
Lightning Talk: HydroShare – A Case Study in

Software Engineering Best Practices and Culture

Change for Developing Sustainable Community

Software
Ray Idaszak1, David G. Tarboton (PI)2, Hong Yi1, Michael Stealey1, Pabitra Dash2, Alva Couch3, Daniel P. Ames4, Jeffery S. Horsburgh2, Tony

Castronova2, Jon Goodall5, Mohamed Morsy5, Venkatesh Merwade6, Mauriel Ramirez2, Tian Gan2, Drew (Zhiyu) Li4, Jeff Sadler4, Shawn

Crawley4, Zhaokun Xue3, Lan Zhao6, Carol Song6, Christina Bandaragoda7

1RENCI, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, Email: {rayi, hongyi, stealey}@renci.org

2Utah State University, Logan, Utah, USA, Email: {dtarb, pabitra.dash, jeff.horsburgh, tony.castronova, mauriel.ramirez, tian.gan}@usu.edu
3Tufts University, Medford, Massachusetts, USA, Email: {alva.couch, zhaokun.xue)@tufts.edu

4Brigham Young University, Provo, Utah, USA, Email: {dan.ames, zhiyu.li, jeffrey.sadler, shawn.crawley)@byu.edu
5University of Virginia, Charlottesville, Virginia, USA, Email: {goodall, mmm4dh}@virginia.edu

6Purdue University, West Lafayette, Indiana, USA, Email: {venvmerwade, lanzhao, cxsong}@purdue.edu
7University of Washington, Seattle, Washington, USA, Email: cband@uw.edu

Abstract—Applying modern software engineering to scientific

software development has many challenges. These include lack of

time or incentives to learn software engineering best practices, a

lack of understanding or appreciation of the value of modern soft-

ware engineering, and a shortage of mechanisms to more broadly

change the software engineering culture of a community of re-

searchers in a singular concerted effort. The HydroShare project

is a large distributed research software development project that

has made significant inroads on these challenges. As the Hy-

droShare project enters its fifth year of NSF funding, we discuss

how research scientists and research software engineers from the

ten collaborating institutions consistently produce high-quality

HydroShare code releases every 2-3 weeks that are formally re-

viewed and tested.

I. INTRODUCTION

Applying modern software engineering to scientific software

development has many challenges. These include lack of time

or incentives to learn software engineering best practices, a lack

of understanding or appreciation of the value of modern software

engineering, and a shortage of mechanisms to more broadly

change the software engineering culture of a community of re-

searchers in a singular concerted effort. The HydroShare project

is a large distributed research software development project that

has made significant inroads on these challenges [1]. Hy-

droShare is a hydrology community open-source cyberinfra-

structure project supported by the National Science Foundation

(NSF) through its Software Infrastructure for Sustained Innova-

tion program (SI2) [2, 3]. Domain scientists, professional soft-

ware engineers, and academic software developers from ten ac-

ademic, research, and development organizations located across

the United States collaborate to develop HydroShare - an online,

collaborative system supporting the open sharing of hydrologic

data, analytical tools, and computer models.

This work is licensed under a CC-BY-4.0 license.

At the onset of the HydroShare project, most of the research

scientist collaborators on the project were not clear on the differ-

ence between software development and software engineering,

and they were not familiar with concepts such as iterative soft-

ware development, test-driven development, code reviews, and

continuous integration. Now, as the HydroShare project enters

its fifth year of NSF funding, research scientists and research

software engineers from the ten collaborating institutions con-

sistently produce high-quality HydroShare code releases every

2-3 weeks that are formally reviewed and tested. The Hy-

droShare team now understands and embraces the value of mod-

ern software engineering; indeed, they understand the time sav-

ings of producing high-quality sustainable code at the onset as

enabling more time spent on their research and not on the time-

consuming alternative of managing potentially poor quality code

had they not embraced modern software engineering.

II. SOFTWARE ENGINEERING BEST PRACTICES AND CULTURE

CHANGE FOR DEVELOPING SUSTAINABLE COMMUNITY

SOFTWARE

The HydroShare team has achieved a community rhythm in

the continual deployment of high-quality community code re-

leases of HydroShare. The community visibility of this rhythm

has served as an incentive for community culture change in that

team members are pleased with the resulting code, its evolving

significant capabilities, and the efficiency by which new features

are tested and integrated as contributed by the collaborating team

members. This culture change has naturally incented collabo-

rating researchers to take the time to teach modern software en-

gineering best practices to their graduate and postdoctoral stu-

dents that time has shown have now also embraced these prac-

tices. While host universities have provided the requisite train-

ing in computer programming to HydroShare researchers, they

have not provided the accompanying instruction on software en-

gineering best practices. However, the HydroShare project has

https://creativecommons.org/licenses/by/4.0/

provided numerous faculty, graduate students, postdoctoral stu-

dents, and even undergraduate students the opportunity to learn

modern software engineering best practices first-hand in the ab-

sence formal classroom instruction of same.

