
Experience Paper:
Software Engineering and Community Codes Track

in ATPESC
Anshu Dubey

Mathematics and Computer Science Division
Argonne National Laboratory

Lemont, IL 60439
Flash Center for Computational Science

University of Chicago
Chicago, IL 60637

Email:adubey@anl.gov

Katherine M. Riley
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL 60439

Email:riley@alcf.anl.gov

Abstract—The Argonne Training Program in Extreme Scale
Computing (ATPESC) was started by Argonne National Lab-
oratory with the objective of expanding the ranks of better-
prepared users of high-performance computing (HPC) machines.
One of the unique aspects of the program was inclusion of a
software engineering and community codes track. The inclusion
was motivated by the observation that the projects with a good
software process were better able to meet their scientific goals.
In this paper we present our experience in running the software
track. We discuss the motivation, reception, and evolution of
the track over the years. We welcome discussion and input
from the community to enhance the track in ATPESC and
to facilitate inclusion of similar tracks in other HPC-oriented
training programs.

I. INTRODUCTION

In 2013 Argonne National Laboratory started a two-week
summer training program called “Argonne Training Program
on Extreme Scale Computing” (ATPESC) [1]. The program
was originally funded for three years; it has been extended
for another three. Motivation for a training program aimed
at extreme computing came from the observation that few
users had the necessary expertise to use the hig-performance
computing (HPC) machines effectively. A significant fraction
of users were largely ignorant of the challenges of using
HPC machines and had difficulty meeting their science targets.
These machines are expensive and rare resources; therefore,
good utilization is critical, not just for the facilities, but also
for advancing science. The reason for the existing wide gap
between what is needed and what is known is partly due to the
interdisciplinary nature of most of the work that is carried out
on HPC platforms. The topics relevant to HPC are typically not
in curriculums even at the graduate level in most universities.
The vast majority of practitioners have learned what they need
“on the job.” ATPESC’s aim is to reduce the gap by training
young scientists, students, and other practitioners of scientific
computing and to cultivate more informed and capable users in
diverse scientific disciplines. The participants are enthusiastic

about the program because it has had a significantly positive
impact on their learning curve in using the machines.

The program’s instruction format is a combination of
lectures, keynotes, and hands-on exercises. The instructors
include leading researchers and practitioners from various
areas of HPC, such as MPI, OpenMP, math libraries, and data
management. In this paper, we focus on a two-day track in
the program that covers software engineering for HPC and
community codes. Software engineering has a history of being
underrated in the computational science community. As codes
have grown more complex, the need for software engineering
is being felt in more science domains that use computation. In
discussing the track we have dual objectives of disseminating
our insights and seeking input to further enrich the program.

We give a more detailed description of the motivation
behind including the track in Section II, with its objectives
described in Section III. Sections IV and V respectively
describe the reception and feedback from the students and the
evolution of the track. In section VI we give our insights and
conclusions.

II. MOTIVATION

The users of large-scale computing facilities come from
many scientific research domains with wide variation in their
software development and engineering practices. The soft-
ware engineering practices range from none to robust. To a
great degree the users’ success in achieving scientific goals
is directly related to the sophistication of their simulation
planning and code readiness. Because of this correlation, HPC
facilities often demand that the users demonstrate a minimum
software maturity and planning ability before they can be
allotted substantial compute resources. Programs exist to help
new users learn necessary technologies and methodologies.
These programs help, but they are not enough. The coverage
is seldom comprehensive because of resource and expertise



constraints. ATPESC is compelling because it is comprehen-
sive in its coverage of topics relevant to HPC and it casts its
net wide for instructors. The lecturers and keynote speakers in
the program are acknowledged experts. Many instructors go
beyond the specifics of the tools to give insight to the students
that can prepare them for self-learning if needed.

