediated(Y_23, human)] :-
Y_23:person,
mediated(X_24, marriage):marriage.

5 Related Work

PROMPT is an algorithm and a tool proposed by Noy and Musen [6], which allows
semi-automated ontology merging and alignment. It takes as inputs two ontologies and
guides the user through an iterative process for obtaining a merged ontology as an out-
put. This process starts with the identification of the classes with similar names and
provides a list with initial matches. Then the following steps are repeated several times:
the user selects an action (by choosing a suggestion or by editing the merged ontology
directly) and the tool computes new suggestions and determines the eventual conflicts.

MAFRA [4] is a Mapping Framework for Distributed Ontologies, designed to offer
support at all stages of the ontology mapping life-cycle. The framework is organized
in two dimensions: it contains horizontal and vertical modules. The horizontal mod-
ules (Lift & Normalization, Similarity, Semantic Bridging, Execution, Post-processing)
describe fundamental and distinct phases in the mapping process, while the vertical
modules (Evolution, Domain Constraints & Background Knowledge, Cooperative Con-
sensus Building, Graphical User Interface) run along the entire mapping process inter-
acting with the horizontal modules.

Our approach offers a set of strategies that guides the domain expert through the
whole mapping process. By maintaining proper mapping contexts and applying the de-
composition process we can ensure that a complete set of mappings are derived for

Page 111

that specific problem and give a precise meaning to user’s actions. Further more, alter-
nating different views on the ontologies to be mapped we can change the meaning of
these actions without changing the mapping process. Each of the views we identified
can be used to address different types of ontologies mismatches in a natural way and to
abstract the human expert from the burdensome of the underlying mappings represen-
tation. And finally, we generate a representation of the identified semantic relationships
as mappings in an abstract mapping language offering a great flexibility with respect to
the mapping context in which these mappings are to be used.

The ideas presented in this paper have been implemented as part of WSMX Ontol-
ogy Mapping Tool, delivered as plug-in in the Web Service Modeling Toolkit4.

6 Conclusions and Future Work

Our approach proposes a methodology for mapping creation based on the inputs and
validations of a domain expert. The resulting mappings have a 100% accuracy with
respect to the domain expert inputs. They are represented as statements in an abstract
mapping language, leaving open the possibility to create the most suitable grounding
for a specific application.

Our future plans include refinements of the strategies and methodologies we in-
troduced as: the identification of more views that can have a relevant role in mapping
creations, improvements of the suggestion algorithms (including tuning mechanism)
and of course enhancements of the design-time tool towards a more intuitive and user
friendly graphical interface.

References

1. J. de Bruijn, D. Foxvog, and K. Zimmerman. Ontology mediation patterns. Technical report,
SEKT Deliverable D4.3.1, 2004.

2. Jos de Bruijn, Douglas Foxvog, and Kerstin Zimmerman. Ontology mediation patterns li-
brary. SEKT Project Deliverable D4.3.1, Digital Enterprise Research Institute, University of
Innsbruck, 2004.

3. C. Feier, A. Polleres, R. Dumitru, J. Domingue, M. Stollberg, and D. Fensel. Towards intel-
ligent web services: The web service modeling ontology (WSMO).International Conference
on Intelligent Computing (ICIC), 2005.

4. A. Maedche, B. Motik, N. Silva, and R. Volz. Mafra - a mapping framework for distributed
ontologies. Proceedings of the 13th European Conference on Knowledge Engineering and
Knowledge Management (EKAW), September 2002.

5. A. Mocan and E. Cimpian. WSMX Data Mediation. Technical report, WSMX Working Draft,
http://www.wsmo.org/TR/d13/d13.3/v0.2/, March 2005.

6. D. Noy and M. Munsen. Prompt: Algorithm and tool for automated ontology merging and
alignment.Proceedings of the National Conference on Artificial Intelligence (AAAI), 2000.

7. K. Verma, A. Mocan, M. Zaremba, A. Sheth, and J. A. Miller. Linking semantic web service
efforts. Second International Workshop on Semantic and Dynamic Web Processes (SDWP),
2005.

4 Fore more information seehttp://sourceforge.net/projects/wsmx/

Page 112

http://www.wsmo.org/TR/d13/d13.3/v0.2/�
http://sourceforge.net/projects/wsmx/�

Lifting XML Schemas to Ontologies - The
concept finder algorithm

Philipp Kunfermann, Christian Drumm

SAP Research Center CEC Karlsruhe
SAP AG

philipp.kunfermann@gmail.com

christian.drumm@sap.com

Abstract. In this paper we will present the Concept Finder algorithm.
This algorithm is capable of creating mappings between the elements of
a XML Schema and the concepts of an existing ontology. Furthermore
we present results of a preliminary evaluation where real world schemas
from the area of B2B communication were mapped to different ontologies
using this algorithm.

