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ABSTRACT
A context-aware recommender system incorporates the know-
ledge of different contextual factors such as time or weather
information to improve item suggestions made to a user.
This requires the system to have a large knowledge base for
inferring contextual information and enabling accurate and
timely recommendations. We present a versatile approach
for a context-aware recommender system in the tourism do-
main by crawling publicly available information from a va-
riety of sources and learning the contextual popularity of
points of interest based on a generalized check-in model. We
have deployed a test instance of our system for the greater
area of Munich and the German state of Bavaria. Analyz-
ing the results from the offline learning has led to interesting
insights including when and in which weather conditions cer-
tain items are popular.

CCS Concepts
•Information systems → Recommender systems;
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1. INTRODUCTION
Recommender systems are a composition of software tools

and techniques that suggest items to users that are likely to
be interesting to them and relevant to their needs [10]. Tra-
ditional recommender systems consider items liked/rated by
users in the past and possibly some additional information
such as item characteristics to estimate the ratings for items
that the users have not yet consumed [1]. Applications range
from suggesting products that have been bought together by
other users in the past over suggesting people a user might
know based on their existing list of friends to suggesting
music based on genres listened to.

Context-aware recommenders enhance traditional recom-
mender systems by incorporating the knowledge of different
contextual factors - such as time or weather information -
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to further improve the item suggestions made to a user [1].
These systems seek to better match users and their current
context with items that are popular in the same or similar
contexts.

One major application area of context-aware recommender
systems is travel and tourism, where scenarios are signifi-
cantly more complicated than traditional user-product match-
ings [3]. In addition to the general preferences of a user, the
utility and relevance that a point of interest (POI) has to
a user heavily depends on the user’s current context. A
beer garden, for instance, would provide a higher value to
the user on sunny summer days rather than on rainy winter
days and a car that knows a driver’s route, fuel level and gas
prices can make better suggestions for gas stations to refuel.
This is especially important in the scenario of a proactive
recommender system [14], i.e., a recommender that pushes
item suggestions to the user based on the current situation
(e.g. location, time of day or weather) without explicit user
request.

In our research, we propose, implement and evaluate a
novel approach for a context-aware recommender system in
the tourism domain by aggregating publicly available in-
formation from a variety of sources and learning the con-
textual popularity of POIs based on a generalized check-in
model. We aggregate different types of data, including POIs,
check-ins and contextual information to build a knowledge
base and infer knowledge about the contextual popularity of
items focussing on aspects of temporal and geographic con-
text. The gained knowledge can also be utilized to mitigate
cold-start problems when no or little information about the
user is available.

In the following, we first explore related work (Section 2),
describe the context model, data sources and system design
of our implementation (Section 3) and then present the pro-
cess and results of analyzing the data (Section 4). Finally,
Section 5 draws conclusions and discusses open future work
directions.

2. RELATED WORK
Context-aware recommender systems have been a topic

of growing research interest in the recent years and aim at
generating more relevant recommendations by adapting to
the specific contextual situations of the user and the rec-
ommended items (e.g., weather, temperature, season and
mood) [1]. There exist numerous commercial and research
systems, such as Foursquare, Yelp, South Tyrol Suggests
(STS) [4] and ReRex [2], that have already been success-
fully implemented and that exploit the current user’s and
item’s context when recommending items. These systems



use different approaches to incorporate context into the rec-
ommendation process. Roughly, these approaches can be
divided into three categories [1]: (i) contextual pre-filtering,
where context is used for selecting the relevant set of rat-
ings before computing predictions with a traditional, two-
dimensional prediction model; (ii) contextual post-filtering,
where context is used to adjust the recommendation list re-
sulting from a two-dimensional rating prediction model; and
(iii) contextual modeling, where context is directly incorpo-
rated into the prediction model.

Most current context-aware recommender systems work
in pull mode, i.e., the user has to explicitly make a request
(pull) for recommendations, possibly by entering informa-
tion about her preferences, needs and constraints. A new
generation of context-aware recommender systems, called
proactive recommender systems, are instead pushing rec-
ommendations to users without their specific request, when
they are in a contextual situation that the system considers
as suitable for the recommendations [14]. Despite the ad-
vantages of proactive recommender systems - especially in
mobile usage scenarios - relatively little research has been
conducted specifically on this topic. One example is [14],
where the authors proposed a proactive recommender sys-
tem model consisting of two phases: (i) the situation as-
sessment phase, which evaluates whether or not the current
contextual situation calls for a recommendation; and (ii)
item assessment phase, which is only executed when the first
phase indicates a promising situation and assesses the candi-
date items to finally decide which items should be pushed to
the user as recommendations. Subsequent work in [13] has
evaluated the effectiveness of the proposed model by apply-
ing it to a restaurant recommender system, and found that
users highly appreciate proactive recommendations if they
are relevant and properly timed.

