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Abstract. Keeping a player within the flow in a game is a central goal
for game designers, making the game neither too easy nor too hard.
Dynamic Difficulty adjustment seeks to fulfill this goal by dynamically
tuning difficulty according to player actions in the game.

In this paper we demonstrate that case-based reasoning with time series
can serve to automatically identify the ability of a player in a game, and
thus serve as the input for difficulty adjustment based on player ability.
We try different configurations for the generation of the case base from
game logs, and compare them in terms of how well they classify player
ability.
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1 Introduction

Player satisfaction is the most important goal for computer games, mainly be-
cause if a player does not have fun, then he will stop playing the game [I6].
So, maintaining “flow” or the engagement of the player is crucial. According to
Nakamura and Csikszentmihalyi [I3] in order to maintain “flow” they should
perceive challenges that enhance their skills, clear goals and immediate feed-
back. The challenges proposed should be at the “right” level, in the way that
the players are challenged but not overwhelmed.

Even in the most simple games, there are several factors that distinguish one
player from another, hence there is not a static configuration in level of difficulty
for everyone. If we are able to differentiate players by their interaction within
the game, then we had improved their satisfaction.

The dynamic difficulty adjustment (DDA) can be applied in many games,
despite its genre [§]. The difficulty is considered a subjective factor which is
derived from the interaction between the player and the proposed challenge.
This is not a static property, because it changes depending on the time spent by
the player mastering a skill [IT7]. According to Daniel Cook in the chemistry of
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game design [3], players are driven by the desire of mastering new skills. Once the
player overcomes a challenge fun is achieved. After that, the game gives rewards
for the hard work and creates new challenges to conquer. The game creates a
loop of learning-mastery-reward which needs to be balanced in order to keep
players interested.

To improve players satisfaction, we can apply an implicit approach in order to
use machine learning techniques to adjust a game’s difficulty [2I]. Dynamic Dif-
ficulty Adjustment helps to maintain the right balance depending on the player
behavior. However, DDA usually involves a great amount of work for developers
and designers that cannot be reused in other video games. That is why research is
important to decrease the costs related to development of adaptive video games
using different techniques, such us, automatically extracting information from
players interaction.

It is possible to know players skill level by evaluating their behavior dur-
ing gameplay. Their expertise can not be determined from a single action or
move. However, it can be resolved with the behavior displayed in a period of
time. A time series data is a series of observations made sequentially over time
[6UIRI20/19]. It distinguishes from static data, because of its numerical and con-
tinuous nature which is always considered as a whole instead of a single numerical
field.

Our main goal, is to create a general approach for DDA that receive as input
the players behavior and ways to modify difficulty of a game, and produces an
output with the right level of difficulty. We had started our journey with a simple
game like Tetris to determine the best way to achieve this. We extract traces
from previous games and build a case base in which each case describes how the
user places pieces in the game board. Case-based reasoning is a popular approach
for learning by experience [1l4]. The main advantage of employing CBR is that
each observation is stored as a concrete problem-solution pair. This way, we have
a training set full with past player behaviors, which let us determine with an
heuristic which behaviors are “better” than others, tag them and compare them
with the behavior of a player which game have not finished. For the purpose of
this paper, a game trace describes the evolution of different variables during the
game and it may contain data of the interaction between the user and the game
as well as data about the virtual environment where user interacts.

The rest of the paper is organized as follows. First, we discus the game and
the features extracted from the game traces to characterize the level of skills.
Then, we explain our approach to dynamically adjust the difficulty of the game.
Next, we present the experimental setup and the results obtained. Finally, the
paper closes with related work, conclusions and directions for future research.

2 Tetris Analytics and previous work

Tetris (Figure[l]) is a very popular video game in which the player has to place
different tetromino pieces that fall from the top of the screen in a rectangular
game board. When a row of the game board is complete, i.e. it has no holes,
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Fig. 1: A screen of the Tetris game.

the row disappears, all pieces above drop one row and the player is rewarded
with some points. As the game progresses the new pieces fall faster and faster,
gradually increasing the difficulty, until one of the new pieces does not fit in the
board and the game ends. The goal of the game, therefore, is to complete as
many lines as possible to increase the score and make room for the next pieces.
Although the game is quite simple to play, it is also very difficult to master and
hard to solve from a computational point of view [2].

In our experiments we use Tetris Analytics, a version of the game that looks
like an ordinary Tetris from the point of view of the player but provides extra
functionality to extract, store and reproduce game traces. From these traces,
we can select the most significant features to characterize the playing style of
each player, determine his skill level and dynamically adjust the difficulty of the
game. This way, we can personalize the game for each player in order to improve
his user experience.

