
rrecsys: an R-package for prototyping recommendation
algorithms

Ludovik Çoba
Universiteti i Shkodrës "Luigj Gurakuqi"

Sheshi 2 Prilli
Shkodër, Albania

lcoba@unishk.edu.al

Markus Zanker
Free University of Bozen-Bolzano

piazza Domenicani, 3
39100 Bolzano, Italy
mzanker@unibz.it

ABSTRACT
We introduce rrecsys, an open source extension package in
R for rapid prototyping and intuitive assessment of recom-
mender system algorithms. As the only currently available R
package for recommender algorithms (recommenderlab) did
not include popular algorithm implementations such as ma-
trix factorization or One-class Collaborative Filtering algo-
rithms we developed rrecsys as an easily accessible tool that
can, for instance, be employed for interactive demonstra-
tions when teaching. This package replicates state-of-the-art
Collaborative Filtering algorithms for rating and binary data
and we compare results with the Java-based LensKit im-
plementation and recommederlab for the purpose of bench-
marking the implementation. Therefore this work can also
be seen as a contribution in the context of replication of
algorithm implementations and reproduction of evaluation
results.

1. INTRODUCTION
R represents a popular choice in Data Analytics and Ma-

chine Learning. The software has low setup cost and con-
tains a large selection of packages and functionalities to
enhance and prototype algorithms with compact code and
good visualization tools. Thus R represents a suitable en-
vironment for exploring the field of recommender systems.
We present and contribute a novel R package, rrecsys1, that
replicates several state-of-the-art recommender algorithms
for Likert scaled as well as binary rating values. Up to now
there is only one package addressing recommender systems,
recommenderlab 2, which lacks implementation of popular
algorithms and we benchmark results in Section 3.
This work can be seen as a contribution towards the repro-
ducibility of algorithms and results. Although this concept
of reproducibility of experimental results is a fundamental
prerequisite for scientific research it is many times not given
for granted in the recommender systems field. For instance
Said et al. [3] pointed out that the major recommendation
frameworks such as MyMediaLite, LensKit and Apache Ma-
hout show major differences in the implementation of the
same algorithm variants and in their evaluation methodol-
ogy. Differences which are according to Said et al. many
times much larger than the typically reported performance

1https://cran.r-project.org/package=rrecsys
2https://cran.r-project.org/package=recommenderlab

RecSys 2016 Poster Proceedings, September 15-19, 2016, Boston, MA,
USA.
Copyright held by the author(s).

Table 1: Benchmark in terms of RMSE between
Lenskit, rrecsys and recommenderlab.

Algorithm Lenskit rrecsys recommenderlab

globalMean 1.1278 1.1257 NA
itemAverage 1.0428 1.0246 NA
userAverage 1.0509 1.0416 NA

SVD(10 feat.) 0.9287 0.9277 3.7023
SVD (50 feat.) 0.9224 0.9207 3.7023
SVD (100 feat.) 0.9273 0.9191 3.7020
SVD (150 feat.) 0.9262 0.9188 3.7009
IB (20 neigh.) 0.9455 0.9851 1.1641
IB (50 neigh.) 0.9503 0.9477 1.1798
IB (100 neigh.) 0.9551 0.9416 1.2371

improvements of a new algorithm over the selected baseline
technique. Prototyping helps to shape recommender algo-
rithms and evaluation methodologies as a strategy to tackle
directly the issue of reproducibility. Furthermore, teach-
ing recommendation concepts and evaluation methodology
in hands-on sessions is highly relevant to understand ideas
and algorithms from a didactics perspective and to make the
learning experience more student-centered.

2. THE PACKAGE
rrecsys has a modular structure as well as includes ex-

pansion capabilities. The core of the package includes the
implementation of several popular algorithms such as: Most
Popular, Global Average, Item Average, User Average, Item
Based K-Nearest Neighbors, Simon Funk’s SVD, Weighted
Alternated Least Squares and Bayesian Personalized Rank-
ing. The package’s evaluation module is based on k-fold
cross-validation method. A stratified random selection pro-
cedure is applied when dividing the rated items of each user
into k folds such that each user is uniformly represented
in each fold. Based on the task (rating prediction or rec-
ommendation) the following metrics are computed: mean
absolute error(MAE), root mean square error(RMSE), Pre-
cision, Recall, F1, True and False Positives, True and False
Negatives, normalized discounted cumulative gain (NDCG),
rank score, area under the ROC curve (AUC) and catalog
coverage. RMSE and MAE metrics are computed according
to their two variants, user-based vs. global.

3. RRECSYS IN ACTION
In this section we introduce an executable script in R for

running some of the functionalities of rrecsys in order to

demonstrate its intuitive use.

