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Abstract. This paper is devoted to the task of the maximum flow finding with 

nonzero lower flow bounds taking into account given vitality degree. 

Transportation network with the flow is considered in fuzzy conditions due to 

the fuzzy character of the network’s parameters. Arcs of the network are 

assigned by the fuzzy arc capacities and nonzero lower flow bounds, vitality 

parameters and crisp transit times. All network’s parameters can vary over time, 

therefore, it allows to consider network as dynamic one. The vitality parameter 

assigned to the arcs means ability of its objects to be resistant to weather 

conditions, traffic accidents and save and restore objects themselves, arc 

capacities of the network’s sections in case of damage. The nonzero lower flow 

bounds are used to assess economic reliability of the transportation. Such 

methods can be applied in the real railways, roads and air roads solving the task 

of the optimal cargo transportation. 

Keywords: Fuzzy dynamic graph, fuzzy nonzero lower flow bound, fuzzy 

vitality degree. 

1   Introduction 

The flow tasks [1] considered during the study of transportation networks are 

relevant due to their wide practical application, in particular, when finding the 

maximum amount of traffic between selected nodes on the road map, determining the 

routes of the optimal cost.  

Important sphere of researches is dynamic networks [2-4], that take into account 

transit times along the arcs and don’t assume instant flow distribution along the arcs. 

Another significant tool is considering dependence of arc capacities and lower flow 

bounds on flow departure time [5] and operating with fully dynamic networks instead 

of stationary-dynamic ones [6], using the notions of the time-expanded graphs [7-8]. 

Flow problems are connected with uncertainty of some kind, as changes in 

environment, measurement errors influence such network parameters, as arc flow 

bounds and vitality parameters. Therefore, we propose to consider these tasks in fuzzy 

conditions and we turn to the fuzzy graphs for solving such problems. 

Vitality parameter [9-10] peculiar to arcs of the network usually isn’t taken into 

account while studying networks. Its conventional definition was introduced by the 

authors H. Frank and I. Frisch in [11] as sensitivity of the network to damages. 



However, vitality applied to the networks is ability of its objects and links among them 

to be resistant to weather conditions, traffic accidents and its combinations, and save 

and restore (fully or partially) objects themselves and their connections, arc capacities 

of the network’s sections in case of damage. Nowadays, vitality of the network isn’t 

taken into account, while railways and roads include the complex objects, such as 

stations, distillation ways, culverts, wagon, passenger and cargo managements. 

Sometimes network’s parameters can be set qualitatively. Thus, one can set the notion 

“vitality degree” considering the roads and railways. In this case “vitality degree” is 

considered as probability of trouble-free operation of the road section and some 

subjective value, such as importance and reliability, etc.  

Other words this paper presents method of the maximum flow finding with nonzero 

lower flow bounds in fuzzy dynamic network with given vitality degree. 

The paper is structured as follows. In the Section 2 we give basic definitions and 

rules. Section 3 presents the proposed method. Section 4 provides numerical example 

illustrating the main steps of the proposed method. Section 5 is conclusion and future 

work. 

2   Definitions and Rules  

The proposed approach is based on the following notion of vitality. 

Fuzzy directed path ( , )i mP x x  of the graph ( , )G X A  is a sequence of fuzzy 

directed arcs from the node ix  to the node mx : 
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Conjunctive durability of the path ( ( , ))i mP x x  is defined as 

α β i m
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Fuzzy directed path ( , )i mP x x  is called a simple path between vertices 
ix  and mx  

if its part is not a path between the same vertices.  

Vertex y is called a fuzzy accessible from the vertex x  in the graph ( , )G X A  if 

the fuzzy directed path from the node x to the node y exists. 

The accessible degree of the node y from the node x, (xy) is defined by the 

following expression: 

max 1 2α
α

γ(x, y) ( (P (x, y)), = , ,..., p,   

where p is the number of various simple directed paths from vertex x to vertex y.  

We consider the degree of fuzzy graph vitality as a degree of strong connection 

[10, 11], so it will be defined by the following expression:  
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It means that there is a route between each pair of the graph vertices with a 

conjunctive strength not less than value V. 

Let us introduce basic rules and definitions underlying this method.  