From the outset ATPESC placed appropriately large em-
phasis on the software engineering track. Software engineer-
ing practices that are critical for productivity include use
of repositories, configuration and build process, testing and
verification, and documentation. Practices such as provenance
are important for reproducibility and credibility of science
results. One topic that we include is rarely covered elsewhere:
simulation planning. Being able to estimate resources needed
to achieve scientific goals is a nontrivial activity. Equally
important is to adequately plan for running the simulation
campaign. This includes curating and archiving data, moni-
toring the state of simulation, and maintaining the equivalent
of a laboratory notebook. All these topics are included in the
track. Unlike some of the other tracks whose importance is
well understood by the attendees, the software track has had
the additional challenge of convincing a substantial fraction of
skeptical attendees of its relevance early on. For this reason
we turned the first session of the track into a motivating
session, and we have retained this feature over the years. In
the 2016 session we noticed for the first time that a majority
of students were aware of many software engineering best
practices and understood their usefulness in their scientific
endeavors. Therefore, we may reduce the emphasis we have
placed thus far on the motivating lectures. They may be
replaced by more advanced topics or a more in-depth coverage
of some of the topics.

The track also includes a section on community codes
because they have been playing an increasingly important role
in science through simulations. As scientific insight has grown
over the years, the models being computed have grown more
sophisticated and are often heterogeneous. Also, the scientific
process is moving toward the integration of simulation and
observations/experiments. As a result, both the codes and the
workflows have grown more complex and are rarely within the
reach of a single researcher or a small group. This handicap is
reduced in those fields where substantial community resources
exist. Recognizing this, more communities are moving toward
pooling resources in terms of expertise and code components.
We believe that current and future HPC users should be
made aware of the advantages of resource-pooling and use
of community codes (if they exist) in their research domain.

III. OBJECTIVES

The primary objective of the software track in the training
program is to evangelize about the software process, and
expose students to the prevalent practices and methodologies.
Our objective is not to promote a specific practice or methodol-
ogy. Instead, we provide exposure to a wide range of practices
and methodologies and demonstrate their impact by including
experience-based examples. Our aim is to equip the users with

the necessary information that enables them to select suitable
practices for themselves. In general our objectives can be
summarized as follows:

• Emphasize the importance of software and scientific
process for robust and credible science results

• Outline characteristics of sustainable software
• Give an exposure to processes required for developing

scientific codes
• Show attendees the approach and effectiveness of code

cooperation in a variety of domains
• Summarize practices that have been known to work in

large-scale computational science
• Show how to integrate topics covered earlier in the

program with examples of real applications
• Illustrate some of the sociological and technical chal-

lenges of those approaches.
The software engineering and community codes track runs

for two days. The first few presentations aim to convert the
skeptics – to make them understand that for credible science
having a robust software and scientific process is a necessity,
not a choice. These presentations lay out the objectives and
motivations of the track for the students. The remainder of the
lectures covered topics that can be broadly categorized under
two headings: applications and process. The presenters in the
applications category described their community, its goals, and
its software and scientific processes. The process category then
generalized individual topics in software engineering. Thus
the applications presentations on the first day of the track
motivated the detailed discussion of the process presentations
on the second day. Below is a sample of applications and
process presentations (from 2015).

• The impact of community codes in astrophysics
• Designing scalable scientific software (plasma)
• Modern features of production scientific code (Industrial

combustion)
• NAMD (molecular dynamics)
• HEP complex workflows
• HACC: Application performance across diverse architec-

tures (cosmology)
• Architecting community codes
• Software engineering practices
• Types of workflows
• Swift as a workflow solution
• Data provenance
Based on feedback from the past few years and the evolution

in the status of software engineering in scientific computing,
the track has undergone substantial changes that are reflected
in the 2016 schedule (see Section V for specifics). Also, in
2014 and 2015 each, a half-day session was devoted to Soft-
ware Carpentry-based material for basic software engineering
practices. These presentations were greatly appreciated by the
attendees. For the coming year this component of the track
is being developed collaboratively between the IDEAS [2]
project and various HPC facilities. The presentations prepared
under this collaborations include the basic concepts covered



by Software Carpentry with customizations where needed for
using HPC platforms for large scale scientific software. Details
of this effort are described in Section V.

