
Introductory Programming Training of First Year

Students at Riga Technical University

Natalya Prokofyeva, Marina Uhanova, Sabina Katalnikova, Oksana Zavyalova and

Aleksejs Jurenoks

Faculty of Computer Science and Information Technology, Riga Technical University, Riga,

Latvia

{natalija.prokofjeva, marina.uhanova, sabina.katalnikova,

oksana.zavjalova, aleksejs.jurenoks}@rtu.lv

Abstract. In this paper, solution to the problem of introductory programming

education at Riga Technical University is considered. At the Faculty of Computer

Science and Information Technology, the main courses of student training are

courses in programming languages and environments. Their contents, forms and

methods of teaching must correspond to the contemporary state of programming

languages, methods and technologies, as well as to the perspectives of their de-

velopment. The paper provides a description of changes in content and method

of teaching the course “Algorithmization and Programming of Solutions” offered

to first year students at the Faculty of Computer Science and Information Tech-

nology.

Keywords: introductory programming training, Pascal, Java, example-based

method

1 Introduction

Along with the ever-accelerating scientific and technical progress, continuous growth

of knowledge and change in its content occurs. This obliges the specialists constantly

to master new knowledge, skills and abilities and imposes new demands on their train-

ing. At present, it is very important to implement a technique of teaching that would

assure informational and methodical support of the learning process. As is well known,

every study course includes three components: basic (theoretical) part (i. e. ideas,

knowledge); laboratory practical part (abilities, experience); examination part (control

of abilities and skills). All these parts are obligatory and traditionally employed by

teachers in all higher education establishments. Thus, in creating (projecting) a course

the following tasks are to be solved:

• Elaboration of a detailed module structure of the course and scenarios of learning;

• Creation of quality methodical materials;

• Choice of forms and techniques of knowledge control, development of knowledge

testing materials;

• Selection and structuring of accessory materials.

The problem of increasing the quality of study courses has been considered by the

authors of this paper elsewhere [1]. It was established that balanced supplementation

of study courses with new content elements not only increases performance of the stu-

dents, but also to a great extent increases the quality of teaching.

At the Faculty of Computer Science and Information Technology the main courses

of student training are courses in programming languages and environments. Their con-

tents, forms and methods of teaching must correspond to the contemporary state of

programming languages, methods and technologies and the perspectives of their devel-

opment. However, the staff teaching these courses faces a host of problems to be solved

in order to ensure quality training of future specialists in information technologies.

In this paper, solution to the problem of introductory programming education at Riga

Technical University is considered. Changes in content and method of teaching of the

course “Algorithmization and Programming of Solutions” taught to first year students

at the Faculty of Computer Science and Information Technology are described.

2 The Problem of Choice of the Initial Programming Language

When speaking of first year students, one of the main peculiarities of this audience is

almost complete absence of basic training in programming. Undeniably, among the

students enrolling into the university there is a small percentage of those having basic

programming skills. But the inevitable conclusion imposes itself: one should count on

the average level of the students, which means that our target audience has no program-

ming skills whatsoever and teaching has to be started really from zero.

Every year in September a testing of first year students is performed with the aim of

determining the level of initial training of the students. The results show that in the

academic year 2015/2016 only 18% of first year students enrolled at the Faculty of

Computer Science and Information Technology are familiar with the basics of program-

ming. In order to even out the level of training of the first year students, those students

who have not completed the test successfully are given the opportunity to attend the

course “Introduction to computers and algorithms”.

Thus, the level of programming training of first year students is extremely low. This

is what we have on the “entrance”. “On the exit”, or on completing their higher educa-

tion, the student must have mastered knowledge, abilities and practical experience in

object-oriented, logical and WEB programming. Disregarding the latter two, we shall

dwell in more detail on teaching “classical” programming to first year students. It is

precisely the subject matter taught during the first semester that lays the basis for stu-

dents’ programming style and programmer’s thinking.

It is possible to single out the following problems:

• Choice of initial programming language and languages for subsequent training;

• Selection of study content;

• Selection of teaching methods, forms and means, including those based on infor-

mation technologies;

• Realization of inter-subject and intra-subject connections etc.