Rule 1 of turning from the time-expanded fuzzy graph to the fuzzy graph without 

lower flow bounds [12] 

Turn to the fuzzy graph * * *( , )p p pG X A  from ( , )p p pG X A . Introduce the 

artificial source *s  and sink *t   and arcs connecting the node-time pair ( , T)t    

and ( , T)s    with *( , , , ) ,u t s T T       

*( , , , ) 0,l t s T T      *( , , , ) 1.t s T T        in the graph pG . For 

arcs with ( , , , ) 0i jl x x    : 1) reduce ( , , , )i ju x x    to 

*( , , , ) ( , , , ) ( , , , )i j i j i ju x x u x x l x x       , ( , , , )i jl x x    to 0 , 

*( , , , ) ( , , , ).i j i jx x x x       2) Introduce the arcs connecting *s  with ( , )jx  , and 

the arcs connecting *t  with ( , )ix   with * * *( , , , ) ( , , , ) ( , , , )j i i ju s x u x t l x x        

zero lower fuzzy flow bounds * * *( , , , ) ( , , , ) 0j il s x l x t     , 

*( , , , ) ( , , , ).i j i jx x x x       

Definition 1 of the fuzzy residual network of the time-expanded graph. 

Fuzzy residual network * * *( , )p p pG X A    is the network without lower flow 

bounds * * *( , )p p pG X A , which is constructed according to the following rules: if 
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,then include the corresponding arc from *( , )ix    to *( , )jx    in *

pG   with 

* * *( , , , ) ( , , , ) ( , , , )i j i j i ju x x u x x x x          and 
* *( , , , ) ( , , , )i j i jx x x x      .  

If  
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Then include the corresponding arc from *( , )jx    to *( , )ix    in *

pG   with 

* *( , , , ) ( , , , )j i i ju x x x x       and 
* *( , , , ) ( , , , )j i i jx x x x       .  

Rule 2 of transition from the time-expanded fuzzy graph without lower flow 

bounds with the found maximum flow to the graph with the feasible flow  

Turn to the graph pG  from the graph *

pG  as following: reject artificial nodes and 

arcs, connecting them with other nodes. The feasible flow vector ( ( , , , ))i jx x     

of the value   is defined as: 
*( , , , ) ( , , , ) ( , , , )i j i j i jx x x x l x x         , where 

*( , , , )i jx x    – the flows, going along the arcs of the graph 
*

pG  after deleting all 

artificial nodes and connecting arcs.  
Rule 3 of the fuzzy residual network constructing with the feasible flow 

vector for all arcs, if ( , , , ) ( , , , ),i j i jx x u x x      then include the corresponding arc 



( , )ix   from the node-time pair to the node-time pair ( , )jx   in ( )pG   with arc 

capacity ( , , , ) ( , , , ) ( , , , )i j i j i ju x x u x x x x          and transit time 

( , , , ) ( , , , )i j i jx x x x      . For all arcs, if ( , , , ) ( , , , )i j i jx x l x x     , then 

include the corresponding arc, going from the node-time pair ( , )jx   to the node-time 

pair ( , )ix   in ( )pG   with arc capacity 

( , , , ) ( , , , ) ( , , , )j i i j i ju x x x x l x x          and transit time 

( , , , ) ( , , , )j i i jx x x x       .  

Therefore, the proposed method of the maximum flow finding with nonzero 

lower flow bounds in fuzzy dynamic network consists in the maximum flow finding 

in the network without lower flow bounds. We turn to the time-expanded fuzzy graph 

and consequently to the graph without lower flow bounds for it and try to find the 

maximum flow in the graph. Based on the formulated rules and definitions, turn to the 

maximum flow finding with nonzero lower flow bounds in dynamic network in terms 

of partial uncertainty. 

3   Presented Method of the Maximum Flow Finding Task with 

Nonzero Lower Flow Bounds in the Fuzzy Dynamic Network 

Let us introduce the task of the maximum flow finding with nonzero lower flow 

bounds in dynamic network in terms of partial uncertainty and given vitality degree, 

represented by the model (1)-(6). 

( )Maximize p  (1) 
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Step 1. Go to the time-expanded fuzzy static graph pG  from the given fuzzy 

dynamic graph G .  

Step 2. Turn to the graph * * *( , )p p pG X A  according to the rule 1. 



Step 3. Build a fuzzy residual network *

pG   due to the definition 1. 

Step 4. Search the augmenting shortest path (in terms of the number of arcs) *

pP   

from the artificial source *s  to the artificial sink *t  in the constructed fuzzy residual 

network according to the breadth-first-search.  

4.1 Go to the step 5 if the augmenting path *

pP   is found. 