1 Introduction

The data mediation problem in the context of web services is concerned with
the transformation of a source message MS which adheres to a source message
schema SS into a target message MT that adheres to a target message schema
ST . To solve a given mediation problem a mapping needs to be created based
on the source and the target message schema. In general the creation of such a
mapping in very complex, making the task of developing such transformations
very strenuous and error prone [1].

Semantic Web Service (SWS) are seen as the next evolutionary step after
Web Service. SWS use ontologies to annotate the used data formats. Mappings
between different message formats are in this context created on the semantic
rather than on the syntactic level. In order to enable data mediation on the
semantic level for existing web service and to bootstrap the semantic annotation
of web services we will present an algorithm to relate XML schemas [2] to an
existing ontology.

The remaining of the paper is organized as follows. First we briefly introduce
the lifting problem. After that we present the algorithm we developed and explain
its functionality using a simple example. Finally we present the result achieved
by our approach when applied to real world schemas and ontologies.

2 Lifting

As mentioned in the introduction there are different problem areas in the context
of SWSs that require the linking between purely syntactical data representation
and ontologies. In the remaining of this paper we will call the process of relating
syntactical data representations to ontologies Lifting.

Page 113

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for
private and scientific purposes. Re-publication of material in this volume requires
permission by the copyright owners.

Definition 1 (Lifting) Lifting is the process of semantically annotating a source
schema SS with an ontology O.

Note that this definition doesn’t restrict the nature of the input schemas used
for the lifting process. Furthermore based on the previous definition 3 different
approaches to the lifting problem are possible (see Fig. 1):

– The most basic approach is to create a new ontology based on the source
schema and use that ontology for the annotation

– If an existing ontology should be used for the annotation, a mapping between
the source schema and the target ontology needs to be created

– Finally a combination of the first two approaches could be used by creating
a new ontology from the source schema and by than mapping this ontology
to an already existing one. For this approach existing ontology mapping
techniques could be reused.

Lifting Lifting Lifting

Approach 1

Searched Known

Approach 2 Approach 3

Fig. 1. Different possible approaches to the lifting problem.

In this paper we will present a solution for the second approach describe
above. Our solution, the Concept Finder algorithm, is capable of identifying
mappings between elements of SS and concepts in OT . We have chosen that
approach for two reasons. Firstly we want to annotate existing WS in order to
enable their usage in a SWS environment. For this purpose we need the possibil-
ity to easily relate the XML Schemas describing their in and output messages to
the domain ontologies. Secondly our approach is capable of integrating different
schemas by relating them to a given ontology. This simplifies the integration of
existing services using the ontology as intermediate connector.

Page 114

3 The Concept Finder Algorithm

For the discussion of the Concept Finder algorithm presented in this paper we
have chosen to restrict the supported input data formats to XML for the source
schemas SS and to OWL [3] for the target ontology OT . However the Concept
Finder algorithm can easily be extended to use other input formats for both, SS

and OT .

3.1 Overview

Figure 2 shows a high level overview the Concept Finder algorithm. Creating a
mapping between a source schema and a target ontology consists of three steps:

1. In the first step the user needs to select the source schema SS and the target
ontology OT . The Concept Finder algorithm parses the two files and creates
an internal representation of them.

2. In the next step the user is presented with a graphical representation of
both, SS and OT . The user now needs to select a seed node in SS and a
matching seed concept in OT . This information is necessary in order to give
the Concept Finder algorithm a starting point for exploring the ontology.

3. In the last step the algorithm computes a list of mappings between SS and
OT . Details on how this is done will be given in the subsequent sections.

schema

ontology
Algorithm

.owl

<owl:Class ...
 <rdfs:subClass...
 <owl:Class ...
 </rdfs:subClass...
 </owl:Class>
 <owl:Class ...
...
...

.xsd

<xsd:element ...
 <xsd;complexType
 <xsd:
 <xsd:
 </xsd:
</xsd:element
...
...

mapping

/a/b/c -> A,..
/a/b/ -> B,..
...