In another work, Dali et al. [5] presented different tim-
ing models based on random forest to classify user contexts
that are suitable for recommendations and user contexts in
which users are highly likely to refuse any recommendations.
Results from a user study revealed that a hybrid model that
first decides whether it should use a personal or non-personal
timing model, and then classifies whether the context is suit-
able for recommendations is superior to both the personal
or non-personal timing models.

In another study, Pielot et al. [9] showed that boredom
can be inferred from patterns of mobile phone usage and
that users are more likely to appreciate proactive recom-
mendations during inferred phases of boredom. Hence, they
concluded that using boredom as trigger independent from
content might help to make proactive recommendations a
more pleasant experience for users.

Finally, Borŕıs et al. [3] survey intelligent recommender
systems in travel and tourism and also mention context and
proactivity as important factors.

3. CONTEXT, DATA SOURCES AND SYS-
TEM DESIGN

In order to create a versatile system that can gather rele-
vant data for any geographic area and infer the contextual
popularities of POIs, we first discuss the context model that
our work is based on. This leads to the features we need to
extract from the data we crawl. We then discuss different
data sources for items, check-ins and context and present a
brief system design of both the backend implementation and
a corresponding mobile client.

3.1 Context Model
Our research is based on a context model for proactivity in

mobile recommender systems defined by Wörndl et.al. [14].
The model relies on domain-dependent context modeling in
four distinct categories: user context, temporal context, ge-
ographic context and social context. The recommendation
process itself is divided into two phases to first analyze the
current situation and then examine the suitability of par-
ticular items. This allows for both a proactive and passive
recommender system.

The context model defines the data we need to aggregate
and the features that should be extracted. In particular, we
want to infer the temporal and geographic context of items.
The user context is extracted directly in our mobile app pro-
totype in a later stage. The social context is neglected in our
prototype but could be integrated in our approach. Based
on this context model, we focus on the following contex-
tual features: weather condition, temperature, season, day
of week, time of day and time of year.

3.2 Data Sources
The overall goal of this work to recommend POIs in a mo-

bile tourist guide based on publicly available data sources.
We therefore need to acquire and aggregate data in three
categories: items (the POIs), check-ins (to determine the
popularity of items) and context.

3.2.1 Items
The POIs form the foundation of our system as the user’s

overall perception of the system first and foremost depends
on the quality and suitability of the recommended items. We
therefore designed a general model for an item in our domain
that can then be populated with data. Core data fields
include: name, description, location, images, phone, rating,
street, city, country. While the core fields should always be
populated, each data source’s crawler can define additional
fields it wants to persists. Based on this model, we examined
different, publicly accessible data sources: Foursquare, Yelp,
Quermania, Facebook, Wikipedia, Open Street Maps. We
designed and implemented crawlers for each of those sources
and aggregated over 175,000 items for the German State of
Bavaria.

3.2.2 Check-ins
Based on this knowledge base of 175,000 items, we want

to infer the popularity in accordance to the context model.
Our premise is that a place is popular if many people visit it.
It follows that a place is popular in a certain context (e.g. on
a sunny Saturday evening in summer) if many people visit
it when this context condition applies.

To infer this knowledge, we must first define a model for
determining how popular a place is at a given time or any
other context. We base this model on a generalized check-
in. In our model, a check-in can be any evidence that a
user visited a place at a certain time. This includes an ex-
plicit check-in on Foursquare or Facebook, as well as implicit
check-ins by taking a picture or generating a GPS trace on
a smartphone. A check-in marks a singular point in time.
To make an educated judgement on how many people are
present at any point in time, we must further make an as-
sumption about the average duration of a visit. There has
been research on the activity duration of different activities
[8] that we use to infer the number of present users from
check-ins at any point in time based on the POI type.