4.2 The flow value *

( , , , ) 0

( , , , )
j i

i j

l x x

l x x
 

  


   is obtained, which is the 

maximum flow in *

pG , if the path is failed to find. Exit. 

Step 5. Pass the minimum from the arc capacities 
* *min[ ( )]p pu P   , * *( ) min[ ( , , , )p i ju P u x x    , *( , ),( , )i j px x P     along this path 

*

pP   . 

Step 6. Update the fuzzy flow values in the graph *

pG : replace the fuzzy flow 

*( , , , )j ix x    along the corresponding arcs going from *( , )jx   to *( , )ix   from *

pG  

by * *( , , , )j i px x      for arcs connecting node-time pair *( , )ix    with *( , )jx    in 

*

pG  , such as * * *(( , ), ( , ))i j px x A    , * * *(( , ), ( , ))i j px x A      and replace the fuzzy 

flow *( , , , )i jx x    along the arcs going from *( , )ix   to *( , )jx   from *

pG  by 

* *( , , , )i j px x      for arcs connecting node-time pair *( , )ix    with *( , )jx    in 

*

pG  , such as * * *(( , ), ( , ))i j px x A    , * * *(( , ), ( , ))i j px x A     . Replace 

*( , , , )i jx x    by * * *( , , , )i j p px x P     . 

Step 7. Compare flow value * * *( , , , )i j p px x P      and 
( , , , ) 0

( , , , )
j i

i j

l x x

l x x
 

 


 : 

7.1. If the flow value * * *( , , , )i j p px x P      is less than 
( , , , ) 0

( , , , )
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i j

l x x

l x x
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 


 , 

go to the step 3. 

7.2. If the flow value * * *( , , , )i j p px x P      is equal to 
( , , , ) 0

( , , , )
j i

i j

l x x

l x x
 

 


 , 

turn to the graph pG  from the graph *

pG  according to the rule 2. Go to the step 8.  

Step 8. Construct the residual network ( )pG   according to the rule 3. 

Step 9. Define the shortest path pP
 ( )pG  . 

 (I) Go to the step 10 if the augmenting path pP
 is found. 

(II) The maximum flow ( , , , ) ( )i j p px x P p        in ( )pG   is found if the 

path is failed to find, then the maximum flow in “time-expanded” static fuzzy graph 

can be found at the step 12. 



Step 10. Pass the flow value min[ ( )]p pu P   , ( ) min[ ( , , , )p i ju P u x x    , 

( , ), ( , )i j px x P    along the found path. 

Step 11. Update the flow values in the graph ( )pG  . 

Step 12. Turn to the initial dynamic graph G  as follows: reject the artificial nodes 
's , 't and arcs, connecting them with other nods. 

4 Numerical Example 

Let us describe the proposed algorithm. For example, assume that the original 

fuzzy dynamic network is shown in Fig. 1. It is necessary to find the maximum flow in 

the initial dynamic graph with the given vitality degree no less than 0,7  and represent 

the result in the form of the triangular number. 

Fuzzy upper flow bounds 
iju , depending on the flow departure time   are shown 

in the Table I. Fuzzy lower flow bounds 
ijl , depending on the flow departure time   

are shown in the Table II. Time parameters 
ij  depending on the flow departure time 

  are shown in the Table III. Fuzzy vitality parameters 
ijv , depending on the flow 

departure time   are shown in the Table IV. 

2x 4x

5x

3x

1x

 

Fig. 1.  Initial dynamic graph G  

Construct time-expanded graph, as shown in Fig. 2. 

Turn to the graph without lower flow bounds and find the augmenting paths for 

the graph in Fig. 3: * * *

1 5 1, ( ,2),( ,0),P s x x t    with 7  flow units, 

* * *

2 2 3 5 1, ( ,1),( ,2),( ,3),( ,0),P s x x x x t   with 3  flow units, 

* * *

3 2 3 5 1 4, ( ,1),( ,2),( ,3),( ,0),( ,1),P s x x x x x t   with 7  flow units. 

We obtain graph with the maximum flow in Fig. 4. Therefore, the task has a 

solution and we turn to the initial time-expanded graph with the feasible flow in Fig. 



5. Finding the augmenting paths and pushing the flows among them, we obtain graph 

with the maximum flow in Fig. 6. 

TABLE I. FUZZY UPPER FLOW BOUNDS 
iju , DEPENDING ON THE FLOW DEPARTURE TIME    

Arcs of the 

graph 

Fuzzy upper flow bounds 
iju  at the time periods  , 

time units. 