Seed node/class

Fig. 2. High level overview of the Concept Finder algorithm

3.2 Details

Starting with the seed node and the seed concept, the algorithm compares the
elements of the schema with relationships in the ontology. In order to do so, it
navigates through the schema and the ontology in different ways. The structure

Page 115

of the schema is traversed depth first while the ontology is traversed based on
the matches that were found with the compared schema elements.

The seed node and seed concept are a schema respectively ontology element
that have to be semantically corresponding. They represent the first match of
our algorithm and define the context in which the algorithm operates in the
schema as well as in the ontology. In order to find the next match, the Concept
Finder algorithm compares every child of the seed node1 with the relationships
of the last matching concept (in the first step this is the seed concept). Firstly,
all subclasses of the seed class (find subclass match) are compared. If no match
is found, the algorithm compares all properties of the seed class (find property
match). If still no match is found for the current element, the child nodes of the
current element are explored in order test if a match can be derived (derived
match).

A similarity test is used to determine if an elements of the SS and an element
of the OT are matching based on their names. It is processed in three steps. In
the first step a normalized levenshtein distance is calculated between the two
names and if it is above a given threshold parameter, the elements are accepted
as matching. If this is not the case, the name of the schema element is in a second
step levenshtein compared with synonyms of the ontology element. In order to
find these synonyms WordNet [4] is used as an external knowledge source. If
still no match is found, the names of the compared elements are tokenized in
a third step. These tokens are compared as in the first step and a new metric
is calculated based on the number of existing and matching tokens. Again a
threshold is applied in order to determine if two elements are matching. If the
elements do not match the algorithm passes to the next schema element that
will be compared with the relationships in the ontology.

After investigating possible mismatches between schema and ontology mod-
els, we discovered that the most important mismatches originate from the de-
veloper’s freedom on how and what he is modeling using a concrete formalism.
Because of the importance of these human caused mismatches, similarity mea-
sures have to be concentrated on features that are intuitive for human beings.
While humans do hardly agree on the data-type, restrictions or even how many
relationships are relevant for a certain concept, names contain important seman-
tics, understandable to every person speaking the same language. Even though
the developer may use different terminology, he will use a name that specifies
the semantic of what he wants to represent. By using synonyms, we test the
elements against a wide range of semantically identical concepts and therefore
find correct match, if existing, with high probability. Nevertheless, from natural
language processing (NLP) it is known that single words may cause ambiguities.
This is prevented by looking at the context of the word. While NLP tries to
interpret the sentence in which a word is presented, the context of the names
in our case is found in the structure of the used models (e.g. branch of the

1 In the following we will call the element that is compared by the algorithm current
element.

Page 116

schema tree). Therefore, Concept Finder navigates through the two models and
compares only elements that are in the same context.

For every current schema element the algorithm does first try to find a sub-
class match. Therefore all subclasses - not only the direct ones - of the last
matched concept are used. This last matched concept semantically corresponds
to the parent element of the current schema element. If the current element is
matching one of the compared subclasses, the relationship with the parent ele-
ment is identified as an inheritance relationship. If no such match is found, the
relationships of the last matching concept will be compared.

ShipToAddressAddress

hasBillToAddress
hasShipToAddress

Address

hasHome

Address

Person
Company

PersonCompany

Fig. 3. The object property conflict.

Trying to find property matches, the Concept Finder algorithm compares all
relationships, data-type properties and object properties, of the last matching
concept with the current element. This comparison is more difficult for object
properties than for datatype properties, as with object properties both, the re-
lationship itself as well as the range concept, have a semantics carrying name
and therefore both of them have to be taken into consideration for the compar-
ison. Figure 3 illustrates that if only the range would be tested, the similarity
for (phasShipToAddress, cAddress)2 and (phasBillToAddress, cAddress) would be the
same with respect to the used similarity test while only the first match is se-
mantically correct. If in the opposite case only the property would be tested,
(phasHome, cAddress) would not be accepted as a match even though it corre-
spond perfectly. In order to prevent that, the similarity test compares both and
calculates the similarity as a mixed and weighted metric.

If no property match was detected, the algorithm tries to capitalize on the
knowledge of inheritance contained in the ontology and derive a match by con-
tinuing to explore the children of the current element. They are still compared
with the relationships of the last matching concept, knowing that subclasses in-
herit all relationships of its parents. If a certain number children of the current

2 When describing the algorithm using examples we will use the following notation:
cname and pname denote a concept or a property in the ontology with a given name;
ename denotes a element in the schema with a given name.