Traditionally, programming training presupposes first mastering structural program-

ming (Pascal), and then object-oriented programming (Java, C++). Analysis of papers

devoted to this problem shows that most educational establishments hold to this ap-

proach [2, 3].

At the Faculty of Computer Science and Information Technology of Riga Technical

University the basic course in programming training is ”Algorithmization and Program-

ming of Solutions”. This course presupposes familiarization with the principles of al-

gorithmization of computational processes and program creation.

Introductory training at RTU is also based on structural programming, i. e. on teach-

ing Pascal. The main argument for this is the fact that teaching object-oriented pro-

gramming without prior knowledge in structural programming is extremely compli-

cated if not impossible. It should be noted that most university teachers belong to older

generation. As a rule, they have gained immense experience in using the techniques of

structural programming based on algorithmic decomposition of big systems. However,

using out-of-date instruments dims students’ enthusiasm and can form arrogant atti-

tudes toward programming courses as waste of time. Training specialists demands new

approaches able to endow it with methodological meaningfulness and contemporary

fulfilment adequate to existing reality and standards of the new generation.

Already Edsger W. Dijkstra in his book A Discipline of Programming noted that “A

most important, but also a most elusive, aspect of any tool is its influence on the habits

of those who train themselves in its use. If the tool is a programming language, this

influence is – whether we like it or not – an influence on our thinking habits” [4, viii].

That is why the problem of choice of programming language, selection of content and

adequate teaching methods of future IT-specialists is very relevant at the present time.

Today’s students will start their professional activity in 3–4 years after taking the

course in programming. In this lapse of time the industry will have advanced in terms

of languages, methods and technologies. That is why it is not appropriate to teach some-

thing that is already today obsolete in information technologies. Object-oriented ap-

proach should substitute the structural one, the former currently being the basic para-

digm used in programming industry. It is also most widely used for internet application

programming (developing web-services, applets, dynamic content etc.).

Thus, object-oriented language should be the first programming language for a stu-

dent. It can be either Object Pascal (with its realization in the visual programming en-

vironment Delphi or free environment Lazarus) or Java – a wholly object-oriented lan-

guage allowing to develop platform-independent application (for developing Java pro-

grams it is possible to use the integrated development environment Eclipse).

Directors of study programs at the Faculty of Computer Science and Information

Technology, as well as the representatives of students’ parliament have recommended

Java as the initial programming language. The advantages of this choice are the possi-

bility of comparative analysis of different programming languages and of choosing op-

timal set of instruments for problem solving, as well as development of algorithmic and

logical thinking of students.

Thus, starting with 2015/2016 academic year Java has been selected for program-

ming training of first year students, while sophomore students as before first learn C

and then C++.

3 Method of Teaching JAVA at Riga Technical University

University teachers are facing a problem: how to teach students not having any pro-

gramming experience a language as serious as Java? One of the solutions was to apply

an example-based method.

The course ”Algorithmization and Programming of Solutions” comprises 48 hours

of lectures and 32 hours of practical tasks. The first part of the course includes topics

like linear, cyclic and branched algorithms, variable and elementary data types, arrays,

operators and operations, methods. During the second part of the course students master

the following topics: basics of object-oriented programming, line and symbol pro-

cessing, task with files (streams); task with file system.

Example based method includes the following: during the lectures a particular topic

is expounded and then a practical task is offered to students. Solving the task includes

working out an algorithm (a structural scheme); analysis of the tools offered by the

programming language that are necessary for realizing the algorithm; example of a so-

lution (program code). Then students are asked to solve a one-type task. If students

have questions during executing the task teacher helps them by explaining where a

mistake might have occurred. Then popular mistakes are considered and finally the

right solution of a task is demonstrated. Thus, many practical tasks are handled during

the lectures.

In this course, several practical tasks are envisaged. Organization of practical tasks

takes place in the following way. Student must develop and algorithm, write a program

and submit it electronically to the study portal ORTUS [5]. When the program is eval-

uated the student must defend his task, i. e. write a report and answer teacher’s questions

about the program and the task in general. The first part of the course includes five, the

second one – three laboratory tasks (see Table 1).

Table 1. Laboratory tasks on Java programming language

First semester

No. Title Definition of the task Constructions in Java

1 Branched pro-

grams

Enter coordinates of points x and y.

