
A Model Based Approach to Combine Load and
Functional Tests for Service Oriented

Architectures

Afef Jmal Maâlej and Moez Krichen

Research Laboratory of Development and Control of Distributed Applications
National School of Engineers of Sfax, University of Sfax

BP 1173, 3038, Sfax-Tunisia
{afef.jmal,moez.krichen}@redcad.org

Abstract. We propose a new model-based framework to combine func-
tional and load tests for service oriented architectures. The new frame-
work is based on the model of extended timed automata with input-
s/ouputs and shared integer variables. A test generation algorithm to
produce analog-clock tests is proposed. To illustrate our approach, we
report on a case study from the field of load balancing based architec-
tures for BPEL compositions.

Keywords: Functional/Load Tests, Extended Timed Automata, Test Genera-
tion, Service Oriented Architecture.

1 Introduction

Nowadays testing has become an important phase in the development of any
software system. During the last few decades very critical programming errors
have been reported in different fields. Some of these errors were very dangerous
and caused huge human/financial damages. For instance in 1996, the European
rocket Ariane 5 exploded 37 seconds after launch1. The error was the result of
a wrong reuse of code from Ariane 4. The financial loss caused by this accident
was estimated to be about $400 million. A second example of critical software
errors was encountered in the medical field. From 1985 to 1987, at least four
patients died as a direct result of a radiation overdose received from the medical
radiation therapy device Therac-252. The four victims received up to 100 times
the intended dose. The accident was the result of a bug in the software powering
the Therac-25 device.

Clearly, many other critical errors happened in many other fields. However,
we restrict ourselves to the two previous presented examples due to space limita-
tion. The important point to emphasize here is that a good percentage of these

1 http://www.ima.umn.edu/arnold/disasters/ariane.html
2 http://therac25.net/about.php

errors could have been avoided by considering some more sophisticated testing
efforts. However unfortunately, in practice such efforts are still minimal and the
need for advanced testing solutions is still deep. Indeed software companies are
still not making enough efforts at this level. A UK survey has noticed that 92%
of test professionals perceive both the cost and complexity of software testing is
increasing, but just 22% of test teams are willing to adopt this process3.

The remainder of this paper is organized as follows. In Section 2, we give a
brief recall about some types of testing. In Section 3, we define the extended
timed input output conformance relation etioco, as an extension of our previous
timed conformance relation tioco. Section 4 is dedicated to describe formally our
testing approach. Then, we propose in Section 5 a test generation algorithm to
produce analog-clock tests. In Section 6, we report on an example to illustrate
our approach. Finally, Section 7 provides a conclusion that summarizes the paper
and discusses items for future work.

2 A brief recall about some types of testing

In this paper we mainly concentrate on two particular types of software testing
namely functional and load testings. First, we consider functional testing which
allows to check whether the specified functionality in the system requirements
works correctly or not. This is done by sending some particular sequences of
inputs to the SUT and then checking whether the correct outputs are generated
or not. This type of testing falls under the class of black box testing. Second,
we consider load testing which is achieved to assess the SUT’s behaviour under
both normal and peak load conditions. More precisely, load testing aims at esti-
mating the maximum amount of work the SUT can manage with no significant
performance degradation. Obviously, load testing is mainly dedicated to mutli-
user systems. In general, this kind of testing is accomplished by simulating a
significant number of users accessing the SUT concurrently.

In this context and in addition to conventional functional testing procedures,
load testing is a required procedure that reveals programming errors which would
not appear if the SUT is executed with a small (limited) workload or for a short
time. Such errors emerge when the system is executed under a heavy load or over
a long period of time. On the other hand, a given process under test may be
correctly implemented but fails under some particular load conditions because of
external causes (e.g. misconfiguration, hardware failures, buggy load generator,
etc.) [1]. Hence, it is important to identify and remedy these different problems.
For that, we investigated in [2] the opportunities as well as challenges of load
testing in general. A classification and evaluation of existing related works were
also reported. In brief, recognizing problems under load is a challenging and
time-consuming task due to the large amount of generated data and the long
running time of load tests.