Page 117

element match with relationships of the last matching concept, the probability
for the current element to be corresponding to a subclass is high.

The algorithm navigates in this way through the whole schema tree while
it visits only the relevant concepts of the ontology matching with the schema
elements. This context based navigation makes sense because of the ontologies
nature. As ontologies are used to define concepts and not only to structure
information, we can suppose that if a relationship between two concepts exists
in the real world, they are also represented in the ontology and therefore its
context is explicitly defined. As in the ontology development no general rules
exist on how elaborated a ontology has to be, the algorithm requires to have a
meaningful and sufficiently elaborated ontology as input.

4 Example

In order to illustrate how the algorithm works in more detail, we will apply it
to the schema and ontology excerpt shown in figure 4 and describe the different
execution steps that match these two.

TradingParty

Vendor

AddressIdent. Addr. Identifier

BuyerParty

Trading
Partner

Seller Buyer
PartnerAddress

xsd:int

HouseNbStreet City

Street

hasIdentifier

hasAddress

hasStreet

City

hasCity

xsd:int

hasHouseNb

1.

2. 3.

4. 5. 6.

7.

8. 9.

BillTo
Partner

ShipTo
Partner

Fig. 4. Applying the algorithm.

– Starting with the first match chosen by the user (seed node and seed class)
eTradingParty → cTradingPartner , eT radingP arty’s children, eV endor and
eBuyerParty are explored in order to match them to the ontology3.

– In the first step a match the algorithm tries to find a match for eV endor.
Comparing the subclasses and properties of cTradingPartner with eV endor

would not result in any match4.

3 Figure 5 demonstrates the algorithm’s execution. The current seed elements are
shown in blue/dark-grey, the ones that were already successfully compared are shown
squared and the unsuccessfully compared ones are show yellow/light-grey.

4 This is the case if WordNet is not used or does not contain “Vendor” as a synonym
for “Seller”. We will assume this match is not found for illustrating the further
execution steps

Page 118

– Therefore,Concept Finder starts to explore the eV endor’s child eIdentifier.
No subclass match is found but a correspondence with the trading partner’s
identifier eIdentifier → phasIdentifier.

– Because of the match eAddress → (phasAddress, cAddress), the exploration
continues to compare the children of eAddress with the range class of the
match (cAddress).

– eStreet → (phasStreet, cStreet), eCity → (phasCity, cCity) and eHouseNb →
phasHouseNb are found but cannot be further explored since they are leaf
nodes.

– The algorithm selects eV endor and based on the matches found for its child
node he derives that eV endor could correspond to a subclass of cTradingPartner.
A match eV endor → cTradingPartner is stored with the special remark that
this is a derived subclass match5.

– Now the algorithm selects eBuyerP arty,the next child node of eTradingPartner

where the match eBuyerParty → cBuyerPartner is stored.

A

TP

V

AI A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb

TP

V

AI A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb

TP

V

I A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb A

TP

V

I A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb

S B S B

S BS B

1 2

3 4

Fig. 5. The beginning proceeding of the algorithm.

In continuation “Address” and “Identifier” are matched after the same pro-
cedure until all elements of the schema tree have been explored.

5 Evaluation

We evaluated the Concept Finder algorithm using four scenarios based on dif-
ferent real world schemas and different ontologies. However, as these evaluations
using large real world schemas and large ontologies are very time consuming and
5 Note that it would easily be possible to test for all subclasses contained in the on-

tology, if children of eV endor match to properties of them. Hereby the exact subclass
match could be found automatically. As this demands much more computational
effort it was not implemented in the prototype and therefore the user has to assign
the exact subclasses manually at the moment.

Page 119

strenuous, we were not able to perform a comprehensive evaluation. Instead we
created three evaluation scenarios based on the following real world schemas:

– sap-order.xsd
– catalog.xsd

The sap-order schema is a schema developed by SAP describing a purchase
order in the well known order to invoice process [5]. The second schema, the
catalog.xsd describes a product catalog and is part of the BMECat [6] stan-
dard. In addition to the schemas two different ontologies where used in the
evaluation scenarios. The first one, which will in the following be called Lifting
Ontology (LO) was manually developed after studying the SAP order to invoice
process. The second one, the Business Data Ontology (BDO) [7] is an ontology
developed as part of the DIP project [8]. It is based on the UBL [9] standard
and describes the domain of business-to-business communication.