Each time a new piece appears on the top of the game board, the player
has to make two different decisions. The first one, that we call tactical, is to
decide the final location and rotation of the piece. The second decision involves
all the mowes required to lead the piece to its final location. For now we have
considered only the tactical decisions in order to define the skill level of the
player, but we are aware that we could also extract valuable information from
the concrete moves (looking at parameters like speed, cadence, moves undone,
...) and we plan to extend our work to consider them in the future.

In our previous work [I0] we have been able to detect 3 different playing styles
using clustering techniques on the game traces. We identified each of the clusters
with a different set of players depending on their skill level: newbie, average and
expert. For example, newbie players tend to place the pieces more often on the
left and right sides of the board than in the middle, and they rotate the pieces
less than more experienced players. Average and expert players, on the other
hand, play most of the time placing pieces in the lower half of the game board



and only when the game is close to the end and the speed of the falling pieces
is very high, they are forced to place the pieces in the upper area.

In Dynamic Difficulty Adjustment in Tetris [10], we performed a small exper-
iment in which we used the first tactical decisions in new games to dynamically
classify the skill level of the player (looking for the most similar cluster) and
adjust the difficulty of the game accordingly. In Tetris there are 2 obvious ways
to adjust the difficulty of the game: to change the speed of the falling pieces or
to select a different next piece. In the experiments we used the second approach
because it is more difficult to detect (player usually do not want to know that we
are making the game easier for them). The difficulty of the game was adjusted
only once at the beginning of the game depending on the first tactical decisions
of the player. The results, although very preliminary, showed that DDA was
perceived as something good and improved the game experience for most of the
players.

In this work, we focus on the problem of deciding the skill level of the player
more dynamically, not only at the beginning but throughout the entire game.
This way, we expect to better adjust the difficulty to the progression of the
player. In order to do it we have selected a few number of game features that we
describe in the next section, and we study how they evolve over time.

3 Data collection and feature selection

In order to collect data we asked 10 different players with diverse skill levels to
play a total of 60 games of Tetris Analytics. Next we analyzed the game traces
and extracted the following features for every tactical decision the players made
in the game, that is, every time they placed a new piece in its final location:

— Number of piece: the number of the current piece from the beginning of
the game. Since we only consider tactical decisions, the number of piece
corresponds to the moment of the game in which this sample is extracted.
Current score: the accumulative game score obtain by the player after placing
the current piece. We expect to see a clear correlation between the score
during the game and the skill level of the player.

— Number of holes: if the pieces are not placed carefully in the board, it is
common to leave empty holes under other pieces in the same column. Good
players tend to compact very well the pieces in the board without leaving
holes so that will be easier to complete lines with the next pieces.

— Height of the board: measured as the highest row with some piece. Good
players tend to play most of the game in the lowest half of the board because
each time they complete a line the height of the board decreases in one unit.

For example, the game state in Figure [I] correspond to the 8th piece of the
game, the game score will be 105 plus the points obtained for placing the current
piece, and the height of the board is 6 because that is the highest occupied row
in the last column on the right side of the board. In this way, a game can be seen
as a sequence of tuples or samples describing these values for each piece placed.
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Fig. 2: Scores of the games in the training data.

Note that, in contrast with other approaches that use more complex state
representations (like the state of each cell in the board), our features try to
summarize the skill of the player from very little information. On the other
hand, we will look at the progression of those features over time to classify the
player instead of just looking at the current game state.

We can classify each game in a different skill class based on the final score
obtained. Figure [2| shows the distribution of the game scores in the traces. We
can see groups of points very close to each other in some intervals and some gaps
between those intervals. Those gaps are good candidates to split the different
skill classes and in fact we used them to range 3 different skill levels:

— Newbie: games with a total score between 0 and 2999.
— Average: games with a total score between 3000 and 5999.
— Expert: games with more than 6000 points.

After the analysis 21.6% of the games were classified in the newbie category,
46.2% in the average category and 32.2% in the expert category. Once we know
the category of each game we can tag every sample in that particular game with
the same category and use any supervised learning algorithm to build a classifier.

4 Temporal Series and Cases

Samples in the dataset summarize the state of the game (score, number of holes
and board height) after the player places each new piece in the board. In general
it is not easy to predict the skill level of the player from a static picture of the
game, it is much easier if we consider the evolution of the game during some
seconds. With this idea in mind, we decided to reorganize the data to create
time series describing the evolution of each parameter.