In this paper, we focus on conformance testing of a given SUT under various
load conditions, which constitutes an important testing area that is often misun-

3 http://www.uk.sogeti.com/News–Events/Press-Releases/

2

derstood or overlooked. Indeed, in some cases, a system may perform correctly
and conformly to its specification under a certain load, but it disrespects this
specification when the load increases and goes above the expected values. This
may be due to some implementation errors which are discovered when stress-
ing the SUT. For early bug detection, we make use of model-based testing [3],
where the specification is described by a formal model from which a test suite is
automatically generated. The obtained test cases are then applied to the SUT
in order to check the conformance of both functional and non-functional con-
straints with respect to the specification in hand. Conceptually, testing consists
of three phases: test case generation, test case execution and verdict assignment.

3 Extended Timed Automata

We extend the framework presented in a previous work [4], which treats only
conformance testing without considering load conditions.

3.1 Timed Labelled Transition Systems

Let R be the set of non-negative reals, Q the set of non-negative rationals and
N the set of non-negative integers. Given a finite set of actions Ac, the set
(Ac∪R)∗ of all finite-length real-time sequences over Ac will be denoted RT(Ac).
ε ∈ RT(Ac) is the empty sequence. Given Ac′ ⊆ Ac and ρ ∈ RT(Ac), PAc′(ρ)
denotes the projection of ρ to Ac′ ∪ R, obtained by “erasing” from ρ all actions
not in Ac′ ∪ R. Similarly, DPAc′(ρ) denotes the (discrete) projection of ρ to Ac′.
For example, if Ac = {a, b}, Ac′ = {a} and ρ = a 1 b 2 a 3, then PAc′(ρ) = a 3 a 3
and DPAc′(ρ) = a a. The time spent in a sequence ρ, denoted duration(ρ) is the
sum of all delays in ρ, for example, duration(ε) = 0 and duration(a 1 b 0.5) = 1.5.

In the rest of the document, we assume given a set of actions Ac, partitioned
in two disjoint sets: a set of input actions Acin and a set of output actions Acout.
Actions in Acin ∪ Acout are called observable actions. We also assume there is an
unobservable action τ 6∈ Ac. Let Acτ = Ac ∪ {τ}.

A Timed Labelled Transition System (TLTS) over Ac is a tuple (S, s0,Ac, Td, Tt),
where:

– S is a set of states;
– s0 is the initial state;
– Td is a set of discrete transitions of the form (s, a, s′) where s, s′ ∈ S and
a ∈ Ac;

– Tt is a set of timed transitions of the form (s, t, s′) where s, s′ ∈ S and t ∈ R.

Timed transitions must be deterministic, that is, (s, t, s′) ∈ Tt and (s, t, s′′) ∈
Tt implies s′ = s′′. Tt must also satisfy the following conditions: (s, t, s′) ∈ Tt
and (s′, t′, s′′) ∈ Tt implies (s, t + t′, s′′) ∈ Tt; (s, t, s′) ∈ Tt implies that for all
t′ < t, there is some (s, t′, s′′) ∈ Tt.

We use standard notation concerning TLTS. For s, s′, si ∈ S, µ, µi ∈ Acτ ∪R,
a, ai ∈ Ac ∪ R, ρ ∈ RT(Acτ) and σ ∈ RT(Ac), we have:

3

– General transitions:

• s µ→ s′
Def
= (s, µ, s′) ∈ Td ∪ Tt;

• s µ→ Def
= ∃s′ : s

µ→ s′;

• s 6 µ→ Def
= 6 ∃s′ : s

µ→ s′;

• s µ1···µn−→ s′
Def
= ∃s1, · · · , sn+1 : s = s1

µ1→ s2
µ2→ · · · µn→ sn+1 = s′;

• s ρ→ Def
= ∃s′ : s

ρ→ s′;

• s 6 ρ→ Def
= 6 ∃s′ : s

ρ→ s′.

