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Abstract

Emergency Department Chief Complaints have been used to detect the size
and the spread of disease outbreaks in the past. Chief complaints are read-
ily available in digital formats and provide a good data source for syndromic
surveillance. This paper reports our findings on the identification of the dis-
tribution of a few syndromes over time using the Victorian Syndromic Surveil-
lance (SynSurv) data set. We utilized a machine learning-based Näıve Bayes
classifier to predict the syndromic group of unseen chief complaints. Then,
we analyzed the patterns of the distributions of three syndromes in the Syn-
Surv data, specifically the Flu-like Illness, Acute Respiratory, and Diarrhoea
syndromes, over sliding windows of time using the EARS C1, C2, and C3
aberrancy detection algorithms. The results of our analyses demonstrate that
applying aberrancy algorithms over the variance data between two consecutive
weeks reduces the large number of possible disease outbreaks detected using
raw frequencies of the syndromic groups in the same time period, resulting in
a more feasible approach for practical syndromic surveillance.
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2 Introduction

The risk of bio-terrorist attacks and pathogenic diseases such as SARS have resulted in an increased need for
ongoing syndromic surveillance of life-threatening diseases. During the past few decades, Natural Language
Processing techniques have been widely used in biosurveillance for detecting disease outbreaks from health-
related data sets [2]. Chief complaints and triage notes at an Emergency Department provide a good data source
for the detection of such disease outbreaks. A chief complaint is a short summary of symptoms experienced
by the patient at the time of arrival at an Emergency Department. The confirmation of an infectious disease
or pathogen-borne illness usually requires extensive laboratory testing and may take days. This is a time
consuming process which may result in the late-identification of a significant disease outbreak; however, with
constant monitoring of chief complaints the usual delays in the process can be significantly reduced.

Syndromic surveillance has a focus on following the size, spread, and tempo of outbreaks with the aim of
monitoring disease trends and providing reassurance that an outbreak has not occurred [11]. If chief complaints
can be classified into syndromic groups, then abnormally high visit rates with a specific syndrome can easily
send an early signal of a disease outbreak in real-time. After the anthrax letter threat in 2001, a range of
projects were initiated to classify chief complaints into syndromic categories and detect disease outbreaks using
supervised machine learning methods [6, 5, 3, 19]. Supervised algorithms use existing chief complaints and
develop a classification system to predict the syndromic group of new unseen chief complaints.

In this work, we aim to find disease outbreaks through the analysis of chief complaint texts in the emergency
department. We approach this task using a combination of supervised machine learning methods and statistical
aberrancy detection algorithms over shifting windows of time. We analyse the performance of the approach
using the Victorian Syndromic Surveillance (SynSurv) data set, and consider the effectiveness of the algorithm



to retrospectively identify outbreaks. We compare the raw frequencies over consecutive time periods with the
use of the differences between total frequencies of the positive classified syndromes in detecting aberrancies.

3 Methods

3.1 SynSurv Data Set

The SynSurv syndromic surveillance data was collected from the Emergency Departments of two of the main
hospitals in the city of Melbourne, Australia, the Royal Melbourne Hospital and the Alfred Hospital. The data
was collected on behalf of the Victorian Department of Health, initially to enable monitoring during the 2006
Commonwealth Games held in Melbourne. The data covers the period July 2005 to August 2009. The syndromes
that we focused on in the data set were Flu-like Illness, Diarrhoea and Acute Respiratory. The SynSurv data
set contained a total number of 314,630 chief complaints already labeled with one of the syndromic groups.
In the SynSurv data set, a chief complaint can be a part of more than one syndromic group at a time. For
example, a chief complaint can belong to the Flu-like Illness category as well as Acute Respiratory at the same
time since these two diseases are very similar. Table 1 summarizes the distribution of the different syndromic
groups in the SynSurv data set. The data was split into training and testing portions by using 2/3 of the total
data set for each syndrome for training and the remainder for testing.