IV. RECEPTION AND FEEDBACK

The reception of the track has varied from year to year and
also within a year. This was expected because the attendees
come from diverse backgrounds. The program is promoted
in all possible venues of HPC and gets applications from
all over the world, in all computational science areas and
many science and engineering domains. Research communities
themselves vary in the degree of penetration by software
engineering practices and awareness of software sustainability
issues. Communities such as astrophysics and computational
chemistry have had a long history of community development,
and students from these communities are well aware of the
value of community codes and software engineering. On
the other hand some communities are new to HPC (e.g.
HEP experimentalists) and have little understanding of these
concepts. Because the program is fairly comprehensive, the
focus of interest for different students also varies. In addition
to the track as a whole, the individual presentations have
similar deviations. This is especially true of presentations
about specific application areas or a specific tool. Below are a
few highlights that illustrate the general trend of the comments.
“I was impressed by the breadth of content in the community
codes track”
“Quite relevant, I’ve been using a large community code so
was able to appreciate the intricacies and challenges for such
large codes”
“This session was quite interesting and had me think on this
topic deeper”
“One of the more relevant tracks as I contribute to a
community code”
“I think the data flow layout and data Provenance are
particularly meaningful”
“Seriously, get rid of the talk on data provenance”
“Most of the talks are difficult to catch up”
“I think the track could be reduced to one day”
“This track was not as relevant as previous tracks”

From these statements we can make a few interesting
observations. One is that in the same year, two attendees
can provide feedback completely opposite to each other. The
comments about the data provenance presentation are an
example, where one attendee found it to be among the most
useful, while another attendee recommended eliminating it
completely. Another observation is that the students are more
likely to have a positive reception of the track if they have
had some exposure to community projects. Because of such
divergence in the feedback we include a healthy dose of our
own judgment in incorporating suggestions from the students.

In general the track has received more positive comments
than negative, with a small percentage of students finding
the track to be not relevant or important. A few attendees

mentioned that they had not thought about software engineer-
ing issues but that because of the track they will pay more
attention to such issues. Others found it lacking in tangible
learning moments. One common observation was that having
several application-area talks did not add value. They seemed
repetitive because their software practices and challenges were
similar. This was one of strongest motivators behind changing
the contents and the format of the track from 2016.

V. EVOLUTION

When the program began, software engineering in HPC had
gained limited traction. By and large the developer groups
that deployed these practices were those that had learned from
hard experience. Either they were a large and geographically
diverse group, or their software had too many interacting but
independently moving parts: in short, those groups for whom
the management and the reliability of their software would
have been intractable without instituting a process. As could
be expected, several students of the time had little or no
exposure to even rudimentary practices such as version control
and automated testing. However, within the next couple of
years, software sustainability and productivity began to appear
frequently in computational science discussions because of
confluence of several factors. One was growing influence
of software carpentry [4]; another was the SI2 initiative by
the NSF [3] and a set of workshops on this topic [5], [6].
Yet another was a growing concern about lost productivity
due to fragmented software efforts and massive amounts of
software replication. Some public retractions of publications in
prestigious journals due to errors caused by a lack of adequate
testing and verification also made it obvious that business as
usual was no longer an option if computational science was
to be an instrument of scientific discovery.

Over the years the baseline awareness of software engineer-
ing practices among the students of the program has risen. A
few basic practices such as use of repositories and some form
of regular testing have become more of a norm rather than an
exception. The curriculum of the track has evolved to reflect
this change. A major change from the previous years is in
the number of application codes represented in the program.
In the early years motivating the students was critical, as
was giving them exposure to the practices adopted by the
groups who had faced software engineering challenges and
found some solutions that worked for them. As the landscape
has changed, so has the students’ understanding of the need
for software engineering among the practitioners. Additionally,
this was the component of the program that the students found
to be repetitive and less useful. Therefore, instead of having
several applications present their insights and practices, we
changed the format to include lectures on best practices in
software engineering in HPC followed by one application
presentation that ties all the practices together. Examples from
specific applications appear in the best practices lectures, but
the applications themselves are not the focus.