– Observable transitions:

• s ε⇒ s′
Def
= s = s′ or s

τ ···τ−→ s′;

• s a⇒ s′
Def
= ∃s1, s2 : s

ε⇒ s1
a→ s2

ε⇒ s′;

• s 6 a⇒ Def
= 6 ∃s′ : s

a⇒ s′;

• s a1···an=⇒ s′
Def
= ∃s1, · · · , sn+1 : s = s1

a1⇒ s2
a2⇒ · · · an⇒ sn+1 = s′;

• s σ⇒ Def
= ∃s′ : s

σ⇒ s′;

• s 6 σ⇒ Def
= 6 ∃s′ : s

σ⇒ s′.

A sequence of the form s0
µ1→ s

µ2→ · · · µn→ s′ is called a run and a sequence of
the form s0

a1⇒ s
a2⇒ · · · an⇒ s′ an observable run.

3.2 Extended Timed Automata

We use timed automata [5] with deadlines to model urgency [4]. An extended
timed automaton over Ac is a tuple A = (Q, q0, X, I,Ac,E), where:

– Q is a finite set of locations;
– q0 ∈ Q is the initial location;
– X is a finite set of clocks;
– I is a finite set of integer variables;
– E is a finite set of edges.

Each edge is a tuple (q, q′, ψ, r , inc, dec, d , a), where:

– q, q′ ∈ Q are the source and destination locations;
– ψ is the guard, a conjunction of constraints of the form x#c, where x ∈ X∪ I,
c is an integer constant and # ∈ {<,≤,=,≥, >};

– r ⊆ X ∪ I is the set of clocks and integer variables that are reset to zero;
– inc ⊆ I is the set of integer variables (disjoint from r) that are incremented

by one;
– dec ⊆ I is the set of integer variables (disjoint from r and inc) that are

decremented by one;
– d ∈ {lazy, delayable, eager} is the deadline;
– a ∈ Ac is the action.

An example of an extended timed automaton A = (Q, q0, X, I,Ac,E) over the
set of actions Ac = {a, b, c, d} is given in Figure 1 where :

4

– Q = {q0, q1, q2, q3} is the set of locations;
– q0 is the initial location;
– X = {x} is the finite set of clocks;
– I = {i} is the finite set of integer variables;
– E is the set of edges drawn in the Figure.

The figure uses the following notation:

– “x := 0” means resetting the clock x to 0;
– “i := 0” means resetting the integer variable i to 0;
– “i+ +” means incrementing i by 1; 4

– “i−−” means decrementing i by 1. 5

Fig. 1. An example of an extended timed automaton.

An extended timed automaton A defines an infinite TLTS which is denoted
LA. Its states are pairs s = (q, vX , vI), where q ∈ Q, vX : X → R is a clock
valuation and vI : I → N is an integer variable valuation. 0X is the valuation
assigning 0 to every clock of A. 0I is the valuation assigning 0 to every integer
variable of A. SA is the set of all states and sA0 = (q0,0X ,0I) is the initial state.

- Discrete transitions are of the form

(q, vX , vI)
a→ (q′, v′X , v

′
I)

where a ∈ Ac and there is an edge

(q, q′, ψ, r , inc, dec, d , a)

4 We can also use the usual notation “i := i+ 1” instead.
5 We can also use the usual notation “i := i− 1” instead.

5

such that (vX , vI) satisfies ψ and (v′X , v
′
I) is obtained by:

– resetting to zero all clocks and integer variables in r ;
– incrementing integer variables in inc by one;
– decrementing variables in dec by one;
– leaving all other variables unchanged.

- Timed transitions are of the form

(q, vX , vI)
t→ (q, vX + t, vI)

where t ∈ R, t > 0 and there is no edge

(q, q′′, ψ, r , inc, dec, d , a)

such that:

– either d = delayable and there exist 0 ≤ t1 < t2 ≤ t such that (vX + t1, vI) |=
ψ and (vX + t2, vI) 6|= ψ;

– or d = eager and (vX , vI) |= ψ.

Lazy edges do not impact the semantics. They denote that an edge is nei-
ther delayable, nor eager. More precisely, lazy edges cannot block time progress,
whereas delayable and eager edges can. We do not allow delayable edges with
guards of the form x < c since there is no latest time when the guard is still
true. Similarly, we do not allow eager edges with guards of the form x > c since
there is no earliest time when the guard becomes true. A state s ∈ SA is reach-

able if there exists ρ ∈ RT(Ac) such that sA0
ρ→ s. The set of reachable states of

A is denoted Reach(A).

