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ABSTRACT
In this paper we propose a full Bayesian probabilistic method
to learn preferences from non-transitive pairwise comparison
data. Such lack of transitivity easily arises when the number
of pairwise comparisons is large, and they are given sequen-
tially without allowing for consistency check. We develop a
Bayesian Mallows model able to handle such data through
a latent layer of uncertainty which captures the generation
of preference misreporting. We then construct an MCMC
algorithm, and test the procedure on simulated data.

1. INTRODUCTION
We consider pairwise preference data of the form“x is pre-

ferred to y”, denoted x ≺ y, where x and y are some items
of interest. The challenge with this kind of data, is that
pairwise preferences are not always transitive. For instance
the data coming from a single user may contain preferences
of the form {x ≺ y , y ≺ z, z ≺ x}. Such non-transitivity
of preferences arises for many reasons, including the user’s
inattentiveness, actual ambiguity in the user’s preference,
multiple users with the same account and varying framing
of the data collection. These situations are so common that
most pairwise comparison data are in fact non-transitive,
thus creating the need for methods able to learn users’ pref-
erences from data that lack logical transitivity.

In this paper we assume that non-transitive data arise be-
cause users make mistakes, i.e. switch the order between
two compared items, either simply by mistake or because
the items compared have a rather similar rank for the user.
The developed Bayesian methodology provides the poste-
rior distribution of the consensus ranking of a homogeneous
group of users, as well as of the estimated individual rank-
ings for each user. The consensus ranking can be seen as
a compromise which is formed from the individual pairwise
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preferences. The estimated individual rankings can be used
for personalized recommendation. Inference is based on an
adapted version of the Markov Chain Monte Carlo algorithm
in [3].

Previous work on pairwise preferences includes the Bradley
Terry model [1] (but no personalized preferences are esti-
mated) and, within the framework of Mallows model, [2]
and [3], where transitivity is assumed.

2. METHODS
Let N users independently express their preferences be-

tween pairs of items in O = {O1, ..., On}. We assume that
each user j receives a possibly different subset Cj = {Cj,1, ...,
Cj,Mj} of pairs of dimension Mj ≤ n(n − 1)/2. Let Bj =
{Bj,1, ...,Bj,Mj} be the set of preferences given by user j,
where Bj,m is the order she gives to the pair Cj,m. For ex-
ample Bj,m = {O1 ≺ O2} means that O1 is preferred to
O2 if Cj,m = (O1, O2). The considered data are incomplete
since not all items are observed by each user. We assume no
ties in the data: users are forced to express their preference
for all pairs in the list Cj assigned to them, and indifference
is not permitted.

The main assumption is that each user j has a personal
latent ranking, R̃j = (R̃j1, ..., R̃jn) ∈ Pn (the space of
n-dimensional permutations), distributed according to the
Mallows model

π(R̃j |α, ρ) =
exp{−(α/n)d(R̃j , ρ)}1Pn(R̃j)

Zn(α)
∀j .

We assume conditional independence between R̃1, ..., R̃N

given ρ and α. Here ρ∈Pn is the shared consensus ranking,
α > 0 is the scale parameter (describing the concentration
around the shared consensus), d(·, ·) : Pn × Pn → [0,∞) is
any right-invariant distance function (e.g. Kendall, Spear-
man or footrule), and Zn(α) is the normalizing constant.
See [3] for more details.

We model the situation where each user j, when announc-
ing her pairwise preferences, mentally checks where the items
under comparison are in her latent ranking R̃j . Then, if the

user is consistent with R̃j , the pairwise orderings in Bj are

induced by R̃j according to the rule: (Ok ≺ Oi) ⇐⇒
R̃jk < R̃ji. In this case Bj contains only transitive prefer-

ences. However, if the user is not fully consistent with her
own latent ranking, the pairwise orderings in Bj can be non-



transitive. In order to deal with this situation, we propose
a probabilistic model based on the assumption that non-
transitivities are due to mistakes in deriving the pair order
from the latent raking R̃j . The likelihood assumed for a set
of preferences Bj is

π(Bj |α, ρ) =
∑

Rj∈Pn

π(Bj |R̃j = Rj)π(R̃j = Rj |α, ρ),

where π(Bj |R̃j = Rj) is the probability of ordering the pairs
in Cj as in Bj (possibly generating non-transitivities), when
the latent ranking for user j is Rj . It is therefore the prob-
ability of making mistakes instead of just following Rj .
The posterior density is then:

π(α, ρ| B1:N ) ∝ π(α)π(ρ)

N∏
j=1

 ∑
Rj∈Pn

π(Bj |Rj)π(Rj |α, ρ)

 ,
where we assume a gamma prior, π(α), for α and a uniform
prior on Pn, π(ρ), for ρ. We suggest two models for the
probability of making a mistake: the Bernoulli model (BM)
to handle random mistakes, and the logistic model (LM) for
mistakes that are due to difficulty in ordering similar items.
In both models we assume that any two pair comparisons
made by a user are conditionally independent given her la-
tent ranking: (Bj,m1 ⊥⊥ Bj,m2) | R̃j , ∀m1,m2 = 1, ...Mj . In
BM we assume the following Bernoulli type model for the
probability of making a mistake:

P(Bj,m = −B̃j,m(R̃j) | θ, R̃j) = θ , θ ∈ [0, 0.5) ,

where −B̃j,m(R̃j) is the reversed preference order, i.e. a
mistake. We assign to θ the truncated Beta distribution on
the interval [0, 0.5) as prior. In LM we assume the following
logistic type model for the probability of making a mistake:

logit
(
P

(
Bj,m = −B̃j,m(R̃j)

∣∣∣R̃j , β0, β1
))

= β0 + β1dR̃j ,m
,

where dR̃j ,m
is the footrule or l1 distance of the individ-

ual ranks of the items compared: if Bj,m = (O1 ≺ O2),

dR̃j ,m
= |R̃j1 − R̃j2|. We assign to β1 an exponential prior

on the negative support1 and to β0, conditioned on β1, an
exponential prior on the shifted support [−∞,−β1]2. These
choices are motivated by the fact that we want to model a
negative dependence between the distance of the items and
the probability of making a mistake. Also, we want to force
the probability of making a mistake when the items have
ranks differing by 1 to be less than 0.5.

3. EXPERIMENTAL RESULTS
We performed a number of experiments on simulated data,

generated according to the model in Section 2 with BM
noise, a fixed ρTRUE and n = 10 items. For various val-
ues of α we sampled latent rankings R̃j,TRUE from the Mal-
lows density centered at ρTRUE, using which we generated
the individual non-transitive pair comparisons. In order
to assess the performance of our methods, in Figure 1 we
plotted the posterior CDF of the footrule distance of the
estimated consensus ranking and the true generating one,
df (ρ, ρTRUE) =

∑n
i=1 |ρi − ρi,TRUE|, for varying parameters

N , α, θ and λM (the parameter of a Poisson from which the
number of comparisons assigned to each user is sampled).
As expected, the performance of the method improves as
1π(β1) = λ1eλ1β11(β1 < 0), λ1 > 0.
2π(β0|β1) = λ0e

λ0(β0+β1)1(β0 < −β1), λ0 > 0.

Figure 1: Posterior CDFs of df (ρ, ρTRUE) for varying
parameters.

the number of users N increases (Figure 1, top right), be-
comes worse as the probability of doing mistakes θ increases
(top left), improves as the dispersion of the individual latent

rankings R̃j,TRUE around ρTRUE decreases, i.e. when α in-
creases, (bottom left), and becomes worse when the number
of pairwise comparisons diminishes, i.e. when λM decreases,
(bottom right). The new method performs generally well
also if the number of pair comparisons per user is around
one third of all possible pair comparisons (λM = 15). We
then studied the precision of the estimated individual pref-
erences by comparing R̃j with R̃j,TRUE in terms of top−3
detection. For each user j, we found the triplet of items
Dj

3 = {Oi1 , Oi2Oi3} with the maximal estimated posterior
probability of being ranked jointly among the top−3 items.
Let Hj

5 be the set of 5 items with the 5 highest ranks in

R̃j,TRUE. We computed the percentage of users for which
Dj

3 ⊂ H
j
5 . This success-percentage was 60% - 85% when the

data were generated with α = 2 and Mj = 15 ∀j, which
is a hard problem. For easier experiments, with larger α
(ranging from 3 to 4) and larger M (up to 30), the success-
percentages increased to 90%-100%.

4. CONCLUSIONS
We extended the Bayesian method for learning preferences

in [3] to non-transitive pairwise comparison data. We pro-
duce estimates of the consensus ranking of all items under
considerations, as well as a personal estimated ranking of
all items for each user. This can be directly used for per-
sonalized recommendations. We also obtain posterior distri-
butions for these preferences, allowing quantification of the
uncertainty of recommendations of interest.
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