For example, Figure [3] shows the progression of the different parameters dur-
ing one particular game. The blue line represents the game score. It starts in
0 and always increases because the player gets points each time a new piece
appears on the top of the board. The abrupt changes in the score correspond
to complete lines removed from the board as the result of a good tactical move.
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Fig. 3: Evolution of the parameters throughout a game.

In this example the player got 2260 points after 61 pieces so this game will be
classified in the Newbie category. The green line represents the evolution of the
board height and changes from 0 (an empty board) to 20 (last row and end of
the game). We can see that the player had some problems around piece 25 when
the board height reached the row 17, but he was able to control the situation
and keep the board height stable for another 30 pieces. It is interesting to note
the correlation between the score and the board height: completed lines decrease
the height of the board and quickly increase the game score. Finally, the red line
corresponds to the number of holes in the board. Usually, the more holes in the
board the more difficult is to complete lines. This last parameter shows a higher
variability compared to the other two during the game.

Next we divided each game in small fragments that we call cases and rep-
resent the evolution of the game during a certain time window. The size of the
time window controls what part of the game is captured in each case and de-
termines the length of the time series that we have to consider. Each case is
made of 4 parameters: the number of the piece describing the moment of the
game in which the case was created; and 3 time series describing the evolution of
the score, number of holes and board height during the last n pieces or tactical
decisions.

There are different approaches to divide a game into cases. Figure [4] shows
the ones we have considered:

— Single: each case only describes the current game state and there is a case
for each piece in the game. We do not use time series in this first approach
(o equivalently the time window size is 1).

— Consecutive: we only create new cases every 10 pieces and each case contains
3 non-overlapping time series to describe the evolution of the parameters
during the last 10 pieces. A disadvantage of this approach is that the player
can only be classified again every 10 pieces.
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Fig. 4: Different time series sampling approaches.

— Querlapped: same idea but now the time series overlap in time, so we create
a case describing the evolution of the parameters during the last 10 pieces.

— From start: we create a new case for every piece describing the evolution of
the parameters from the beginning of the game to the current moment. In
this approach time series have different length depending of the moment of
the game when they are sampled.

These approaches result in 4 different case bases. In order to decide the skill
level of a new player we use a k nearest neighbor classifier (k-NN), and the
player skill class is decided by a majority vote among the retrieved cases. It is
interesting to note that when we look for similar cases in the case base we only
consider those that were created at the same moment in previous games. For
example, in order to predict the skill level of the player at piece number 20 we
only consider cases created at piece 20 in previous games. This filter reduces
significantly the number of cases to consider and let us to compare time series
with the same length (even in the From start approach).

The similarity between 2 cases is computed as a liner combination of the
similarities between the normalized time series. Several different distances have
been proposed for time series [I8], in this work we use a simple similarity measure
based on the euclidean distance:

sime(c1, ca) = ay simys(c1.score, ca.score) +
Qg simys(c1.holes, co.holes) +

ag simys(c1.height, co.height)

simys(r, s)

As part of the future work, we would like to investigate other distances be-
tween time series and study their effect in the case retrieval phase. In the fol-
lowing section we evaluate the performance of each case base.



Classifier Precision|a; (score)|az (num holes)|as (board height)
Clusters 39.64 - - -

CBR Single 59.47 0.40 0.50 0.10

CBR Consecutive| 64.09 0.50 0.45 0.05

CBR Overlapped | 65.42 0.70 0.25 0.05

CBR From start | 60.53 0.70 0.25 0.05

Table 1: Precision and best weights using 10-NN.

5 Experimental Evaluation

For every approach, we evaluate data from different moments throughout the
game to predict players skill level. We do this to avoid two possible scenarios.
First, the users cheating the classifier playing like newbie at the beginning and
then playing with their real skill level, which will give them great advantage.
Second, the user playing odd in brief period of time due to external factors.

Each one of the 4 approaches described before results in 4 different case-
based reasoning (CBR) systems. Now we intent to know which approach is more
accurate to determine the players skill level throughout the game. This way,
we will be able to adjust the difficulty of the game in several moments during
gameplay. In the comparison we also include our previous approach based on
clustering of game traces [10]. Table [1| summarizes the precision results using
10-fold cross validation and the optimal weights in the similarity function for
each classifier.

The Cluster based classifier used in our previous work does not perform very
well when use it to classify users according to their skill level throughout the
entire game. CBR approaches, on the contrary, obtain better results because
they are based on a reduced number of selected features (the training data is
simpler and less noisy) and because we can tune the similarity measure to provide
different importance to each of the parameters. All CBR approaches in Table
were evaluated using 10-NN in which the player skill class was decided by a
majority vote, and the optimal weights were selected using a exhaustive grid
search with increments of 0.05.