3.3 Extended Timed Automata with Inputs and Outputs

An extended timed automaton with inputs and outputs (ETAIO) is an extended
timed automaton over the partitioned set of actions

Acτ = Acin ∪ Acout ∪ {τ}.

For clarity, we will explicitly include inputs and outputs in the definition of
an ETAIO A and write

(Q, q0, X, I,Acin,Acout,E)

instead of
(Q, q0, X, I,Acτ ,E).

An ETAIO is called observable if none of its edges is labelled by τ .
Given a set of inputs Ac′ ⊆ Acin, an ETAIO A is called input-enabled with

respect to Ac′ if it can accept any input in Ac′ at any state:

∀s ∈ Reach(A) .∀a ∈ Ac′ : s
a→ .

6

It is simply said to be input-enabled when Ac′ = Acin. A is called lazy-input
with respect to Ac′ if the deadlines on all the transitions labelled with input
actions in Ac′ are lazy. It is called lazy-input if it is lazy-input with respect to
Acin. Note that input-enabled does not imply lazy-input in general.

A is called deterministic if

∀s, s′, s′′ ∈ Reach(A) .∀a ∈ Acτ :

s
a→ s′ ∧ s a→ s′′ ⇒ s′ = s′′.

A is called non-blocking if

∀s ∈ Reach(A) .∀t ∈ R .∃ρ ∈ RT(Acout ∪ {τ}) :

duration(ρ) = t ∧ s ρ→ .

This condition guarantees that A will not block time in any environment.
The set of timed traces of an ETAIO A is defined to be

TTr(A) = {ρ | ρ ∈ RT(Acτ) ∧ sA0
ρ→}.

The set of observable timed traces of A is defined to be

OTTr(A) = {PAc(ρ) | ρ ∈ RT(Acτ) ∧ sA0
ρ→}.

The TLTS defined by an ETAIO is called a timed input-output LTS (TIOLTS).
From now on, unless otherwise stated, all the considered ETAIO are defined with
respect to the same sets Acin and Acout and unobservable action τ . As for ETAIO,
a given TIOLTS L is denoted

(S, s0,Acin,Acout, Td, Tt)

instead of
(S, s0,Acτ , Td, Tt).

The two operators TTr(·) and OTTr(·) are extended in a natural way to the
case of TIOLTS.

3.4 Parallel Composition of ETAIO with Shared Integer Variables

Let n be a non-negative integer such that n ≥ 2. We consider n ETAIO (Ai)1≤i≤n
where

Ai = (Qi, qi0, X
i, I,Aciin,Ac

i
out,E

i).

That is the set of integer variables I is shared between all the considered ETAIO
(Ai)1≤i≤n while no other element from Qi, Xi, Aciin and Aciout is shared whith
the other ETAIO (Aj)j 6=i. The TIOLTS

LP = (SP , sP0 ,Ac
P
in ,Ac

P
out, T

P
d , T

P
t)

7

generated by the parallel product of the ETAIO

(Ai)1≤i≤n

is defined as follows

sP0 = ((q10 , · · · , qn0), (0X0 , · · · ,0Xn),0I)

AcPin =
⋃

1≤i≤n

Aciin, Ac
P
out =

⋃
1≤i≤n

Aciout

and SP , TPd and TPt are the smallest sets such that

– sP0 ∈ SP ;
– For sP = ((q1, · · · , qn), (vX0 , · · · , vXn), vI) ∈ SP and δ ∈ R:

∀1 ≤ i ≤ n : (qi, vXi , vI)
δ→ (qi, vXi + δ, vI) ∈ T it

⇒ s
′P = ((q1, · · · , qn), (vX0 + δ, · · · , vXn + δ), vI) ∈ SP

and

sP
δ→ s

′P ∈ Tt (1)