The generation of best practices lectures was facilitated by
the IDEAS project funded by the U.S. Department Of Energy



Office of Advanced Scientific Computing Research (DOE-
ASCR). The numerical methods and math library track has
been supported and run by the SciDAC FastMath institute
funded by DOE-ASCR. In a similar spirit the software en-
gineering track has become adopted by the IDEAS project
since 2016. The IDEAS team has huge cumulative expertise
and project experience. An engagement from a group of people
who deal with many of the software productivity issues on a
regular basis has exposed and filled many gaps in the earlier
content. The current content has been systematically developed
through close collaboration between the software experts from
the IDEAS project and the training and operations personnel in
the DOE computing facilities. The content developed through
this collaboration was presented earlier in a series of webinars,
and the response has been overwhelmingly positive. The
overall registrations have exceeded 250, while the attendance
of various webinars has fluctuated between 70 and 150. A
great deal of substantive feedback from the attendees has been
incorporated into the material. The covered material overlaps a
great deal with the Software Carpentry material and because it
is prepared by veteran HPC practitioners, it brings in insights
about specific challenges in using such platforms. Because of
the overlap and higher relevance of this content for HPC users,
this material replaces the Software Carpentry component. To
provide an idea of the extent of changes in the program we
list below the lecture topics in 2016.

• Repositories and continuous integration
• IDE/configuration/building/deploying
• Testing and documentation
• Software refactoring
• Reproducibility
• Prevalent software engineering practices in modern codes
• Impact of community codes
• Sociology of community development
• Software and process design for future
• Planning Simulations
• Workflow/data curation and Provenance

The group of students in the 2016 session were not only aware
if software engineering practices, but also had self-awareness
to know that in many ways their process was not yet the
best possible. Because of this there is likely to be substantial
changes in several of the lectures in future. In 2016 they
were largely introductory; in future they are more likely to
include advanced topics. A couple of lectures such as impact
of community codes and sociology of community codes may
be combined into one. We mention these proposed changes to
reiterate that the evolution of the track must reflect the rapidly
evolving state of knowledge about software engineering issues
in the computational science community to stay relevant and
useful to the students.

VI. CONCLUSIONS AND DISCUSSION

The inclusion of the software engineering and community
codes track in ATPESC has been rewarding to both the
facilities and the attendees: the facilities, because they have
to do less hand-holding for better prepared users and better

managed software, and the attendees because they get farther
in their work when they use well -managed software. The
reception has been largely positive from the beginning, with
the appreciation of the track growing steadily over the years.
This growth is due to both the evolution of the track and the
increasing awareness of a need for a good software process in
the computational science community.

One of the reasons for presenting this experience report is to
seek input for further enhancement of the track. We welcome
suggestions about the organization and the content. We are
also interested in new ideas about the topics we cover and
new topics that might be interesting and useful that we do not
yet include. We also hope that sharing our experiences will
initiate further discussions that will help enhance our program
and similar training programs. The positive reception of the
track indicates that software engineering for computational
science should be an integral part of any curriculum targeted
at scientific software.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy
Office of Science Office of Advanced Scientific Computing
Research.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(Argonne). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan. http://energy.gov/downloads/doe-
public-access-plan.

REFERENCES

[1] Argonne training program on extreme scale computing.
https://extremecomputingtraining.anl.gov/.

[2] IDEAS productivity - howto documents.
https://ideas-productivity.org/resources/howtos/.

[3] Implementation of NSF CIF21 software vision (sw-vision).
http://www.nsf.gov/funding/pgm summ.jsp?pims id=504817.

[4] Software Carpentry. http://software-carpentry.org/.
[5] Software productivity for extreme-scale science. https://www.orau.gov/

swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf.
[6] A. Dubey, D. Q. Lamb, and E. Balaras. Building commu-

nity codes for effective scientific research on HPC platforms.
http://flash.uchicago.edu/cc2012, 2012.