We looked at different publicly available data source to
crawl check-ins from including Flickr, Twitter and Foursquare.
Flickr is a photo sharing platform with a rich set of geo-
tagged photos. A geo-tagged photo contains the latitude
and longitude of the place it was taken as well as a level
of accuracy of this information. In addition, a textual de-
scription is provided for most of the images. We used Flickr
as the primary source of check-ins for rural areas, establish-
ing a place-to-check-in mapping in a sparsely populated area
which is more straightforward given the geo coordinates of
both places. In our research, we have sampled about 249,000
images to be used as check-ins.
Twitter offers a large number of tweets that can be associ-
ated with a place and hence counted as a check-in. There
are two main features, that can be used for association: geo-
tagged tweets and Twitter Places. Geo-tagged tweets carry
a latitude and longitude and can be associated to places
using geo-fencing. While this is a valid approach in rural
areas, it is insufficient for cities due to the number of places
being close to each other. Twitter places specify a specific
geographic place, such as a city or a restaurant and can be
mapped to a POI directly. In our research, we have sampled
29m tweets in about eight weeks using Twitter’s Streaming
API.
Foursquare has an explicit check-in feature - similar to Face-
book - that would let users check-in at a place using a button
in their app. In addition, Foursquare samples the user’s lo-
cation on the smartphone to proactively recommend POIs.
While this data seems promising, none of it is publicly acces-
sible and was therefore not used for our prototype. On the
contrast, some users link their Twitter account with their
Foursquare account resulting in each explicit check-in trig-
gering a public tweet. Following the approach proposed by
Melia and Segui [8], we extracted this information from the
tweets we collected and linked them to Foursquare venues in
our database. Based on our Twitter dataset of 29m tweets,
we successfully linked 2.9m tweets to a Foursquare Swarm
POI. The association rate for the German state of Bavaria
was 8 check-ins (tweets) per 1,000 POIs and enriched our
dataset for cities.

3.2.3 Context
Based on the aggregated knowledge base of items and

check-ins we now want to add a third data source to en-
rich our data with context. We hereby focus primarily on
dimensions of the geographic and temporal context. Given
the timestamp of a single check-in we can infer all attributes
of the temporal context using a static calendar library. We
therefore use java.util.Calendar to infer season, day of week,
time of day and time of year. To infer the weather condi-
tion and temperature of check-ins we added Wunderground’s
Weather History API that can be used to provide the weather
for a place at any given time in the past. Using these two
sources, we were able to infer the temporal and geographic
context for all check-ins.

3.3 System Design and Server Implementation
We implemented our prototype in Scala using the Play!

framework. Scala is a language that is executed on top of
the Java Virtual Machine and is fully interoperable with
Java. The language combines object-oriented programming
with functional programming which makes operations on ar-
rays and lists easy to implement. On top, all Java libraries
are usable in Scala which is a major benefit. The Play!

Figure 1: Screenshot of the Mobile App with the
Popularity Graph for Time of Day

framework offers a modern web MVC architecture with a
simple control flow and the advantage of using templates
in the views. We have combined this with Slick - a func-
tional relational mapper - to have a persistent database layer
based on a performance-tuned MySQL instance. Slick offers
a clean way of accessing and filtering persistent data sets
using Scala’s functional API.

Data aggregation is either done through a REST API (if
available) or through one of our crawlers. In the course of
this research, we have created multiple crawlers and spiders
on top of JSoup to extract knowledge from publicly available
sources. We used Amazon AWS resources to carry out parts
of these tasks with on-demand resources, while maintaining
only one dedicated server at all times. We used SQS, a dis-
tributed pipe service, to communicate between the different
servers.

3.4 Mobile Application Design
We have also designed, developed and tested a user in-

terface concept to investigate how to communicate contex-
tual information about recommended items to the user in a
mobile tourist guide [7]. Thereby, the user can retrieve in-
formation about interesting POIs and review various graphs
about the item popularity in an item detail screen. We show
a textual summary of the popularity peak for both weather
and day/time. We also render line and bar charts to show
the popularity across different context dimensions, such as
day of the week, time of day (see Figure 1 for an example)
and season. The mobile application was implemented using
the cross-platform framework Ionic and is fully functional.

