
Demo: Using TAU for Performance Evaluation of Scientific Software

Sameer Shende
Performance Research Laboratory

University of Oregon
Eugene, OR 97403, USA
sameer@cs.uoregon.edu

Allen D. Malony
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403, USA
malony@cs.uoregon.edu

Abstract—This paper presents the demonstration of the TAU
Performance System for performance evaluation of Scientific
Software written in C++, C, and Fortran.

Index Terms—TAU, instrumentation, performance analysis,
PDT, measurement.

I. INTRODUCTION
The ability of performance technology to keep pace with

the growing complexity of parallel and distributed systems
depends on robust performance framew1orks that can at once
provide system-specific performance capabilities and support
high-level performance problem solving. Flexibility and porta-
bility in empirical methods and processes are influenced pri-
marily by the strategies available for instrumentation and
measurement, and how effectively they are integrated and
composed. This demo will present the TAU (Tuning and Anal-
ysis Utilities) parallel performance system [1] and describes
how it addresses diverse requirements for performance engi-
neering of scientific software.

II. PERFORMANCE EVALUATION
Given the diversity of performance problems, evaluation
methods, and types of events and metrics, the instrumentation
and measurement mechanisms needed to support performance
observation must be flexible, to give maximum opportunity
for configuring performance experiments, and portable, to
allow consistent cross-platform performance problem solving.
In general, flexibility in empirical performance evaluation
implies freedom in experiment design, and choices in selection
and control of experiment mechanisms. Using tools that
otherwise limit the type and structure of performance methods
will restrict evaluation scope. Portability, on the other hand,
looks for common abstractions in performance methods and
how these can be supported by reusable and consistent
techniques across different computing environments (software
and hardware).
The TAU parallel performance system is the product of over
two decades of development to create a robust, flexible,
portable, and integrated framework and toolset for
performance instrumentation, measurement, analysis, and
visualization of large-scale parallel computer systems and
applications. The architecture of TAU is shown in Fig. 1.

1 This work is licensed under a CC-BY-4.0 license

[https://creativecommons.org/licenses/by/4.0/].

III. DEMONSTRATION
The demo will highlight the instrumentation of MPI pro-

grams on the NSF XSEDE system, Stampede, at TACC. It will
demonstrate how TAU may be used to insert instrumentation in
the source code using the C, C++, and Fortran parsers from the
Program Database Toolkit (PDT) with TAU compiler scripts
that may be used in place of compiler scripts provided by MPI.
It will show to execute programs on the Intel® Xeon PhiTM
systems and generate profiles that will be loaded in TAU’s
ParaProf 3D browser as shown in Fig. 2. These profiles may be
stored in TAUdb, a performance database and analyzed using
TAU’s PerfExplorer tool [2] for cross-platform scalability stud-
ies and performance data mining. TAU uses PAPI [3] internal-
ly to access low-level hardware performance counters such as
floating point instructions, level 1 and 2 data cache misses, and
vector instructions executed in the code. Using these counters,
TAU can show the extent of loop vectorization as shown in
Fig. 3. TAU’s ParaProf browser can show the time spent in
each routine on all threads in its main window as shown in
Fig. 4. It can also show the communication matrix as shown in
Fig. 5 and a thread statistics window as shown in Fig. 6. TAU
can support automatic instrumentation for code written in C,
C++, Fortran, Java, and Python. It can be easily integrated in
the build system of application frameworks and be enabled at
compile-time using specially designed compiler scripts. TAU
also supports instrumentation during program execution using
preloading of TAU’s Dynamic Shared Object (DSO) in the
address space of the executing application. Using tau_exec, a
user may evaluate the performance of an un-instrumented ap-
plication. This includes memory, I/O, communication perfor-
mance as well as event-based sampling to show the contribu-
tion at the statement level. TAU supports a variety of runtime
systems used in HPC including OpenSHMEM, MPI, MPC,
OpenMP, pthread, OpenCoArrays, CUDA, OpenCL, and
OpenACC. The demo will show the use of TAU for perfor-
mance engineering of software used in HPC.

IV. CONCLUSION
The TAU performance system addresses performance
technology problems at three levels: instrumentation,
measurement, and analysis. The TAU framework supports the
configuration and integration of these layers to target specific
performance problem solving needs. However, effective
exploration of performance will necessarily require prudent

Figure 1. Architecture of TAU.

Figure 2. TAU's ParaProf 3D Profile Browser.

selection from the range of alternative methods TAU provides
to assemble meaningful performance experiments that sheds
light on the relevant performance properties. To this end, the
TAU performance system offers support to the performance
analysis in various ways, including powerful selective and
multi-level instrumentation, profile and trace measurement
modalities, interactive performance analysis analysis, and
performance data management.

ACKNOWLEDGMENT
This work was supported by the National Science Founda-

tion (NSF) grant number ACI-1450471. This work used the
Extreme Science and Discovery Environment (XSEDE) that is
supported by the NSF grant number ACI-1053575 and used
allocation TG-ASC090010.

REFERENCES

[1] S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” IJPCA, Vol 20, No. 2, pp. 287-311, 2006.
http://tau.uoregon.edu.

[2] K.	Huck	and	A.	D.	Malony,	“PerfExplorer:	A	Performance	Data	
Mining	 Framework	 for	 Large-Scale	 Parallel	 Computing,”	
Proc.	SC’2005,	ACM,	IEEE,	2005.

[3] U. Tennessee, Performance Application Programming Interface,
http://icl.cs.utk.edu/papi, 2016.

[4] M. Geimer, S. Shende, B. Wesarg, and B. Wylie, “Practical
Hybrid Parallel Application Performance Engineering,” Tutorial,
SC’15,Austin,TX,
http://sc15.supercomputing.org/schedule/event_detail-
evid=tut117.html, Nov. 16, 2015.

Figure 3. Vectorization Intensity sorted by exclusive time in TAU’s ParaProf Profile Browser.

Figure 4. TAU's ParaProf Main Window.

Figure 5. A callpath profile shown in a thread statistics window in ParaProf.

Figure 6. Communication matrix window in TAU's ParaProf.