– For sP = ((q1, · · · , qn), (vX0 , · · · , vXn), vI) ∈ SP , 1 ≤ i ≤ n and ai ∈ Acτ
i: 6

(qi, vXi , vI)
ai→ (q′i, v

′
Xi , v′I) ∈ T id

⇒ s
′P = (q

′p, v
′p
X , v

′
I) ∈ SP ∧ sP

ai→ s
′P ∈ Td

where

q
′p = (q1, · · · , qi−1, q′i, qi+1, · · · , qn)

and

v
′p
X = (vX0 , · · · , vXi−1 , v′Xi , vXi+1 · · · , vXn) (2)

It is worth noticing here that it is possible to define the parallel composition
of n copies (Ai)1≤i≤n of the same ETAIO A. In this case we assume it is possible
to distinguish the sets of inputs and outputs of the different instances, such as
particular identifier corresponds to each instance. Obviously, the n instances
share the set of integer variables of the ETAIO A. The obtained TIOLTS is
denoted LPn .

6 Acτ
i = Aciin ∪ Aciout ∪ {τ}

8

3.5 Modelling Issues

In this section we illustrate some methodological aspects of our framework. First
we explain how it is possible to combine both functional and load aspects within
the same model. For instance in Figure 2 the response time to produce the output
action b with respect to the input action a depends on the number of concurrent
instances of the considered system under test as follows:

– output b is generated within at most 1 time unit if the number of concurrent
instances is smaller or equal to 100;

– output b is generated within at most 2 time units if the number of concurrent
instances is between 101 and 1000;

– output b is generated within at most 3 time units if the number of concurrent
instances is greater or equal to 1001;

Fig. 2. An example showing how the time response of the SUT may depend on the
number of concurrent instances.

In Figure 3 we show how to model the fact that the SUT may even produce
different output actions with respect to the same input action depending on
the current number of concurrent instances of the considered system. The SUT
may produce either b, c or d. On the first hand, output a may be seen as the
normal output generated by the SUT when the load is smaller or equal to 100.
On the other hand, output b may correspond to the situation where the SUT
still produces the same desired output action. However this time the output
action is mixed with a warning message to inform the user that the system is
starting entering a critical area (load between 101 and 1000). Finally output c
may correspond to the production of an error message meaning that the SUT

9

is no longer able to produce the desired output action since the load is too high
(greater or equal to 1001).

Fig. 3. An example where the SUT produces different output actions depending on
the current load.

In Figure 4 we consider a more sophisticated situation where the SUT can
produce complete different behaviours depending on the current load. Three
distinct behaviours are possible according to the figure. Behaviour 1 can be con-
sidered as the nominal behaviour as in the previous example. The two other
behaviours may correspond to the situation where the SUT is trying to find a
suitable way to deal with the increase of the current number of concurrent in-
stances and to improve the quality of the service. For instance a possible solution
may consist in allocating additional resources to overcome the current critical
situation.

4 Testing Framework

In this section, we are going to define a new extended timed input output con-
formance relation etioco. Then, we propose a new approach for deriving analog-
clock tests from the SUT specification. Finally, we discuss both test execution
and correctness requirements.

4.1 Conformance Relation

In order to formally define the conformance relation, we define a number of
operators. Given a TIOLTS

L = (SL, sL0 ,Ac
L
in,Ac

L
out, T

L
d , T

L
t)

10

Fig. 4. An example where the SUT adopts different sophisticated behaviours depending
on the current load.

and a timed trace
σ ∈ RT(AcL)

L after σ is the set of all states of L that can be reached by some timed sequence
ρ whose projection to observable actions is σ. Formally:

L after σ =

{s ∈ SL | ∃ρ ∈ RT(Acτ
L) : sL0

ρ→ s ∧ PAc(ρ) = σ}.

Given state s ∈ SL, elapse(s) is the set of all delays which can elapse from s
without L making any observable action. Formally:

elapse(s) =

{t > 0 | ∃ρ ∈ RT({τ}) : duration(ρ) = t ∧ s ρ→}.