Based on these schemas and ontologies the following scenarios where devel-
oped for the evaluation:

– Scenario 1: sap-order.xsd → LO. Our first scenario uses similar inputs as
the LO is based on the set of schemas which sap-order.xsd is part of.

– Scenario 2: sap-order.xsd → BDO. The BDO covers a bigger domain and
is much more complete in sense of number of concepts than the LO ontology.
In this scenario the only dependency between the schema and the ontology
is the domain of interest. They have been created independently and for
different purposes.

– Scenario 3: catalog.xsd → LO. For the third scenario the schema originates
from a different domain than the used ontology, namely the exchange of
product catalogues.

– Scenario 4: catalog.xsd → BDO. This scenario is similar to the third sce-
nario. Only the used target ontology differs.

Using the metrics used in [1] we achieved the results presented in table 1.
The table shows for each of the four scenarios described above two results. This
is due to the fact that we evaluated the Concept Finder algorithm using two
operation modes. The first row of values show the results achieved when running
the algorithm in fully automatic mode whereas the second row shows the results
when running the algorithm semi-automatically.

5.1 Discussion

The results of the scenarios 1,3 and 4 show, that the Concept Finder algorithm
generally achieves very good results. Even for schemas that only partly overlap
with the domain of the ontology, algorithm achieves and overall result between
0.75 and 0.8 in automatic mode and between 0.85 and 0.92 in semi-automatic
mode.

In the second scenario, the algorithm achieves only poor results running
automatically. The results in this scenario significantly improve if the algorithm

Page 120

Table 1. The results of the evaluation of the Concept Finder algorithm

Precision Recall Overall

Scenario 1a 0.746 0.842 0.898
Scenario 1b 0.831 0.858 0.970

Scenario 2a -0.248 0.050 0.143
Scenario 2b 0.375 0.594 0.731

Scenario 3a 0.643 0.857 0.800
Scenario 3b 0.786 0.857 0.923

Scenario 4a 0.400 0.600 0.750
Scenario 4b 0.500 0.600 0.857

is run semi-automatically. The reason for the poor results in automatic mode is,
that if the ontology is not complete enough, it is possible that by not finding a
matching concept for the current element, the algorithm is mislead. Thus, if the
comparison point (current class) in the ontology does not anymore correspond
to what the element in the schema represents, the algorithm may not recover
and will only produce false matches, leading to poor results.

Therefore the overall results of our experiments show are twofold. On the
one hand, even in the full automatic mode, the algorithm performs very well for
most inputs. On the other hand it is possible that the Concept Finder algorithm
is mislead and may perform bad if the structures of the source schema and the
target ontology are too different.

An important observation of the evaluation is that a semi-automatic lifting
in general seems to perform very good in terms of precision, recall and manual
effort and seems to be a very promising approach.

6 Summary and Outlook

In this paper we have presented a new algorithm for lifting existing XML Schema
to ontologies. The first evaluation of this algorithm using real world schemas
originating from the area of B2B communication show very promising results.

The current implementation of the algorithm is based on a very simple lin-
guistic algorithm to identify possible correspondences between the source schema
and the target ontology. If a set of matchers, similar to the ideas presented in
[1] would be used, accuracy of the created mappings could be further improved.
Furthermore 1−n and m−1 correspondences between schema elements and on-
tology concepts need to be taken into account. Finally a improvement of the user
interface for the semi-automatic creation of liftings could improve the quality of
the results and minimize the necessary user effort.

References

1. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proc. 28th VLDB Conference. (2002)

Page 121

2. W3C: XML schema. Online (2001) http://www.w3.org/XML/Schema.
3. McGuinness, D., van Harmelen, F.: Owl web ontology language overview.

http://www.w3.org/TR/owl-features/#s3.4 (2004) [Online; accessed 6-Sept-2005].
4. Princeton University: Wordnet - a lexical database for the english language.

http://wordnet.princeton.edu/index.shtml (2005) [Online; accessed 3-Jul-2005].
5. SAP AG: Order schema. http://sap.com/xi/EBP (2002)
6. eBusiness Standardization Commitee: Bmecat. http://www.bmecat.org (2005) [On-

line; accessed 25-Aug-2005].
7. Nagypal, G., Lemcke, J.: D3.3 a business data ontology, wp3: Service ontologies

and service description. - D3.3 (2005) 141
8. DIP: Data, information, and process integration with semantic web services. online

(2004) http://dip.semanticweb.org/.
9. OASIS: UBL. Online (2003) http://www.oasis-open.org/committees/ubl/.

Page 122