Install and load:

install.packages("rrecsys")

library(rrecsys)

ML Latest is loaded on the package.

data("mlLatest100k")

Define a rating matrix and explore it.

mlLatest <- defineData(mlLatest100k,

minimum = .5, maximum = 5, halfStar = TRUE)

sparsity(mlLatest); numRatings(mlLatest)

rowRatings(mlLatest); colRatings(mlLatest)

smallMlLatest <- mlLatest[rowRatings(mlLatest)

>= 200, colRatings(mlLatest) > 10]

Setting up the number of iterations for FunkSVD.

setStoppingCriteria(nrLoops = 50)

Training a model using FunkSVD.

svd10 <- rrecsys(smallMlLatest, "FunkSVD", k = 10,

lambda = 0.001, gamma = 0.0015)

Using the trained model to predict and recommend.

p <- predict(svd10)

r <- recommend(svd10, topN = 10)

Instantiate an evaluation model.

model <- evalModel(smallMlLatest, folds = 5)

Using the above model to evaluate predictions.

evalPred(model, "IBKNN", neigh = 10)

Using the same model to evaluate recommendations.

evalRec(model, "globalAverage", topN = 10,

goodRating = 3)

4. BENCHMARK RESULTS
In Table 1 we report results from benchmarking the rrec-

sys implementation with the popular Lenskit [1] Java library
and the recommenderlab R package. The reported results
demonstrate the ability to clearly reproduce the results of
Lenskit being the most well-known Java-based recommenda-
tion library and in contrast to recommenderlab. Evaluation
is made using 5-fold cross validation on the MovieLens100K
dataset. Lenskit and rrecsys were configured identically. In
the case of recommenderlab we selected parameters such
that its configuration was as close as possible to our and
Lenskit’s evaluation methodology. Reported error metrics
were computed as a global average over the whole ratings in
the test set. The SVD algorithm implementation in recom-
menderlab is based on an approximation estimated by the
EM algorithm, resulting in bad prediction performance but
enables the developer to vectorize, providing good compu-
tation performance. In the case of the item based k-nearest
neighbor algorithm, rrecsys replicates recommenderlab im-
plementation. Yet results of recommenderlab differ quite
clearly proving that disparity in the implementation of the
evaluation methodology significantly influences the reported
results. We deployed a second set of experiments using
MovieLens Latest3[2] dataset cropped to a smaller chunk
containing 620 users, 851 items, 58801 ratings, where each
users has rated at least 20 items and each item was rated at
least 25 times. In Figure 1 we report results of evaluation
on this dataset with 5 folds. We ran these examples on a
2012’s laptop computer with an Intel i5 at 2.60GHz and 8

3Authors express their gratitude to GroupLens for allowing
redistribution of the MovieLens Latest data.

Table 2: Single prediction and evaluation times for
the cropped MovieLens dataset.

Algorithm Pred.
Eval.

(5 folds)

IBKNN 1.51 ms 3539.4 s
Baseline Alg. 0.14 µs 0.4 s

BPR(20 features, 20 iteration) 0.95 µs 2.2 s
BPR(40 features, 20 iteration) 1.5 µs 3.5 s
wALS(20 features, 20 iteration) 1.1 ms 2583.3 s
wALS(40 features, 20 iteration) 1.7 ms 4098.6 s

Table 3: Single prediction and evaluation time on
FunkSVD for the cropped MovieLens dataset.

of features 40 80 100 120 140 180
Pred.(in µs) 2.6 8.7 11.3 14.1 16.6 24.7
Eval.(in s) 6.2 20.4 26.6 33.0 38.8 57.9

10 50 100 150 200
0.8

0.85

0.9

0.95

1

1.05

Neighboors for IB.

R
M

S
E

item-based CF

FunkSVD(80 feat.)

GlobalAv

UserAv

ItemAv

Figure 1: Evaluation on cropped MovieLens Latest.

GB RAM.We report execution times for a single prediction
task and the full evaluation steps in Table 2 and 3.

5. CONCLUSIONS
This poster contributed a recently released package for

prototyping and interactively demonstrating recommenda-
tion algorithms in R. It comes with a nice range of imple-
mented standard CF algorithms. Reported results demon-
strate that it reproduces results of the Java-based Lenskit
toolkit. Thus it remains to hope that this effort will be of
use for the field of recommender systems and the large R
user community.

6. REFERENCES
[1] M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T.

Riedl. Rethinking the recommender research ecosystem:
Reproducibility, openness, and lenskit. RecSys ’11,
pages 133–140, New York, NY, USA, 2011. ACM.

[2] F. M. Harper and J. A. Konstan. The movielens
datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4):19:1–19:19, Dec. 2015.

[3] A. Said and A. Belloǵın. Comparative Recommender
System Evaluation: Benchmarking Recommendation
Frameworks. RecSys, pages 129–136, 2014.