Given state s ∈ SL, out(s) is the set of all observable “events” (outputs or
the passage of time) that can occur when the system is at state s. The definition
naturally extends to a set of states S. Formally:

out(s) = {a ∈ AcLout | s
a→} ∪ elapse(s)

and
out(S) =

⋃
s∈S

out(s).

The specification of the system to be tested is given as a non-blocking ETAIO
AS while the implementation can be modelled as a non-blocking, input-enabled

11

ETAIO AI .
7 For n ≥ 1, let LPS,n (resp., LPI,n) be the parallel composition of n

copies of AS (resp., AI).

Input-enabledness is required so that the implementation can accept inputs
from the tester at any state.

The extended timed input-output conformance relation, denoted etioco, is an
extension of our previous conformance relation tioco [4, 6]. The new relation
etioco is defined as

AI etioco AS

iff ∀n ≥ 1 ∧ σ ∈ OTTr(LPS,n) :

out(LPI,n after σ) ⊆ out(LPS,n after σ).

The relation states that an implementation AI conforms to a specification
AS iff for any number of copies n of AS and any observable behaviour σ of LPS,n,

the set of observable outputs of LPI,n after any behaviour “matching” σ must be

a subset of the set of possible observable outputs of LPS,n.

Notice that observable outputs are not only observable output actions but
also time delays. Also notice that in case we consider only n = 1, the definitions
of etioco and tioco become the same.

4.2 Analog-Clock Tests

A test (or test case) is an experiment performed on the implementation by an
agent (the tester). There are different types of tests, depending on the capabilities
of the tester to observe and react to events. In general, one may consider either
Analog-clock or Digital-clock tests [7]. In this work, we consider only analog-
clock tests. The latters can measure precisely the delay between two observed
actions and can emit an input at any point in time.

It should be noted that we consider adaptive tests (following the terminology
of [8]), where the action the tester takes depends on the observation history.

For n ≥ 1, let Acn (resp., Acnin) denote the union of all observable actions
(resp., all input actions) of n copies of the specification AS . An analog-clock test
for n parallel executions of AS is a total function

Tn : RT(Acn)→ Acnin ∪ {Wait,Pass,Fail}.

Tn(ρ) specifies the action the tester must take once it observes ρ:

– If Tn(ρ) = a ∈ Acnin then the tester emits input a.

– If Tn(ρ) = Wait then the tester waits (lets time elapse).

– If Tn(ρ) ∈ {Pass,Fail} then the tester produces a verdict (and stops).

7 AI may be unknown. We assume it simply exists.

12

4.3 Test Execution and Correctness Requirements

The execution of the test Tn on the implementation AI can be defined as the
parallel composition of the TIOLTS defined by Tn and LPI,n the TIOLTS corre-
sponding to n copies of AI , with the usual synchronization rules for transitions
carrying the same label. We will denote the product TIOLTS by LPI,n‖Tn. The
execution of the test reaches a pass/fail verdict after bounded time.

Formally, we say that AI passes the test, denoted AI passes Tn, if state Fail
is not reachable in the product LPI,n‖Tn. We say that an implementation passes
(resp. fails) a set of tests (or test suite) T if it passes all tests (resp. fails at least
one test) in T .

We say that an analog-clock test suite T is sound with respect to AS if

∀AI : AI etioco AS ⇒ AI passes T .

We say that T is complete with respect to AS if

∀AI : AI passes T ⇒ AI etioco AS .

5 Test Generation

We adapt the untimed test generation algorithm of [3]. Roughly speaking, the
algorithm builds a test in the form of a tree. A node in the tree is a set of states
S of the specification and represents the “knowledge” of the tester at the current
test state. The algorithm extends the test by adding successors to a leaf node,
as illustrated in Figure 5.

lS
lSjlSi

lS′�
�

�
��

A
AAU

-
?

· · ·Fail

bi! bj !

c?

· · ·
aj !

ai!

Fig. 5. Generic test-generation scheme.

