Lightning Talk: Creating a Standardised Set of
Batched BLLAS Routines

Jack Dongarra
Innovative Computing Laboratory,
University of Tennessee,
Oak Ridge National Laboratory,
TN, USA.
School of Computer Science and School of Mathematics,

The University of Manchester,

Manchester, UK.
dongarra@icl.utk.edu

Abstract—One trend in modern high performance computing
is to decompose a large linear algebra problem into thousands of
small problems that can be solved independently. For this purpose
we are developing a new BLAS standard (Batched BLAS),
allowing users to perform thousands of small BLAS operations in
parallel and making efficient use of their hardware. We discuss
and introduce some details about how we are implementing this
new scientific standard as well as some ideas about the upcoming
processes that we plan to follow during its development.

Index Terms—BLAS; Scientific Computing; High Performance
Computing;

I. INTRODUCTION

While high-performance computing typically aims to solve
increasingly large linear algebra problems efficiently, there is a
current trend towards splitting these into thousands of smaller
linear algebra problems which are solved concurrently [[1]. The
solutions of these smaller problems are then combined to give
the solution to the original large problem.

Examples of applications that can be decomposed in this
way include solving separable elliptic equations using the al-
gorithm by Swarztrauber [2]], matrix-free finite element meth-
ods [3], domain decomposition [4] and image processing [3].
Batched BLAS is already utilized in popular machine learning
libraries such as Theano and TensorFlow. Other examples of
such applications where the solution of many small problems
are required include metabolic networks [6]], astrophysics [[7]],
and computational fluid dynamics.

There are many software libraries that provide Basic Lin-
ear Algebra Subproblems (BLAS) such as Intel MKL and
NVIDIA CuBLAS, but these libraries are optimized for solv-
ing large linear algebra problems. This means that applications
like the above typically run with suboptimal performance.

The solution to this problem is to create a set of routines for
computing linear algebra operations on batches of small matri-
ces, building upon the BLAS. This Batched BLAS (BBLAS)
should be able to compute many small matrix operations in
parallel. For example, if we consider a GEMM operation over

This work is licensed under a CC-BY-4.0 license.

Sven Hammarling, Nicholas J. Higham, Samuel D. Relton,

Pedro Valero-Lara and Mawussi Zounon
School of Mathematics,
The University of Manchester,
Manchester, UK.
sven.hammarling, nick.higham, samuel.relton,
pedro.valero-lara, mawussi.zounon@manchester.ac.uk

a batch of N matrices then we would like to compute, in
parallel,

C; + o;A;B; + 8;C;, i=1:N.

Currently there is no standard interface for batched BLAS
operations and no complete implementation of all batched
BLAS routines. Intel MKL has support for batched GEMM
computation whilst NVIDIA CuBLAS supports batched
GEMM and TRSM (along with a small subset of LAPACK).
However, these two libraries do not follow the same API
design. The introduction of the BLAS standard was critical
to the sustainability, vendors and academics could both focus
on obtaining optimal performance and users could easily
switch between different implementations of the software.
We hope that a standard API for BBLAS will be similarly
transformative.

II. TOWARDS A SUSTAINABLE BATCHED BLAS LIBRARY

Our medium term goals in this regard are as follows.

1) Propose a standard API for BBLAS routines.

2) Reach a consensus on the BBLAS API among vendors
and academics.

3) Have high quality HPC software available for computing
BBLAS routines.

4) Increase uptake of BBLAS routines in HPC applications.

Next we explain each point in detail. The lifecycle contain-
ing all these points is illustrated in Figure [I} Note that, whilst
our description is focused on BBLAS, we believe that a similar
process could be used to define any computing standard to be
used by the wider community.

—1- We have already proposed an initial draft BBLAS
API [8]]. For our particular scenario, since BBLAS is closely
related to BLAS, we attempt to follow the same conventions
as well as the programming style used in the latter. This can
ease the transition as the community becomes familiar with
the new API and resulting libraries.

—2— When looking to obtain a standard API for BBLAS
routines it is vitally important to involve both academics


https://creativecommons.org/licenses/by/4.0/

Specification

Test cases/
Dissemination

Yorqpasd

Implementation/
Testing

Fig. 1. Lifecycle of the BBLAS implementation process.

and vendors in the discussions. While academics may be
the primary users of the software, vendors such as Intel
and NVIDIA will likely provide optimized versions of the
functions and have considerable experience in creating high-
quality mathematical software.