Syndromic group #Training records #Testing records
Flu-like Illness 11,398 5,829
Acute Respiratory 7,431 3,877
Diarrhoea 5,066 2,601
Other 185,965 92,462
Total: 209,860 104,769

Table 1: The distribution of chief complaints over various syndromes in the training and testing data sets

3.2 Data Pre-processing

Chief complaints in the SynSurv data set are in the free text format; therefore, they require some pre-processing
before they can be used as training data for the classification process. First of all, the ID field was removed from
the daily chief complaints. The ID field is unique for each chief complaint and does not represent a meaningful
and informative feature for the Vector Space Model used for classification. Then, the stop-words were removed
from the texts of the chief complaints using the set of the English stop-words presented by van Rijsbergen [20]
since the stop-words do not play any role in distinguishing between syndromic groups. The chief complaints
also had already been expanded with terminological codes from the two biomedical vocabularies; SNOMED and
ICD-10. To keep the chief complaints in their original format, the already assigned ICD-10 and SNOMED codes
were removed from the chief complaints. The texts of the chief complaints were then lowercased and tokenized
to be utilized in a bag-of-words model.

3.3 Chief Complaint Classification into Syndromic Groups

To analyze the distribution of syndromes over a period of time, the first step is to classify the chief complaints
reported in that period of time into specific syndromic groups. This requires either an off-the-shelf classifier
to be applied on the data or a machine learning-based classifier to be trained with some pre-labelled chief
complaints. In a previous work [16], two existing North American chief complaint classifiers, Symptom Coder
(SyCo) [7] and Complaint Coder (CoCo), were tested on the SynSurv data set. These machine learning-based
classifiers are parts of the Real-time Outbreak and Disease Surveillance system (RODS) [8]. The results of those
experiments showed moderate performances by the two classifiers on the SynSurv data set; SyCo outperformed
CoCo achieving a highest F-measure of 0.432 on the Flu-like Illness syndromic group.

In this study, a new classifier was trained on the SynSurv data set for chief complaint classification. Once the
chief complaints were pre-processed, the Näıve Bayes classifier in MALLET [15] was utilized for this experiment.
MALLET is a package of statistical machine learning and natural language processing algorithms developed
in Java. MALLET provides a pipeline of necessary processes to prepare the data for classification purposes.
Built-in tokenization and conversion of the token space to a vector space model were among the processes we
included in the MALLET pipeline. In this case, a bag-of-words model (tokens only) was used with no additional
features from the chief complaints. The Näıve Bayes classifier was trained on the set of chief complaints in the
training portion of the SynSurv data set and its performance was evaluated for each of the three syndromic
groups with the testing portion of the SynSurv data set. Table 2 summarizes the performances achieved on the
SynSurv data using the MALLET Näıve Bayes classifier.

As shown in Table 2, the results of the new classifier in this study show an improvement over those reported
on the same data set in [16] for the three syndromic groups.



Syndromic group Precision Recall F1-measure Accuracy F1-measure(prev.) [16]
Flu-like Illness 0.534 0.754 0.625 0.950 0.432
Diarrhoea 0.446 0.512 0.477 0.972 0.295
Acute Respiratory 0.433 0.658 0.522 0.955 0.332

Table 2: The results of the Näıve Bayes classification method for the three syndromic groups Flu-like Illness,
Diarrhoea, and Acute Respiratory. The last column shows the results of the best-performing system (i.e., SyCo)
in the previous work on the same data set.

3.4 Aberrancy Detection Algorithms

Statistical aberrancy detection algorithms have been a vital method for syndromic surveillance [4]. These
algorithms can detect large sudden deviations of occurrences of specific events that significantly depart from
the norm over time. We applied Early Aberration Reporting System’s C1, C2, and C3 aberrancy detection
algorithms [12] to the syndromic group data extracted for shifting windows of time over the SynSurv data set.
The details of this procedure are given in the next section.

The formulas to calculate the EARS C1, C2, and C3 algorithms can be found in [4, 10]. Briefly, they are
based on a calculation of the occurrence of specific diseases, relative to an expected value for that occurrence.
The C1 algorithm requires a 7-day baseline data starting from t − 7 to t − 1, where t = present day, to
calculate the mean and standard deviation over a sample. It then calculates how much the value at day t
varies from the expected value. If the variance exceeds a pre-set threshold, then an aberrancy in the data is
detected. The C2 algorithm adds a 2-day lag to the baseline, starting from t − 9 to t − 7, while C3 uses the
current and previous two values of C2 to detect possible aberrancies. The thresholds for C1 and C2 were set to
[(sample mean + (3 × sample standard deviation)]; C1(t) > 3 and C2(t) > 3; while for the C3 Algorithm, any
C3(t) > 2 would signal an aberrancy at t.