For all illegal outputs ai (outputs which cannot occur from any state in
S) the test leads to Fail. For each legal output bi, the test proceeds to node
Si, which is the set of states the specification can be in after emitting bi (and
possibly performing unobservable actions). If there exists an input c which can
be accepted by the specification at some state in S, then the test may decide to

13

1 S ← tsucc({sPn,0}, 0);
2 while(true)
3 x← 0; /∗ x is a clock measuring elapsing time ∗/
4 await(output b is received at x < T or x = T)
5 if (b received at x)
6 S ← dsucc(tsucc(S, x), b);
7 else
8 S ← tsucc(S, T);
9 endif;

10 if(S = ∅)
11 announce Fail;
12 exit;
13 endif;
14 if(valid inputs(S) 6= ∅)
15 i← pick({0, 1}); /∗ 0 to send an input ∗/
16 /∗ and 1 to continue observation ∗/
17 endif;
18 if(i = 0)
19 a← pick(valid inputs(S));
20 S ← dsucc(S, a);
21 endif;
22 endwhile;

Algorithm 1: On-the-fly analog-clock test generation.

emit this input (dashed arrow from S to S′). At any node, the algorithm may
decide to stop the test and label this node as Pass.

Analog-clock tests cannot be directly represented as a finite tree, because
there is an a-priori infinite set of possible observable delays at a given node.
To remedy this, we use the idea of [9]. We represent an analog-clock test as an
algorithm. The latter essentially performs subset construction on the specifica-
tion automaton, during the execution of the test. Thus, our analog-clock testing
method can be classified as on-the-fly or on-line, meaning that the test is gen-
erated at the same time it is executed. More precisely, the tester will maintain
a set of states S of the TIOLTS LPS,n. S will be updated every time an action is
observed or some time delay elapses. Since the time delay is not known a-priori,
it must be an input to the update function. We define the following operators:

dsucc(S, a) = {s′ | ∃s ∈ S : s
a→ s′}

tsucc(S, t) =

{s′ | ∃s ∈ S . ∃ρ ∈ RT({τ}) : duration(ρ) = t ∧ s ρ→ s′}
where a ∈ Acn and t ∈ R. dsucc(S, a) contains all states which can be reached
by some state in S performing action a. tsucc(S, t) contains all states which can

14

be reached by some state in S via a sequence ρ which contains no observable
actions and takes exactly t time units.

The test operates as follows. It starts at state

S0 = tsucc({sPn,0}, 0)

where sPn,0 is the initial state of LPS,n. Given current state S:

– if output a is received t time units after entering S, then S is updated to
dsucc(tsucc(S, t), a).

– If ever the set S becomes empty, the test announces Fail.
– At any point, for an input b, if dsucc(S, b) 6= ∅, the test may decide to emit
b and update its state accordingly.

On-line analog-clock test generation is performed by Algorithm 1. The algorithm
keeps running as long as no non-conformance is detected. At any time the tester
can stop testing and declare Pass. The algorithm uses the following notation.
Given a nonempty set X, pick(X) chooses randomly an element in X. Given a
set of states S, valid inputs(S) is defined as the set of valid inputs at S, that is:

valid inputs(S) =

{a ∈ Acnin|dsucc(tsucc(S, 0), a) 6= ∅}.

Following the same methodology as in our previous work [4] we can prove
that the proposed test generation algorithm is both sound and complete.

6 Illustrative Example: the Round-Robin Algorithm

Considering the scalability of load balancing based architectures, it is increas-
ingly necessary to develop appropriate quality assurance methodologies and tech-
niques, of which Testing is widely adopted and used one. In this context, we
proposed in [10] a distributed platform for on-line checking of the conformance
between the real functioning of a given load balancer and its specified require-
ments. Our solution is based on Timed Automata as model for testing supported
load balancing algorithms. We also developed a prototype tool support, LBACT,
which is implemented for quality assurance of load balancing based architectures.

For simplicity and due to restrictions on page number, we present in this
section the modelling of the round-robin load balancing algorithm, where prop-
erties are supposed to be available only for the case in which two servers are
clustered. Adding more servers would require a different model for the corre-
sponding algorithm. However, we highlight that the basic ideas are the same as
for considering two clustered servers.