To receive early feedback for our concept, we evaluated
our system in a user study with 14 subjects. The partici-
pants were asked to test the application for two weeks and
then complete a survey about their experience with the user
interface elements. The study results indicated that the pop-



ularity inference and graphs provide benefits for users. Users
stated that popularity graphs assisted them while deciding
which place to visit. More detailed results of this prelimi-
nary study can be found in [7].

The focus in this paper is not on the user interface but on
how to analyze the collected data and infer insights that can
then be integrated in a mobile tourist guide. We present our
course of action and the gained results of the offline learning
in the next section.

4. OFFLINE ANALYSIS AND PROBABIL-
ITY LEARNING

To infer basic popularities for different conditions we fol-
low the data analytics process proposed by Runkler [11].
The process decomposes the data analytics pipeline into
four steps: preparation, preprocessing, analysis and post-
processing. Following this process, we have identified the
following tasks for each step:

1. Preparation: identifying goals and research question;
data collection.

2. Pre-processing: merging POIs from different sources;
associating POIs with check-ins filtering, sampling and
discretization, normalization.

3. Analysis: visualization, popularity inference and pre-
diction.

4. Post-processing: evaluation.

To follow this process, we define an overall research ques-
tion and subquestions that we seek to answer.

• Overall research question: how can we learn (infer) the
popularity of POIs for a context-aware recommender
system?

• Subquestion 1: how can POIs from different sources
be matched and duplicates be eliminated?

• Subquestion 2: how can POIs be associated with check-
ins?

• Subquestion 3: given a set of check-ins for a POI, how
can we infer the popularity under different temporal
conditions?

• Subquestion 4: given a set of check-ins for a POI, how
can we infer the popularity under different geographic
conditions?

• Subquestion 5: given a set of check-ins for a POI and
the base popularities, which algorithms are suitable for
making a compound decision/recommendation?

In the following, we present our approaches and results on
these tasks according to the subquestions we are trying to
answer.

4.1 Merging POIs from Different Sources
We have added different POI sources to our system, in-

cluding Foursquare, Yelp and Quermania. Especially Four-
square and Yelp provide a lot of overlapping data, since both
have restaurants and bars in their database. This leaves
us with the problem of identifying and merging co-referent
POIs, as we do not want to show or recommend the same
POI multiple times.

Merging co-referent POIs has been extensively studied
and there are multiple approaches to the problem, e.g., us-
ing a fuzzy set and probability theory [12] or a DBSCAN,
a common clustering algorithm [6]. The fuzzy set approach
assumes, that the majority of POIs are user-generated and
therefore has large differences in between two versions of a
POI’s name. Our data differs from the assumptions of these
papers in a way, that it is already pre-filtered by Yelp and
Foursquare. We therefore take a simple approach matching
POIs from different sources: we compare the Levenshtein
distance of the names of the two POIs in question and in-
vestigate their geographic distance.

4.2 Associating POIs with Check-Ins
Associating POIs with check-ins is a non-trivial task, given

that the data comes from entirely different sources. De-
pending on the source of the POI and the check-in, we have
identified several ways of creating an association:

4.2.1 POIs with Flickr/Twitter Check-ins
Flickr and Twitter both provide data records that have

coordinates, a timestamp and some textual data like the
tweet’s content or the Flickr image’s caption. Associating
these records with a POI presents a hard problem that can
be tackled in many different ways:

Simple Geofencing: The computationally easiest op-
tion is to use a rectangular geofence around a POI and as-
sociate each check-in record within this area with the POI.
This works well for exposed POIs (i.e., satellite POIs that
have no other POIs around them), but is inapplicable to the
majority of POIs in cities including restaurants and bars.

Advanced Geofencing: To improve both the FPR (false
positive rate) and FNR (false negative rate) of the simple
geofencing approach, we propose a more complex way of
setting up the geofence. Depending on the POI’s type, a
more complex geofence structure can range from a smaller
circle (suitable, e.g., for bars or restaurants in cities) to a
polygon following the shape of ski slopes or trails.

Clustering: can be done in a supervised, unsupervised or
semi-supervised fashion. A supervised clustering approach
would assume that we have a couple of check-ins per POI
where we have obtained evidence that they belong to this
POI. Other nearby check-ins could be associated using algo-
rithms like KNN (see Evidence-based Clustering below). An
unsupervised approach could use algorithms like DBSCAN
to discover clusters in unclassified data. Once the algorithm
has discovered clusters, we could use different techniques to
associate POIs with clusters.

