
How Should We Measure the Relationship Between
Code Quality and Software Sustainability?

Aseel Aldabjan
School of Computer Science

University of Manchester, UK

Robert Haines
School of Computer Science

University of Manchester, UK

Caroline Jay
School of Computer Science

University of Manchester, UK
caroline.jay@manchester.ac.uk

Abstract—Software sustainability has been proposed as a non-
functional requirement of a codebase. The aim of sustainable
research software development is to produce reliable code that
supports reproducible results, and can be reused in future
projects. At present, research software is often not developed
in a sustainable manner, partly due to the funding environment
within which it exists, but also because there is no concrete metric
with which to measure software sustainability, nor any concrete
guidance on how to achieve it. We propose that empirical studies
determining the relationship between measurable aspects of a
project, and its active life—a period we define using a metric
of software sustainment—are a strong means of understanding
how requirements encapsulating software sustainability should
ultimately be defined. Here, we report the results of a sustainment
analysis of projects in GitHub, and describe the opportunities and
challenges of understanding the relationship between sustainment
and code quality.

I. INTRODUCTION

Sustainable research software is defined as software that
can be reused, in whole or in part, in future projects1. It is a
truism that good coding practices will lead to more sustainable
software, a view which is supported by research software engi-
neers [1], and it has been proposed that sustainability should be
considered as a requirement of a project [2, 3]. However, there
is currently no concrete definition of software sustainability,
nor any concrete guidance on how to achieve it [4]. This
research aims to contribute to an understanding of what makes
software sustainable, by measuring the relationship between
characteristics of a project’s codebase and the project’s active
life, which we term software sustainment.

We collect data for this study from GitHub, selecting a
subset of repositories based on their start date and the language
they are written in. As GitHub repositories include a number
of software engineering artefacts—such as an issue tracker,
documentation wiki, web pages and collaboration data—we
consider a repository as a proxy for a software project2.

In Section II we define our software sustainment metric,
and in Section III we report on the distribution of open source
Java projects according to this metric. Section IV describes
the metrics we will use to measure code quality, and finally
Section V discusses the challenges of linking code quality to
sustainment, to ultimately determine the characteristics of soft-
ware that are key to fulfilling the requirement of sustainability.

1http://software.ac.uk/
2Data and analysis code are available here: https://github.com/hainesr/

sustainment-analysis

II. A METRIC FOR SOFTWARE SUSTAINMENT

We take an empirical approach to understanding what
makes a project sustainable, by examining how aspects of
a project—in this case its code quality—vary as a function
of its sustainment, or active life. Our definition of software
sustainment is the time period from the initial creation of the
software in a repository—the first commit—through to the last
commit in the original repository (see equation 1):

S = tlast_commit − tinitial_commit (1)

where S is our software sustainment metric, measured in
days. This measured difference reflects the period over which
the project is actively maintained or developed.

We calculate S for the default branch of the repository,
as indicated in the meta-data we mine from GitHub, as we
recognise that not all repositories use the ‘master’ branch as
their default. We are only considering the default branch of
the original project when calculating our sustainment metric
as simply picking the most recently updated branch, or fork,
has a high chance of containing incomplete, untested and
non-working versions of the code. Nevertheless, there is an
argument that if the code lives on in subsequent forks it has
been sustained, even if the original project has not, so we will
consider forks—and how they relate to the sustainability of
both the project and the code—in a future study.

III. THE SUSTAINMENT OF JAVA PROJECTS IN GITHUB

Projects were mined from GitHub according to the follow-
ing criteria: they were created between 1st January and 31st
December 2009; they had at least one commit; the first commit
occurred after 1st January 2009; they were written in Java.
Projects were retrieved on 26th July 2016, so S was calculated
for each project at that point in time.

Figure 1 shows the distribution of projects as a function
of S, in days. Of 3113 projects in total, 22% (682) had an S
value of 0, and 35% (1076) had an S value < 7, indicating that
over a third of the projects were sustained for only a week. A
cursory inspection reveals some of these projects to be quite
large, so it is likely that in these cases the development period
was longer than the calculated sustainment metric, and that
the project was only put into Git version control some time
after its real start date. After the steep drop off at around seven
days, the curve gradually flattens over time.

This work is licenced under a Creative Commons Attribution-ShareAlike 4.0 International License.