In fact, when a load balancer is configured to use the round-robin method,
it rotates incoming requests around the servers that it manages. Figure 6 de-
scribes this principle. Actually, a node in the cluster is modelled by a state. LB,
host2 and host3 represent the load balancer and two servers. To simplify, we

15

designed host2 and host3 by the following respective values 1 and 2. Indeed, the
load balancer should assign a request to a server conforming to the following
conditions:

– The identifier of the current instance (i) is less than the number of total
requests (nb req), which corresponds to test instances number.

– The execution of the instance of number (i) is completed by a server which
is different from the server that treated the previous instance (i-1). This
condition is checked by the function verif(currentserver) which return type
is Boolean.

Fig. 6. Specification of the round-robin algorithm.

We underline that, according to Figure 6, the top and bottom transitions
are enabled when a new request has arrived (by virtue of (nb req) being ex-
ternally incremented), so the internal counter (i) is less than (nb req), enabling
the transition firing. Furthermore, in order to ensure that the tester does not
remain in an infinite wait of a sent request from the load balancer to a server, we
considered a temporal constraint on network timeout. To model this constraint,
we define a clock x which value does not exceed, for example, 100 milliseconds
(tmax) as shown in Figure 6. Thus, the proposed model is characterized by:

– send si!, where i belongs to {1, 2}, represents a synchronization message.
– seq[] is an array which size is equal to the total number of handled requests

by the load balancer. The value of an element seq[i] determines the server
that treats the instance of number (i).

– A transition between a server and the load balancer is of type update. In fact,
it allows incrementing the value of the current instance and the initialization
of the clock value to 0.

7 Conclusion and Perspectives

In this work, we proposed a new formal model-based framework to combine func-
tional and load tests. Our solution is based on the model of extended timed au-

16

tomata with inputs/ouputs and shared integer variables. The latter allows high
expressiveness for concurrent systems since it guarantees partial-observability
and parallel composition. In addition, we defined the new extended timed input
output conformance relation etioco which allows to compare a given implemen-
tation with respect to its specification in our new framework. We also provided a
new technique for deriving analog-clock tests from the specification of the SUT.
An important contribution in this work is to use a rich formalism to model
mutli-user systems and to combine functional and load tests, which constitutes
an important testing area that is usually misunderstood or omitted.

Many extensions are possible for this work. First, we need selection tech-
niques based on coverage criteria in order to guide test generation and to reduce
the number of generated tests. Second, we can adapt our approach to consider
digital-clocks since they allow to take into account time imprecision. We may also
combine off-line and on-line testing within the same testing architecture aiming
to better balance the space/time trade-off. As a future work direction, we are
intending to implement our testing methodology in the context of distributed
concurrent software architectures.

References

1. Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automatic identification of
load testing problems. In Proceedings of ICSM’08, pages 307–316, Beijing, China,
September 28 - October 4 2008. IEEE.

2. A. J. Maâlej, M. Krichen, and M. Jmäıel. A comparative evaluation of state-
of-the-art load and stress testing approaches. International Journal of Computer
Applications in Technology (IJCAT), 51(4):283–293, 2015.

3. J. Tretmans. Testing concurrent systems: A formal approach. In CONCUR’99,
volume 1664 of LNCS. Springer, 1999.

4. M. Krichen and S. Tripakis. Conformance testing for real-time systems. Formal
Methods in System Design, 34(3):238–304, 2009.

5. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

6. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In Proceedings of SPIN’04, volume 2989 of LNCS. Springer, 2004.

7. T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Pro-
ceedings of ICALP’92, volume 623 of LNCS. Springer, 1992.

8. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- A survey. Proceedings of the IEEE, 84:1090–1126, 1996.

9. S. Tripakis. Fault diagnosis for timed automata. In Formal Techniques in Real
Time and Fault Tolerant Systems (FTRTFT’02), volume 2469 of LNCS. Springer,
2002.

10. A. J. Maâlej, Z. B. Makhlouf, M. Krichen, and M. Jmaiel. Conformance testing
for quality assurance of clustering architectures. In Proceedings of the 2nd Interna-
tional QASBA’13 Workshop, in conjunction with ISSTA’13, pages 9–16, Lugano,
Switzerland, July 15 2013. ACM.

17