Evidence-based Clustering: As mentioned with simple
clustering, one approach could be to use supervised or semi-
supervised clustering for association. To start this algorithm
we would need a base dataset of check-ins that are associated
with POIs. One approach to generate such a dataset would
be to use evidence from the metadata. Most tweets/Flickr
descriptions contain the topic of the tweet or image such
as ”Neuschwanstein”. Using simple word-matching or more
complex NLP techniques we would obtain a base set of
check-ins to use for clustering and association.

We use Flickr and Twitter check-ins for exposed sights to
deliver a proof of concept for our pipeline and model and
could therefore use simple geofencing to associate check-ins
with POIs (by a square whose size depends on the POI type).
Our approach has linked 280,983 check-ins with 177 sights.
While this approach was sufficient for our use case, future



work could lie in exploring other association techniques to
make using these check-in sources viable for more densely
populated areas.

4.2.2 Foursquare POIs to Check-ins using Twitter
As briefly outlined before, Melia and Segui [8] proposed an

approach to aggregate public Foursquare (Swarm) check-ins
using Twitter. Foursquare users that have linked their ac-
count with Twitter will automatically publish a tweet if they
check-in publicly. By analyzing the corresponding tweets
using our data processing pipeline, we obtain the unique
Foursquare ID of the POI where the user checked-in. In ad-
dition, we obtain the timestamp of the tweet and hence the
check-in.

This approach is promising, as it established a definitive
relation between a check-in and a POI (i.e., there are no
false-positives). We have aggregated a mixed data set of
tweets containing both geo-located tweets and tweets linked
to public Foursquare and Swarm check-ins using the stream-
ing API over eight weeks. The dataset has 29m tweets
in total, 2,9m of which we have successfully linked to a
Foursquare or Swarm POI.

Our prototype only incorporates POIs in the German State
of Bavaria. We could therefore only use a small subset of
the 2.9m tweets that link to a POI in our region. We could
match tweets and POIs at a rate of 8 check-ins (tweets) per
1,000 POIs. This number is relatively low compared to the
effort it took to obtain the data using the pipeline we out-
lined earlier. While this was not an ideal fit four our use case,
the approach can be a better choice in regions with higher
Foursquare adoption (such as New York or San Francisco).

4.3 Filtering, Sampling and Normalization
Until this point, we have crawled POIs, check-ins and con-

text and associated POIs with check-ins. The next step is to
filter the dataset to increase its quality, decide on sampling
for context parameters and perform normalization if needed.

Filtering: For the qualitative evaluation and our mobile
app prototype we focus on exposed sights out of our large
POI dataset and have identified 176 sights with a high POI
to check-in matching having both a low FNR and FPR. Fur-
thermore, we filter out POIs that have less then 400 check-
ins (on average each POI has 1570 check-ins) to retain a
good accuracy for all contextual popularities. All contextual
popularity groups partition the remaining check-ins into a
maximum of 7 groups yielding 57 check-ins on average per
group. This filtering gives us a set of 114 sights in the greater
area of Munich and the German State of Bavaria that we use
for further processing.

Sampling: The next step to aggregate the popularity is
to define what dimensions should be explored and if a dimen-
sion is continuous or discrete. We hereby explore temporal
and geographic dimensions separately. Discrete variables are
easy to handle when it comes to inferring the popularity, as
they can be represented by a fixed number of buckets (e.g.,
seven for Day of Week) and assigning check-ins to buckets is
trivial. Continuous variables however, are more difficult as
questions like ”How popular is this POI at 10am?” can not
be holistically answered using sampling and buckets, since
when settling on a fixed bucket size (e.g., half an hour) the
question ”How popular is this POI at 10:11am?” can not
be answered accurately. When decreasing the bucket-size,
buckets will only have a few check-ins as a check-in only
marks a specific timestamp making the popularity impossi-

ble to infer.
We therefore explored related work on activity duration

[8] to assign a presence window to each check-in accounting
for the time a user was present at the POI. The activity du-
ration depends on the POIs category and ranges from 7:43
min for breakfast to 19:01 min for dinner. Parks and out-
door have a mean activity duration of 11:21 min. Given
this knowledge, we set a bucket-size of 5 min and count the
check-in towards three buckets for sights. In this approach
we model a user’s presence at a given time by adding 1 to
three buckets. With this information, we can accurately an-
swer questions in the form of ”How popular is this POI at
10:11am?”, as we have a bucket ranging from 10:10:00am to
10:14:59am. However, with this model we neglect the uncer-
tainty at the beginning and end of the activity interval. The
source of this uncertainty is the fact, that we only know one
timestamp and infer the user presence window through (as-
sumed) activity durations yielding a high uncertainty at the
beginning and end of this interval. An alternative modeling
approach could be to use Gaussians to augment presence
intervals. This way, we can model the uncertainty in a sta-
tistically correct way.