It is interesting to note that all the approaches based on time series are better
than the Single classifier. In particular, the approach based on overlapped time
series obtains the highest precision (65.42%) and has the advantage that can
be used in any moment of the game after piece number 10. Using time series
from the start of the game to the current time seems to have no beneficial
effect, probably because the euclidean distance considers equally important all
the values in the time series. In games, recent events are usually more important
that those that occurred long time ago and we think the precision could be
improved using a similarity measure for time series that takes this into account.
Regarding the weights, the score is the predominant parameter to decide the
skill level as it was expected, followed by the number of holes. The height of the



k=1k=3k=5k =10
CBR Single 57.83(58.98 59.82| 59.47
CBR Consecutive| 60.68 | 63.64 | 63.86 | 64.09
CBR Overlapped |63.51(64.71(65.07| 65.42
CBR From start |63.46 |64.49|62.93| 60.53
Table 2: Precision when we retrieve k cases to predict the skill class.
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Fig. 5: Precision during the game.

board is negligible, probable because of the correlation between this parameter
and the score that was explained in the previous section (see Figure [3)).

Table [2] shows the precision of each system when we retrieve a different num-
ber of similar cases to make the prediction. Except in the From start approach,
the more cases we consider to classify the player the higher the precision of the
system.

Finally, Figure [5| shows the evolution of the precision during the game. In
general, the more advanced is the game the easiest is to predict the level of the
player. Note however that in order to dynamically adjust the difficulty of the
game and improve the player experience it is important to classify the player
soon and adapt the difficulty of the game accordingly.

6 Related Work

Nowdays there are two approaches for setting up the difficulty adjustment of a
game. The first approach is to let the user to manually set the level of difficulty
of the game (e.g. easy, medium, hard). But this implies that the game have
to use a specific heuristic that employs the main features of the game for each



difficulty level. This is a disadvantage because makes it hard to transfer to other
games, requires additional testing and programming, which means higher costs
[12]. Also, it still continues to be a static adjustment where every main feature
is set in a specific value depending on the level of difficulty chosen by the player
and will not change during gameplay to adjust accordingly to players evolution.
Although, when a player is consider an average user or an expert one, does not
mean that all the master skills will be above a expected value. In general, users
do not learn all the skills at the same pace. That’s why, this approach is not as
accurate as desire.

Alternatively, we have Dynamic Difficulty Adjustment which is used for au-
tomatically alter games difficulty in order to meet players expectations [9]. One
popular approach of DDA is the Rubber Band AI, which means that the player
and her opponents are virtually bound together by a some kind of “rubber band”.
This cause that the behavior of the player reflects on how their opponents acts,
i.e. if the player displays higher level of skills, then her opponents will have a
complex behavior or if we have a newbie, then her opponents will have a simpler
behavior [21].

With Machine Learning techniques, we can learn and make predictions based
on data resulting from player behavior. Romdhane and Lamontagne [I5/14] used
a CBR system with Tetris to assess the quality of the cases and to maintain
control in the size of the case base. They discover that case usage is the best
criteria for forgetting cases. Also, Floyd and Esfandiari [B] created an agent
based on case-based reasoning framework which learn by observation. In one
of the cases presented, the agent learn to play Tetris from an external source.
With CBR systems, it is possible to determine the skill level of a player based on
how others played previously. And therefore, been able to adjust the difficulty of
the game according to each player level. Moreover, time series had been used to
know the evolution of a player during gameplay. Menéndez et al. [I7] are able to
extract gamer profile evolution based on the application of time series clustering
techniques from their interaction with an Action-RPG game called “Dream”.

7 Conclusions

In this work, we present a game called “TetrisAnalytics”, which is like a simple
Tetris game, but allows you to save the players interaction and the state of the
board. During gameplay the user have to avoid the pieces reach the top of the
board by doing lines. The game extract the number of pieces, current score,
number of holes and height of the board per tactical move, i.e. every time the
player locate a piece on the board, we collect the mentioned features.

With the data collected, we are able to create a database of past experiences
and each tactical move can be classified by newbie, average and expert depending
on the total score of the game to it’s belong. By creating new cases every 10
consecutive tactical moves, each case containing 3 overlapped time series, we are
able to describe the evolution of the parameters during that period of time. This
way, the player only have to play without DDA the first 10 tactical moves. This



approach give us a better accuracy for predicting the players skill level, because
not only evaluates the individual moves, but the evolution of the player in a
period of time.

As future work, we will implement this approach in “TetrisAnalytics” and

verify with new players if their user experience is improved notably by applying
dynamic difficulty adjustment during gameplay in comparision to our previous
experiments where difficulty was adjusted just once in the game.
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