0 450 900 1350 1800 2250 2700
Sustainment (days)

0

500

1000

1500

2000
N

u
m

b
e
r 

o
f 

p
ro

je
ct

s

Fig. 1. Projects in GitHub as a function of their software sustainment in days.

IV. CODE QUALITY METRICS

We hypothesize that the following static analytic metrics [5]
are related to sustainability:

Lines of Code (LOC) is an indication of class size, where
a higher value means longer and potentially more complex
code. It is advisable to treat this metric in relative, rather than
absolute terms, as lines of code may vary with programming
language, or the individual style of a programmer.

Number of Local Methods (NOM), an indicator of interface
complexity, measures the number of methods locally declared
in a class. As the interface grows, the class becomes more
complex, and more difficult to test. The optimum value for
this metric is considered to be between 3 and 7. If there are
fewer than 3, the class might simply be a data holder; if there
are more than 7, the class might be in need of decomposition.

Depth of Inheritance Tree (DIT) calculates the complexity
of a software entity based on the distance between a node and
its root down the inheritance tree. As the code goes down the
inheritance tree, testing becomes more difficult as the control
flow becomes more complicated. A value between 0 and 4 is
generally considered to indicate an adequate balance between
complexity and the use of inheritance.

Coupling Between Objects (CBO) calculates the complexity
of a class through its dependencies: a class is considered well
designed when it is loosely coupled. Classes with a large
number of dependencies are more difficult to maintain and test.
The reusability of classes is limited by high levels of coupling
because if a class depends on other classes, it is difficult to
reuse it in another system. A value of CBO greater than 4 is
generally considered undesirable because it indicates a high
number of dependencies.

Improvement of Lack of Cohesion in Methods (ILCOM)
provides a measure of class cohesion, by calculating the
number of connected components in a class. High cohesion
is a desirable characteristic within a class in object oriented
languages, as it is usually harder to test classes that do not
have cohesion between their components. A value of zero in

the ILCOM metric indicates a lack of methods in the class,
while a value of one represents a high level of cohesion. A
value greater than one indicates cohesion is low, and the class
may benefit from being divided into separate classes.

Lack of Documentation (LOD) was chosen as an interesting
metric that considers comments in the code, with at least one
comment per method and one per class as a minimum target.
Comments often make the purpose of methods and classes
clearer, increasing maintainability and facilitating the reuse
of the code. Comments in Java code can also be used to
automatically build API documentation for a project, so one
might expect well maintained code to include at least one
comment per method and per class for this purpose. A caveat
is that the content of the comments is not considered.

V. LINKING CODE QUALITY TO SUSTAINABILITY

We have proposed a simple metric with which to measure
sustainment, and suggested a static analytic approach to quan-
tifying code quality. Although these measures provide values
that can be compared quantitatively, there remain considerable
challenges in determining the relationships between them:

• Refining the sustainment metric. At present S only ac-
counts for the time that activity on the project occurs in
GitHub. Should we filter projects further, to ensure S is
a true representation of the lifetime of the project?

• Reconciling units of assessment. How should we com-
pare class-level software quality metrics with a project-
level sustainment metric? For example, should we use
median/mean values as input to the analysis, or look at
the proportion of classes that meet a certain criteria?

• Determining the appropriate point for assessment. Is the
final/current state of the code enough to draw conclu-
sions? If not, should we combine metrics from various
points in the project’s history or monitor changes? How
do we select those points in the project history?

• Determining the appropriate statistical procedures for
assessment. Several of the code quality metrics are non-
linear in terms of their optimal values, so a simple
correlation may not be the best way to assess their
relationship with sustainability. What is the best approach
to take in these cases?

REFERENCES

[1] M. R. de Souza et al., “Defining Sustainability through
Developers’ Eyes: Recommendations from an Interview
Study,” in WSSSPE 2, 2014.

[2] C. Venters et al., “The blind men and the elephant:
Towards an empirical evaluation framework for software
sustainability,” JORS, vol. 2, no. 1, 2014.

[3] R. Chitchyan et al., “Sustainability design in requirements
engineering,” in ICSE 2016, 2016.

[4] C. Venters et al., “Software sustainability: The modern
Tower of Babel.” in RE4SuSy, 2014.

[5] R. Lincke and W. Löwe, “Compendium of Software
Quality Standards and Metrics,” 2005. [Online]. Available:
http://www.arisa.se/compendium/

2