Determine, to which color field does

this point belong.

Input-output operations.

Announcement of varia-

bles. Conditional operator.

2 Development

of a simple cy-

clical program

Calculate the trajectory of bullet flight

based on given parameters. Display on

the screen a table containing time and

coordinates of the bullet flight.

Cycle operators. Use of

mathematical functions.

3 Processing

one-dimen-

sional arrays

Create a one-dimensional array and

fill it in with values. According to the

option of the task modify elements of

the array. Display the elements on the

screen before and after modification.

Arrays, break and con-

tinue operators.

First semester

No. Title Definition of the task Constructions in Java

4 Processing two-

dimensional ar-

rays

Create a two-dimensional array con-

taining results of a sports competition.

Process the results in a particular way

depending on the option of the task.

Multidimensional arrays.

Nested loops. Generation

of random numbers.

5 Ways of organ-

ization of

nested loops

Develop a program filling in a two-di-

mensional array with numbers based

on nested loops.

Techniques of nested loop

organization

Second semester

No. Title Definition of the task Constructions in Java

1 Sorting arrays Develop a program that would sort ele-

ments of the array in the ascending order

in two different methods.

Methods. Recursion.

2 Lines and text

files

Develop a program modifying the con-

tent of a text document in a particular

way.

Java libraries. Processing

lines. Classes of input-out-

put.

3 Creation of a

file processing

system

Create a simple information system. Basics of object-oriented

programming

Laboratory tasks are devoted to mastering input/output of information in Java, to

organizing of branched algorithms by using a conditional operator, to using different

operators of cycle organization while working with arrays, as well as lines and use of

files. Descriptions of several laboratory tasks are shown below.

3.1 Laboratory Task “Branched Programs”

Task

1. Develop and algorithm and write a program that would analyze the color of the field

in which a particular point is located based on the x and y coordinates of the point.

2. Write a report on the task including: definition of the task, analysis of solution, de-

scription of the algorithm, program code, testing example.

Requirements

• Output of information about the author of the program (name, surname, group num-

ber, student ID number);

• Input of point coordinates (x and y – real numbers);

• Output of messages “red”, “blue”, “green” or “white” depending on the field to

which the point (x, y) belongs;

• Make provision for output of messages in response to mistaken action on the part of

the user.

Task options

• Task options correspond to the three last numbers of a student’s ID (e. g. if the ID

number is 123RDB456, the option is determined by the numbers 4, 5 and 6);

• The program must be uploaded to the ORTUS environment as a source file (*.java)

and a compiled file (*.class).

• 500 options of this laboratory task have been developed (some of them are seen on

Figure 1).

Fig. 1. Examples of laboratory task

3.2 Laboratory Task “Development of a Simple Cyclical Program”

Task

1. Develop and algorithm and write a program that would calculate the trajectory of

bullet flight based on given parameters and conditions. The trajectory must be de-

termined prior to reaching the goal or ground.

2. Write a report on the task including: definition of the task, analysis of solution, de-

scription of the algorithm, program code, testing example.

Requirements

• Output of information about the author of the program (name, surname, group num-

ber, student ID number);

• Input of the value of the initial speed of the bullet v0 and the angle of flight  (v0

and  – real numbers);

• Output of the bullet’s trajectory as a table (time, coordinates of the bullet x and y);

• Output of the message “the target was destroyed” if the bullet has reached its goal

and the message “shot off the target” in the opposite case;

• Make provision for output of messages in response to mistaken actions on the part

of the user.

Task option

• Task option correspond to the three last numbers of a student’s ID (e. g. if the ID

number is 123RDB456, the option is determined by the numbers 4, 5 and 6);

• The program must be uploaded to the ORTUS environment as a source file (*.java)

and a compiled file (*.class).

• 400 options of this laboratory task have been developed (some of them are seen on

Figure 2).

For each laboratory task solution examples have been worked out including descrip-

tions of algorithms as block-diagrams, Java source code, as well as a set of tests for

testing the program.

Fig. 2. Example of laboratory task

However, as the student flow is very big (16 groups 30 people each) the problem

was to evaluate all these laboratory tasks. For this purpose, a testing program was de-

veloped including requirements for each laboratory tasks and special tests were created.