We regard the Gaussian modeling as future work and
base our presence interval on activity durations without aug-
menting Gaussians. We introduce feltTemperature as a dis-
cretization of the continuous temperature as this simplifies
inference and makes our predictions easier to understand for
users. Table 1 shows our set of inferred contextual variables
for both the geographic and temporal context.

Variable Type Domain
dayOfWeek D {Mon,...,Sun}
timeOfDay C [0,23]

season D {Spring,Summer,Fall,Winter}

feltTemperature D
{Hot,Warm,Pleasant,
Mild,Cold,Freezing}

weatherCondition D {Sunny,Cloud,Rainy,Snowy}

Table 1: Temporal/Geographic Dimensions for Sam-
pling. D=Discrete, C=Continuous

Normalization: Figure 2 shows an aggregation of all of
our check-ins on a weekly basis using the presence window
approach based on a presence window of 1 hour. One can
clearly see from the graph, that about twice as much check-
ins are made during weekends, than there are on a weekday.
We have therefore thought about normalizing the data as
a whole to have the same relative amount of check-ins per
discrete bucket (e.g. Mon-Fri).

Figure 2: All Check-ins Aggregated on a Weekly
View

After investigating our data in close detail, we decided
against normalization as users tend to visit more POIs on



Figure 3: Geofilter Analysis

the weekends/evenings when they spend leisure time. We
therefore anticipate, that the weekend cliffs (as well as some
other data patterns) are correct and beneficial for the sake
of popularity inference.

4.4 Visualization, Popularity Inference and Pre-
diction

4.4.1 Visualization
To effectively visualize our data, we created multiple anal-

ysis tools based on our server-side software. For effective
analysis of the check-in data we build a tool to visualize dif-
ferent features of geo-based check-ins without an association
to any POI. Our tool, as depicted in Figure 3, is able to ap-
ply a geofence to filter check-ins and compare the selected
area to a baseline of all known check-ins which makes it easy
to spot interesting patterns. Figure 3 shows all check-ins on
a weekly level for the northern end of Starnberger See. This
is a good example for the effectiveness of our tool, showing
that this part of the lake is popular on Friday afternoon as
well as on the weekend.

After an initial analysis using these tools, we started to
model the popularity inference. For this purpose, we created
different views, such as the one depicted in Figure 4, to vi-
sualize the inference outcome. Our view shows the probabil-
ities (popularities) under different temporal and geographic
conditions highlighting them with a gradient in red color
such that one can easily spot patterns in the data.

4.4.2 Popularity Inference
Until this point, our analysis and visualizations yielded

promising patterns. We now take a probabilistic approach
to infer popularities for different contextual situations. The
outcome we seek is the popularity P of a POI given a context
C:

p(P |C) (1)

When thinking about context and different dimensions as
described before it would be most beneficial to split up C

Figure 4: Popularity

into temporal and geographic dimensions and their respec-
tive parameters (temperature t, weather condition wc, sea-
son s, weekday wd, etc.). This yields probabilities of the
form:

p(P |t), p(P |wc), p(P |s), p(P |wd) (2)

Having these base popularities would allow for compound
calculations yielding the probability for a visit V to a certain
POI given a situation with fixed contextual parameters:

p(V |C,P ) (3)

The concept of a visit is that given that a user will cer-
tainly visit a POI, what is the probability that the visit will
happen at the context C.
There are different approaches to model the statistical de-
pendence of context factors like weather condition and tem-
perature (e.g., it does not snow when having 20◦C) including
Bayesian networks. While a full Bayesian model can increase
accuracy, it requires a high degree of domain knowledge
about the data and all parameters that is hard to obtain.
We therefore use summation to infer the plain popularities
for each context parameter:

p(P |wd = Monday, V = Walhalla) (4)

= p(wd = Monday|V = Walhalla) (5)

p(wd = Monday|V = Walhalla) (6)

=

∑
CheckinsForPOIOnMonday∑

CheckinsForPOI

(7)

This approach yields a probabilistic distribution for each
POI and each context dimension as depicted in Figure 4
which lets one judge under which conditions a place is pop-
ular. We can use prediction and the Bayes’ theorem to make
compound recommendations.