The C2 algorithm is known to perform better on serially correlated data [21]. For comparison purposes, we
implemented all of the three aberrancy detection algorithms on the SynSurv data set.

4 Experiments

4.1 Aberrancy Detection Setup on SynSurv

The trained classification system (MALLET’s Näıve Bayes) was used to predict the syndromic group of the
chief complaints in the test SynSurv data set. Then, the positive classified cases for each syndrome and the
dates they occurred on were tracked. Once we knew how many cases of Flu-like Illness, Diarrhoea, and Acute
Respiratory syndromic groups occurred per day in the SynSurv test data set, we calculated the differences
between the frequencies of cases for each syndromic group over shifting windows of time. The time windows
were seven days long, and each subsequent window was shifted by one day. Therefore, the first window of time
was from day 1 to day 7, the second from day 2 to day 8, and so on. This procedure formed the data that we
refer to as the predicted data set. A similar procedure was utilized on the same SynSurv test data set, but using
the actual gold standard labels of the chief complaints rather than text-based predictions to derive syndrome
frequencies; we refer to this as the actual data set. Finally, the aberrancy detection algorithms C1, C2, and C3
were applied to both Predicted and Actual data sets to find any outbreaks of the three syndromic groups in the
SynSurv data set.

Since C1, C2, and C3 algorithms do not require prior training, their application introduces a hybrid approach
combining unsupervised statistical methods with supervised classification techniques. This hybrid method
will enable the analysis of large volumes of data collected at emergency departments and will draw health
practitioners’ attention to any statistical aberrancies in the data that could indicate significant outbreaks.

The aberrancy detection algorithms were also applied to raw frequencies of each syndromic group per window
of time, in addition to the differences between the consecutive time windows. Therefore, we discuss two types
of methods here: i) the raw frequency method, that focuses on the raw frequencies of positive cases of each
syndromic groups over a period of time, and ii) the variance method, that considers the differences between
the frequencies in consecutive time windows for positive cases of each syndrome. We treated the raw frequency
methodology as the baseline method for comparison with new variance method.

4.2 Results and Discussion

Before applying the aberrancy detection algorithms using the raw and variance methods, we wanted to under-
stand how the distribution of the positive cases of each syndromic group compare using both the classification
system and the gold standard labels. The positive instances were counted and the summary result is shown in
Figure 1. As shown in this figure, during the syndromic class prediction process, the chief complaint classifier
produced a number of false positives as indicated by the larger numbers of the positive instances compared



with those of the actual cases for all of the three syndromic groups. However, the trends in the predicted cases
followed those of the actual cases, i.e., the distribution of false positives is uniform.

Figure 1: The raw frequency of actual and predicted positive classified cases of the three syndromic groups
starting from the week ending 7/01/2005. Note: FLI=Flu-like Illness, AR=Acute Respiratory.

Since we are using aberrancy detection algorithms, a uniform distribution of false positives will not negatively
affect the detection process. The aberrancy detection algorithms consider the mean and the standard deviation
of time windows and set a threshold accordingly before indicating an abnormal deviation in the number of
positive cases of the syndromes. The false positives are therefore adjusted by the sample means and sample
standard deviations. In other words, the aberrancy detection algorithms can play a pivotal role in situations
where the underlying data are noisy and the classification system produces a reasonable amount of false positives.

Another advantage of using the EARS aberrancy detection algorithms is that only a 7-day baseline is required.
This helps to quickly identify any health-related outbreaks within a short period of time without the need for
a longer-term data background. Moreover, due to varying seasonal trends and varying numbers of patients
visiting medical centres over weekends and weekdays, a more systematic way of detecting disease outbreaks is
required. Aberrancy detection algorithms provide inherent measures to control such false alarm rates and the
different algorithms are categorized according to their sensitivity in finding abnormal deviations; C1 having
mild, C2 medium, and C3 ultra sensitivity[13] for detecting aberrancies.

We applied the aberrancy detection algorithms in the way discussed in the last section to the SynSurv data
set. C3 detected approximately 400 aberrancies for each syndrome using the raw data. Analysing each of these
400 alerts is an intensive process for a health practitioner. Although this large number of aberrancies were
cut to nearly half for the variance data, the number of aberrancies is still reasonably high. Therefore, we used
the C2 algorithm as it has medium sensitivity, resulting in more manageable numbers of aberrancies. Figure 2
depicts the results for the C2 algorithm on the predicted data only for space limitations.