What is important to convey is this propagation and adoption

of software engineering best practices across the HydroShare

team is happening organically without the need to force it. It is

a success story in that what is referred to as a “community

rhythm” herein is in effect like an engine that, once started, sus-

tains itself in part by visibly promoting its own success and effi-

ciencies such that there is no questioning of its uptake by new

team members. In other words, adoption of these software en-

gineering best practices becomes the new norm – there is no al-

ternative that new HydroShare team members are ever exposed

to. This is especially important to those faculty and students who

are early in their careers as it has proven a viable mechanism of

getting these individuals on a sustainable software path early on.

As it is beyond the scope of a lightning talk summary paper

to fully describe the mechanism of how the success of Hy-

droShare’s software engineering is achieved, we refer the reader

to a book chapter titled “HydroShare – A case study of the ap-

plication of modern software engineering to a large distributed

federally-funded scientific software development project” that

offers a comprehensive discussion of this work [4]. The book

chapter discusses the HydroShare team’s use of iterative soft-

ware development, continuous integration, and DevOps. Hy-

droShare features are positioned as GitHub branches and worked

on by subsets of the active HydroShare development community

distributed across the ten collaborating organizations. Designs

of proposed new features are discussed extensively initially dur-

ing one of the weekly HydroShare team calls involving hydrol-

ogy domain researchers, developers, and software engineers

from the HydroShare collaborating institutions as well as com-

munity stakeholders. Designs are revisited as required so as to

adapt to new technologies and/or address changing require-

ments. Once a design is accepted, unit tests are written and in-

tegrated with Jenkins which is an open source continuous inte-

gration tool. GitHub commits are made daily, and functional

progress with running code demonstrations are reviewed weekly

for functionality and usability during the HydroShare weekly

team calls on one of the HydroShare pre-release virtual ma-

chines. HydroShare GitHub feature branches are rebased regu-

larly with the HydroShare main branch to keep the code from

getting out of sync with the HydroShare production release. As

with all HydroShare code, code reviews are performed by some-

one other than the author of the code, and only until a “+1” is

given by the code reviewer (via GitHub issue tracking) and all

unit tests pass will code be committed incrementally into the Hy-

droShare main branch. The HydroShare main site offers mech-

anisms for the community at large to comment on issues (includ-

ing submission of bugs) and contribute suggestions to Hy-

droShare. The HydroShare GitHub site maintains active statis-

tics demonstrating the vibrant, open, and diverse HydroShare re-

search software development activity [5].

A concluding note on the software sustainability of Hy-

droshare: since 2002, CUAHSI [6] – the primary U.S. hydrology

consortium with 130 member universities and international or-

ganizations – collaborated in the predecessor to HydroShare

called Hydrologic Information System, or HIS [7]. HIS is now

maintained by the CUAHSI Water Data Center [8] as its com-

munity sustainability model. HydroShare is positioned as the

successor to HIS, complementing but not replacing it. When the

NSF-funded HydroShare award concludes, it will also be hosted

by the CUAHSI Water Data Center – its long-term sustainabil-

ity ensured by modern software engineering that will readily en-

able the broader community to continually make novel and use-

ful contributions.

ACKNOWLEDGMENT

This material is based upon work supported by the USA Na-

tional Science Foundation (NSF) under awards 1148453 and

1148090; any opinions, findings, conclusions, or recommenda-

tions expressed in this material are those of the authors and do

not necessarily reflect the views of the NSF.

REFERENCES

[1] Tarboton, D. G., Idaszak, R., Horsburgh, J. S., J. Heard, Ames, D.

P., Goodall, J. L., Band, L., Merwade, V., Couch, A., Arrigo, J.,

Hooper, R., Valentine D., and Maidment, D. (2014),

"HydroShare: Advancing Collaboration through Hydrologic Data

and Model Sharing." 7th International Conference on

Environmental Modelling and Software. Ed. D. Ames and N.

Quinn. San Diego, 2014.

[2] Implementation of NSF CIF21 Software Vision (SW-Vision),

http://www.nsf.gov/si2/.

[3] NSF collaborative HydroShare award numbers 1148453 and

1148090,

http://www.nsf.gov/awardsearch/showAward?AWD_ID=11484

53/ and

http://www.nsf.gov/awardsearch/showAward?AWD_ID=11480

90/.

[4] Idaszak, R., Tarboton, D.G., Yi, H., Christopherson, L., Stealey,

M.J., Miles, B., Dash, P., Couch, A., Spealman, C., Ames, D.P.,

Horsburgh, J.S. HydroShare – A case study of the application of

modern software engineering to a large distributed federally-

funded scientific software development project. Accepted for

inclusion in: J. Carver, N.P.C. Hong, and G.K. Thiruvathukal

(eds.) Software Engineering for Science, ISBN 9781498743853.

Taylor&Francis CRC Press; November 2016.

[5] HydroShare GitHub site,

https://github.com/hydroshare/hydroshare/graphs/commit-

activity.

[6] A Vision for Hydrologic Science Research, Consortium of

Universities for the Advancement of Hydrologic Sciences Inc.,

Technical Report Number 1,

http://www.cuahsi.org/publications/cuahsi_tech_rpt_1.pdf.

[7] CUAHSI Hydrologic Information Systems, Consortium of

Universities for the Advancement of Hydrologic Science, Inc.

Technical Report Number 2 - Hydrologic Information Systems

Committee, http://www.cuahsi.org/docs/dois/CUAHSI-TR2.pdf.

[8] https://www.cuahsi.org/wdc.