4.4.3 Prediction
With prediction or recommendation, we seek to answer

the question ”Where should I go (given the current times-
tamp and weather)?”. With respect to our model, this would
mean: what is the probability (or score) that I should choose
a POI for my visit V given the inferred popularities of all



POIs P and the current context C:

p(V |C,P ) (8)

We propose two different approaches to answer this question:
weighted additive scoring and using the Bayes’ theorem.

Weighted Additive Scoring.
The first approach to obtain a popularity score given a

context situation C is to use weighted additive scoring.

S(C, V ) =
∑

i∈[wc,t,d,s,h]

αi p(i, V ) (9)

For each POI we add the popularity for a specific set of
context dimension (weather condition wc, temperature t,
day d, season s, hour h) that we want to predict a score for.
Furthermore, we multiply each dimension by a weighting
factor α to make the model flexible. While we used static
weights, future work could include learning of α through
online of offline learning techniques.

While this model works well, it does not respect the dif-
ferent number of check-ins between POIs. Thus a POI with
only 400 check-ins might outperform a POI with 4,000 check-
ins, as the popularity values are better, while - in absolute
visitor numbers - the second POI outperforms the first. This
issue is addressed by an approach using Bayes’ theorem.

Bayes Theorem.
Bayes’ theorem can be used to inverse a dependent prob-

ability. Using summation to obtain the base probabilities as
outlined in the previous section yields probabilities in the
form of:

p(wd = Monday|V ) (10)

In other words, this means: ”given that I visit a POI, what
is the probability I would visit it on Monday?” (or: ”what
is this POI’s Monday popularity”). When recommending
items, we would like to answer questions of ”It is Monday,
which POI should I visit?”:

p(V |wd = Monday) (11)

So for a concrete POI (Walhalla) we can use Bayes’ theorem
to get the probability for a visit given our limited set of POIs
and the premise that the user will visit one of these:

p(V = Walhalla|wd = Monday)

=
p(wd = Monday|V = Walhalla)p(V = Walhalla)

p(wd = Monday)
(12)

All of the parameters from this model can be retrieved from
our dataset:

p(wd = Monday|V = Walhalla) (13)

(as obtained in the previous section)

p(V = Walhalla) =

∑
CheckInsAtWalhalla∑

AllCheckIns

(14)

p(wd = Monday) =

∑
AllCheckInsOnMonday∑

AllCheckIns

(15)

We found, that using a Bayesian approach disproportion-
ally favors POIs that have a high number of check-ins even

when being relatively unpopular and therefore used weighted
additive scoring.

Using either one of those strategies leaves us with a prob-
ability (popularity) for each POI in the database, which can
be used for ranking in combination with a standard weighted
additive scoring approach for recommending a POI based on
the different context factors.

4.5 Evaluation of Post-Processing
We discussed different types of evaluations for this part of

our research with peers from the field of machine learning.
While machine learning and data analytics applications are
usually evaluated using cross-validation or any other sort of
quantitative offline evaluation, we did not see a fit for these
types of evaluations given our data and inference schema.
We therefore decided to first evaluate our research by qual-
itatively assessing inferred popularities for selected results
in a case study and discussing interesting findings and pat-
terns. The ultimate goal is to integrate the results about
item popularities into the mobile application (see Subsec-
tion 3.4) and conduct a large-scale user study to get real
feedback.

Inferred Seasonal Popularity.
The inferred seasonal popularity performed best among all

our inferred parameters. An excerpt of the POI data with
seasonal popularity is shown in Table 2. While cities like
Bad Tölz or Nürnberg are equally popular throughout the
year, other sights peak in certain seasons. Kehlsteinhaus for
instance - a tea house built for the Third Reich government
that has been turned into an exhibition - is closed during
spring and winter (November - April), as the road can not
be maintained as soon as there is snowfall. It can be easily
seen that this shutdown persists in the data making the
sight less popular during winter and spring. Other places for
outdoor activities show a clear tendency towards the warmer
periods of the year, including Walchensee (being popular
during Summer and Fall), Starnberger See (Summer) and
Königssee (Summer and Fall).