Therefore, after proposing a draft specification for the
BBLAS API in May 2016 our team organised a workshop
where world-leading academics from the linear algebra com-
munity and experts from the vendors could discuss changes to
the draft. A number of ideas were proposed: from changing
the parameters in the function calls to change the layout of
the matrices in memory, with initial performance results given
in each case.

Based upon this we have recently released a technical
report [9] to review and compare these ideas, aiming to
conclusively show which combination(s) will perform well
in practical applications, paying particular attention to the
memory layout and how data is stored in memory. We have
realized that even the smallest changes to the API can have
a substantial impact on performance, which reflects the im-
portance that these preliminary studies have for the design of
scientific standards.

This report has now been circulated to the vendors and the
wider scientific community, so that we can receive feedback
and any further suggestions they might have, which will then
be fed into a second draft specification for the BBLAS API.

It is very important to spend the necessary time on this step
as future changes to the specification will force us to reimple-
ment the entire specification, which would require a significant
amount of engineering effort and generate frustration for the
users.

—3— Once the vendors and the wider community are in
agreement on the BBLAS API, work can focus on obtaining
highly optimized implementations for different architectures.
In particular we hope to see extremely good performance on
GPUs and the new Knights Landing Xeon Phi models within
the next few years. Early efforts from Intel and NVIDIA in
this for batched GEMM operations look extremely promising.

As HPC nodes become increasingly heterogeneous it is
interesting to postulate a more general library that can use all
the available computational resources concurrently. There are
a number of questions to answer in this area, including how
best to spread the workload among the available hardware. We
have some initial ideas on this which we hope to implement in

an open source library. This will allow interested members of
the community to obtain the maximal performance possible on
any HPC node. A well designed open source library, with good
documentation and examples, will allow application experts to
make use of our work easily, whilst allowing experts to add
optimized code for additional platforms.

—4— Whilst batched GEMM is already used in some HPC
applications, we hope to increase the uptake of batched BLAS
in other areas. Whether or not this happens hinges upon the
availability of high quality and high performance software
for BBLAS routines. Allowing users to download our library
via a public repository can be very beneficial for increasing
the availability and dissemination of our library. Events such
as conferences, workshops and journal publications provide
another way to involve the community in our work.

ACKNOWLEDGEMENTS

This project is funded in part from the European Unions Horizon 2020
research and innovation programme under the NLAFET grant agreement No
671633.

REFERENCES

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects,” Journal
of Physics: Conference Series, vol. 180, no. 1, 2009.

[2] P. Valero-Lara, A. Pinelli, and M. Prieto-Matias, “Fast finite difference
Poisson solvers on heterogeneous architectures,” Computer Physics Com-
munications, vol. 185, no. 4, pp. 1265-1272, 2014.

[3] K. Ljungkvist, “Matrix-free finite-element operator application on graph-
ics processing units,” in Euro-Par 2014: Parallel Processing Workshops -
Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26,
2014, Revised Selected Papers, Part 11, 2014, pp. 450-461.

[4] E. Agullo, L. Giraud, and M. Zounon, “On the resilience of parallel
sparse hybrid solvers,” in 22nd IEEE International Conference on High
Performance Computing, HiPC 2015, Bengaluru, India, December 16-19,
2015, 2015, pp. 75-84.

[5] P. Valero-Lara, “Multi-GPU acceleration of DARTEL (early detection of
alzheimer),” in 2014 IEEE International Conference on Cluster Comput-
ing, CLUSTER 2014, Madrid, Spain, September 22-26, 2014, 2014, pp.
346-354.

[6] A.Khodayari, A. R. Zomorrodi, J. C. Liao, and C. D. Maranas, “A kinetic
model of Escherichia coli core metabolism satisfying multiple sets of
mutant flux data,” Metabolic Engineering, vol. 25, pp. 50-62, 2014.

[7]1 O. E. B. Messer, J. A. Harris, S. Parete-Koon, and M. A. Chertjkow,
“Multicore and accelerator development for a leadership-class stellar
astrophysics code,” in Proceedings of "PARA 2012: State-of-the-Art in
Scientific and Parallel Computing.”, 2012.

[8] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham,
J. Hogg, P. Valero-Lara, S. D. Relton, S. Tomov, and M. Zounon,
“A proposed API for batched basic linear algebra subprograms,” The
University of Manchester, UK, MIMS EPrint 2016.25, April 2016.

[9] S. D. Relton, P. Valero-Lara, and M. Zounon, “A comparison of po-
tential interfaces for batched blas computations,” Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, MIMS Eprint
2016.42, 2016.



	Introduction
	Towards a Sustainable Batched BLAS Library 
	References