0 1 2 3 

1 2( , )x x  25  20  25  40  

1 4( , )x x  10  20  25  25  

1 5( , )x x  18  18  30  35  

2 3( , )x x  35  30  35  18  

3 4( , )x x  15  27  33  25  

3 5( , )x x  55  45  40  55  

4 5( , )x x  20  20  18  28  

TABLE II. FUZZY LOWER FLOW BOUNDS 
ijl , DEPENDING ON THE FLOW DEPARTURE TIME  . 

Arcs of the 

graph 

Fuzzy lower flow bounds 
ijl  at the time periods  , 

time units. 

0 1 2 3 

1 2( , )x x  10  0  0  0  

1 4( , )x x  0  0  0  0  

1 5( , )x x  0  0  0  20  

2 3( , )x x  6  0  15  0  

3 4( , )x x  0  8  0  0  

3 5( , )x x  25  15  0  0  

4 5( , )x x  0  5  0  10  

TABLE III. TIME PARAMETERS 
ij  DEPENDING ON THE FLOW DEPARTURE TIME   

Arcs of the 

graph 

Time parameters 
ij  at time periods , time units. 

0 1 2 3 

1 2( , )x x  1 1 1 2 

1 4( , )x x  1 3 2 2 

1 5( , )x x  4 4 1 1 

2 3( , )x x  4 1 1 1 

3 4( , )x x  1 1 2 2 

3 5( , )x x  2 2 1 1 

4 5( , )x x  5 4 1 3 

 



TABLE IV. FUZZY VITALITY PARAMETERS 
ijv , DEPENDING ON THE FLOW DEPARTURE TIME   

 

Arcs of the 

graph 

Fuzzy vitality parameters 
ijv at time periods  , 

vitality units 

0 1 2 3 

1 2( , )x x  0,8  0,4  0,6  0,5  

1 4( , )x x  0,7  0,2  0,8  0,9  

1 5( , )x x  0,4  0,8  0,6  0,3  

2 3( , )x x  0,7  0,8  0,7  0,4  

3 4( , )x x  0,7  0,9  0,7  0,6  

3 5( , )x x  0,3  0,4  0,7  0,4  

4 5( , )x x  0,8  0,3  0,3  0,4  

 

The maximum flow in the initial graph with the vitality degree no less than 0,7  is 

25 10 35   flow units. 

Let us define deviation borders of the obtained fuzzy number “near 35 ”.  

Since the calculations with fuzzy numbers are cumbersome and result in strong 

blurring of the resulting number’s borders, we suggest to operate fuzzy numbers 

according to the method, described in [8]. In this case we will operate the central 

values of fuzzy numbers, blurring the result at the final step and presenting it as a 

triangular the number.  

Therefore, deviation borders of the obtained fuzzy number “near 35 ” corresponded 

to the maximum flow in the graph G  are calculated according to the basic values of 

arc capacities in Fig. 7. 

The detected result is between two adjacent basic values of the arc capacities: 31  

with the left deviation 
1 8Ll  , right deviation – 

1 7Rl   and 44  with the left deviation 

2 9Ll  , right deviation –
2 10Rl  . We obtain deviations : 

1 8Ll  , 
1 7Rl  . 

Therefore, the maximum flow in the fuzzy dynamic graph with the given vitality 

degree no less than 0,7  can be represented by fuzzy triangular number (27, 35,42) 

units. 
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Fig. 2.  Time-expanded graph 
pG   
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Fig. 3.  *

pG  – Time-expanded graph without lower flow bounds G  
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 Fig. 4. Graph *

pG  with the maximum flow 
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Fig. 5. Graph 
pG  with the feasible flow 
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Fig. 6. Graph 
pG  with the maximum flow 
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Fig. 7. Membership functions of the basic values of arc capacities of the network G  

5   Conclusion and Future Work 

Paper presents proposed algorithm of the maximum flow finding with nonzero 

lower flow bounds and vitality degrees in the fuzzy dynamic network with the required 

vitality degree based on the formulated definitions and rules. The considered network 

is represented as fuzzy graph with parameters, depending on the flow departure time 

and varying over time. Given lower flow bounds are used for assessing economic 

reliability of transportation. Given vitality degree reflects ability of its objects to be 

resistant to weather conditions, traffic accidents and save and restore objects 

themselves, arc capacities of the network’s sections in case of damage. The proposed 

method has important practical value in transportation implementing on the real types 

of roads. In the future works we will propose methods of increasing the vitality degree 

in fuzzy dynamic networks. 
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