The task submission process comprised two parts. Mark for the program itself (based

on automatic check results) and defense of the laboratory task. For the defense the stu-

dent had to prepare a report. During the defense the teacher could ask the student 2–3

questions about the program.

The evaluation part of the course includes two tests – “Types of data. Language

operations. Control structures” and “Arrays and methods”, as well as mid-term control

of student knowledge organized in distance regime with limitations imposed on the

time of submission and number of available attempts [5].

Thus, for studying the object-oriented Java language the content and method of the

study course “Algorithmization and Programming of Solutions” have been changed.

It is too early to speak of the results, but this method has been successfully applied

for more than 10 years at the course “Computer learning” providing the basics of algo-

rithmization and programming for chemistry and electricity program students [6].

4 Topics of Java teaching method integration into related subject

Using student laboratory tasks submissions in both subjects, covered topics were

arranged according to difficulty level. Processing results was proved that development

environment influences the level of assimilation of topics. The same topics in both de-

velopment environments where marked with different difficulty level (Table 2).

Table 2. Topics complexity (1 very difficult – 5 very easy)

Topic Eclipse environment VBA in Excel envi-

ronment

Input-output operations. 5 4

Announcement of varia-

bles.

5 2

Cycle operators. 4 3

Use of mathematical

functions.

4 4

Arrays 2 5

Multidimensional ar-

rays

2 5

Nested loops. 4 2

For example, topics related to the array use are easily understandable within Excel

VBA environment, but issues related to the cyclical structures in Eclipse environment.

Fig. 3. Java teaching method topics integration in to related subject.

For successful implementation of in this paper described Java teaching method,

changes in topic order and explanation are done for related subject “Application soft-

ware” for the first year students. (Fig.3). This approach allows to improve the quality

of mastering topics in “Algorithmization and Programming of Solutions” subject, look-

ing harder thread using other in educational process linked development environments

and tools.

5 Conclusions

The choice of initial programming language is very important. The methods and forms

of education for future IT-specialists must be chosen correctly. In this paper, the struc-

ture and new content of the basic course ”Algorithmization and Programming of Solu-

tions” are presented, as well as the methodological approaches to teaching the Java

programming language. This course on Java is taught to the first year students of the

Faculty of Computer Science and Information Technology of Riga Technical Univer-

sity. The realization of the course according to the structure expounded in the paper is

meant to:

• Promote the professional orientation of the students in mastering object-oriented

programming which is currently the leading tool of professional programming;

• Promote the interest of today’s students, yesterday’s schoolchildren in Java and in

gaining solid knowledge in object-oriented programming.

• In future, the authors plan to conduct and experimental work in training the first

years students in object-oriented programming.

References

1. Prokofjeva N., Uhanova M., Zavjalova O., Kataļņikova S. Structuration of Courses at Study-

ing Disciplines of Programming. No: Proceedings of the 10th International Scientific and

Practical Conference "Environment. Technology. Resources", Latvija, Rēzekne, pp.159.-

163.lpp. ISBN 978-9984-44-173-3. ISSN 1691-5402. 2015. Rēzekne: Rēzeknes Augstskola,

(2015)

2. Actual problems of Education , Inter-Higher School Scientific and Educational Conference,

http://www.tsi.lv/en/content/mip-2015, MIP (2015)

3. Environment. Technology. Resources. Proceedings of the International Scientific and Practi-

cal Conference, http://journals.ru.lv/index.php/ETR

4. Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., 217 p. (1976)

5. Prokofjeva N., Anohina-Naumeca A., Lebedeva O. Administration of Knowledge Assessment

at Riga Technical University. Proceedings of the 8th International Multi-Conference on Com-

puting in the Global Information Technology (ICCGI 2013), IARIA, pp.34-39, ISBN: 978-1-

61208-283-7. (indexed in ThinkMind Digital Library), Nice, France (2013)

6. Uhanova М.А. “Study course in basics of programming for chemists-technologists”, Papers

of international scientific methodological conference Informatization of engineering educa-

tion – INFORINO2012, 10–11 April 2012, Moscow, Russia, pp. 331–332. [In Russian]

http://inforino2012.mpei.ru/doc/proc.pdf

http://inforino2012.mpei.ru/doc/proc.pdf