POI Name Spring Summer Fall Winter
Bad Tölz 0.215 0.202 0.215 0.368
Nürnberg 0.238 0.242 0.295 0.226
Walchensee 0.076 0.456 0.291 0.177
Kehlsteinhaus 0.044 0.572 0.35 0.034
Starnberger See 0.003 0.932 0.045 0.019
Kloster Andechs 0.314 0.253 0.365 0.067
Königssee 0.193 0.367 0.305 0.135

Table 2: Excerpt of Inferred Seasonal Popularity:
p(V |s, P ). µ = 1, 660 Check-ins

Inferred Weather Condition Popularity.
The weather condition overall has a clear tendency to-

wards sunny weather, with more then 90% of the dataset
having a sunny popularity of 0.5 or higher. Nonetheless,
there are still some patterns to get indications if the infer-
ence technique is correct. While cities like Munich are within
our average (mostly sunny), places for outdoor activities like
Starnberger See, Andechs or Almbachklamm have a notably
higher sunny popularity. Table 3 shows an excerpt from
inferred weather condition popularities.



POI Name Sunny Cloudy Rainy Snowy Unkn.
Munich 0.532 0.138 0.324 0.005 0.001
Andechs 0.711 0.072 0.209 0.006 0.002

Roseninsel 0.796 0.127 0.072 0.005 0
Almbachkl. 0.907 0 0.093 0 0

Table 3: Excerpt of Inferred Weather Condition
Popularity: p(V |wc, P ). µ = 1, 750 Check-ins

5. CONCLUSIONS AND FUTURE WORK
In this work, we have designed and implemented a data

analytics process to infer the popularity of POIs for a context-
aware recommender system using publicly accessible data
from various data sources. We have elaborated different ap-
proaches on individual subtasks, e.g., applying probabilistic
modeling to learn the popularity for POIs in different con-
textual situations such as weather condition, day of week
and time of day. We qualitatively evaluated our approach
in a case study and also implemented a corresponding mobile
application with a brief preliminary user study [7].

In addition to the explained results, we discovered other
useful purposes for the dataset and the inferred information.
For example, to determine and visualize popular areas on
a map. This could be useful for visitors to find spots for
taking iconic pictures or maybe find a less-crowded spot and
avoid the most popular areas. To do so, we filtered our data
by first selecting the check-ins associated with a POI and
then applying another filter to eliminate check-ins with an
accuracy worse then 10 meters. Then this filtered dataset is
fed into a heatmap algorithm for visualization using Google
Maps’ heatmaps extension. Figure 5 shows popular (photo)
spots around Neuschwanstein Castle as an example.

Future work includes integrating the item popularities
into the mobile tourist guide application and proactively
recommending POIs based on the current user context. We
then plan to conduct a larger user study to investigate whether
this approach leads to useful and timely recommendations
from a user’s perspective in a real setting. Another area for
improvement is not to solely rely on explicit user check-ins
but also utilize tracking data from smartphones.
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[3] J. Borŕıs, A. Moreno, and A. Valls. Review: Intelligent
tourism recommender systems: A survey. Expert Syst.
Appl., 41(16):7370–7389, Nov. 2014.

[4] M. Braunhofer, M. Elahi, and F. Ricci. Usability
assessment of a context-aware and personality-based
mobile recommender system. In E-commerce and web
technologies, pages 77–88. Springer, 2014.

[5] N. Dali Betzalel, B. Shapira, and L. Rokach. Please,
not now!: A model for timing recommendations. In
Proceedings of the 9th ACM Conference on
Recommender Systems, pages 297–300. ACM, 2015.

Figure 5: Heatmap for Neuschwanstein Castle
Based on Check-in Data

[6] M. Daszykowski and B. Walczak. Density-Based
Clustering Methods. Comprehensive Chemometrics,
2:635–654, 2010.

[7] P. Hiesel, W. Wörndl, M. Braunhofer, and D. Herzog.
A User Interface Concept for Context-Aware
Recommender Systems. In Mensch und Computer
2016 Tagungsband. De Gruyter, 2016.
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