From Figure 2, it can be seen that there are a large number of peak lines above the threshold value 3 on the
left, while the curves on the right have a smaller number of peaks crossing the threshold value detecting possible
outbreaks. Therefore, finding the differences in the number of diseases between two consecutive weeks, i.e., the
variance method, results in a less noisy output and is a more feasible method for finding possible outbreaks
compared with using raw frequencies between consecutive time periods.

It is difficult to assess whether the detected aberrancies represent real disease outbreaks. To address this, we
compared the onset dates detected by the C2 algorithm with the predicted data (the variance method) with the
Australian National Influenza Surveillance Scheme reports, which we consider to be the best available source of
information pertaining to influenza outbreaks.

In 2005, our system predicted aberrancies in the SynSurv data in early July, which falls in the flu season in
Australia (i.e., from June to August each year). “Influenza infections are seasonal in temperate climates (June
to September in the Southern Hemisphere and December to April in the Northern Hemisphere)” [9]. Another
detected date was in the week ending October 2, 2005. “The 2006 Australian influenza season was mild in
comparison to previous years and was predominantly due to influenza A infections” as reported in the Influenza
Annual Report 2007 [18]. In 2006, our system (even with an increased threshold above 3) did not find any
outbreak. In 2007, the dates detected were in September only. The 2008 influenza also followed the traditional
flu season pattern [14]; however, there was a gradual increase in notifications above non-seasonal levels from
much earlier in the year. The out of season dates our system detected in 2008 also started from mid January to
the end of February. For 2009, we detected aberrancies in most of April and mid August, again within the flu
season. According to [1], Flu-like Illness presentations to emergency departments remained steady and slightly
above background levels in 2009.

It should be noted that the Australian Annual Influenza reports make use of various surveillance methods
including reports from emergency departments, general practitioners, and laboratory confirmed cases all over
the country. The SynSurv data, however, includes Victorian emergency department data only which may not
be a comprehensive representation of the national data. We interpret our results to be reliable as long as the
detected aberrancies fall within the flu season of Australia. No official reports exist for the Acute Respiratory
and Diarrhoea groups and therefore we cannot directly assess performance of the method for these diseases.



Figure 2: Left: C2 algorithm applied to the weekly predicted frequencies of a syndrome (i.e., the raw frequency
method). Right: C2 algorithm applied to the variance of the predicted cases of a syndrome over consecutive
weeks (i.e., the variance method). For the C2 aberrancy detection algorithm, the threshold was set to 3 by
default. The y-axis has been trimmed to [-5,15] for improved visual interpretability.

5 Conclusion and Future Work

We employed a new technique to perform retrospective syndromic surveillance of three specific syndromic groups,
i.e., Flu-like Illness, Acute Respiratory, and Diarrhoea over the Victorian Syndromic Surveillance (SynSurv)
data set consisting of a large number of emergency department chief complaints. The process started with the
analysis of the unstructured text of the chief complaints and the classification of these into the three syndromic
groups using supervised machine learning methods. Then, aberrancy detection algorithms were utilized on both
the raw frequencies of positive disease cases and the variances between the number of positive cases of each
syndromic group over shifting windows of time (each window comprising 7 days). While the machine learning
classifier produced a number of false positives for each syndromic group, the aberrancy detection procedure was
insensitive to those (uniformly distributed) false positives, due to its consideration of the mean and standard
deviation of frequency differences over time. More importantly, we found that the detection of possible disease
outbreaks using our new variance method, which considers the differences between disease frequencies as the
inputs to the aberrancy detection process, will result in a more effective outbreak detection compared with the
standard method that uses the raw frequencies of the positive cases.

Our study has limitations based on the effectiveness of the SynSurv data set for outbreak detection. The Syn-
Surv data set only contains data from Emergency Departments of hospitals. Real-time syndromic surveillance
may require incorporation of other sources of data such as those from medical practitioners for more effective
surveillance.

In future work, we are planning to further investigate the textual features of chief complaints using more
in-depth natural language processing techniques to find other (complementary) methods for identifying disease
outbreaks from chief complaints. Similar to our related work on Ebola [17], we would like to understand whether
any specific lexical properties of chief complaints, such as the distribution of linguistic structures, are associated
with any significant deviations in the number of positive cases of syndromic groups.
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