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Abstract. In this paper we survey the main experiments performed us-
ing the SBIP framework. The latter consists of a stochastic component-
based modeling formalism and a probabilistic model checking engine for
verification. The modeling formalism is built as an extension of BIP and
enables to build complex systems in a compositional way, while the veri-
fication engine implements a set of statistical algorithms for the verifica-
tion of qualitative and quantitative properties. The SBIP framework has
been used to model and verify a large set of real life systems including
various network protocols and multimedia applications.

1 Introduction

Probabilistic model checking is an automated verification method used for sys-
tems with stochastic behavior [2]. Recently, a statistical approach was proposed
to overcome scalability issues occuring in numerical methods that are classi-
cally used to check such systems. This novel technique, called Statistical Model
Checking (SMC) [28, 12], requires, as in classical model checking, to build an
operational formal model of the system to verify and to provide a formal specifi-
cation of the property to check, generally using temporal logic. The idea is then
to explore a sample of execution traces produced through discrete event simla-
tion in order to verify if the property holds on the system under consideration.
Statistical Model Checking is receiving increasing attention and is being applied
for a wide range of verification problems occurring in biology [10], communica-
tion protocols [4], multimedia [3], avionics [6], etc.

SBIP provides an extension of the BIP (Behavior, Interaction, Priority)
framework [7] that allows stochastic modeling and statistical verification. On
one hand, it relies on BIP expressiveness to handle heterogeneous and complex
component-based systems. On the other hand, it uses SMC techniques to per-
form quantitative verification targeting non-functional properties.

The framework implements both hypothesis testing [28] and probability esti-
mation techniques [12] such as similar existing tools [14, 26, 16, 11, 9]. Some other
related tools provide in addition a distributed version of the statistical tests like
[1, 14, 29, 13] and moreover implement numerical or hybrid methods [16]. The



main difference between the mentioned tools is the system modeling and the
properties specification formalisms.

For instance, Uppaal-smc [11] supports Priced Timed Automata (PTAs) for
system modeling and Weighted Metric Temporal Logic (WMTL) for proper-
ties specification, while Prism [16] considers Discrete/Continuous Time Markov
Chains (DTMCs/CTMCs), Markov Decision Process (MDPs) and recently PTAs
for the modeling part and Probabilistic Computation Tree Logic (PCTL), Con-
tinuous Stochastic Logic (CSL), Linear-time Temporal Logic (LTL), and PCTL*
as properties input language. Other tools like Vesta [26] support, in addition to
D/CTMC, algebraic specification languages like PMaude [15]. PlasmaLab [14] is
a modular and extensible statistical model checker that may be extended with
external simulator and checkers. The default configuration accepts discrete-time
models specified in the Prism format and requirements expressed in PBLTL [22].
Ymer [29] is one of the first tools to implement sequential hypothesis testing al-
gorithms. It considers GMSPs and CTMCs specified using an extension of the
Prism language and accepts both PCTL and CSL for requirements specification.

SBIP relies on the stochastic extension of BIP [22, 21], which enables for de-
scribing DTMCs and MDPs in a component-based way, for the system modeling.
For properties specification, it uses probabilistic bounded LTL. In addition, the
SBIP models used for analysis can be equally used to generate concrete imple-
mentation to be deployed on real platforms. Implementations are guaranteed to
be correct, i.e. preserve the properties established during analysis [5].

Outline. In section 2, we present the stochastic BIP formalism for system
modeling, and the property specification language using temporal logic. Techni-
cal details about the implementation and the structure of the SMC engine are
provided in section 3. In section 4, we survey the main case studies realized using
the SBIP framework. Finally, section 5 concludes the paper.

2 Model Specification in SBIP

BIP (Behavior, Interaction, Priority) is a highly expressive component based
framework for rigorous system design [7]. It allows the construction of complex,
hierarchically structured models from atomic components characterized by their
behavior and their interfaces. Such components are transition systems enriched
with variables. Transitions are used to move from a source to a destination
location. Each time a transition is taken, component variables may be assigned
new values, computed by user-defined C/C++ functions.

Component composition in BIP is expressed by layered application of interac-
tions and of priorities. Interactions express synchronization constraints between
actions of the composed components while priorities are used to filter amongst
possible interactions e.g. to express scheduling policies.

SBIP extends BIP with a new semantics (see [8, 22, 21] for details) that
enables modeling stochastic systems. The aforementioned extension is made
through a C++ library integrated to the BIP framework [7]. It enables the
definition of stochastic components that have probabilistic variables. The latter



could be defined with respect to both empirical and standard probability distri-
butions. SBIP allows to build two types of models: DTMCs and MDPs that are
modeled as classical BIP components augmented with probabilistic variables as
shown in Figure 1.
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Fig. 1: Example of a DTMC model in SBIP.

Figure 1a shows a DTMC model for binary values generation. It has two
states s0 and s1 where it generates 0 and 1 respectively through actions mod-
eled here using transitions. Each transition in the figure has a label (0 or 1)
and is associated with a probability to be fired. Figure 1b shows a graphical
representation of the equivalent SBIP model. In SBIP, the next state probability
distributions of the DTMC are captured by the probabilistic variables x0 and x1
which take values in {0, 1} with respect to the following probability distributions:
x0 is assigned 0 with probability 2

3 and 1 with probability 1
3 . Similarly, variables

x1 takes 0 or 1 with probabilities 1
3 and 2

3 respectively. This transformation as-
sociates each transition in the original DTMC with two transitions in the SBIP
model. The first is a sampling step over the next state distribution (x0 B) and
the second is a selection step using guards (the expressions between brackets
[x0 == 0]) which are Boolean expressions defining transitions enableness.

As an example, the binary generator component illustrated in Figure 1b is
described in the SBIP language as shown in Figure 2.

Besides empirical discrete distributions (defined using external text files, e.g.
“dist 0.txt”), the SBIP modeling language allows using predefined standard dis-
tributions, such as Uniform, Normal, Exponential, etc. For a Uniform distri-
bution, the select() function (used to sample the probability distributions in
Figure 2) could be called without initialization phase (the init distribution() in
Figure 2) and by providing it with interval bounds as parameters. For instance,
select(100, 500) will uniformly sample values in the interval [100, 500].

In addition to probabilistic helper functions, the library provides tracing
capabilities that are required to monitor state variables involved in the property
to check. In the previous example, assume that x0 is subject to verification, then
the following function call should be used in order to monitor it:

trace_i(‘‘binary_generator.x0’’, x0);



/* Declaration of an atomic component */

atomic type binary_generator

/* Declaration of a probabilistic variable */

data int x0

...

/* Declaration of a probabilistic distribution */

data distribution_t dist_0

...

/* Declaration and export of a port */

export port intPort zero()

...

/* Declaration of control locations */

place l0, l1, l0’, l1’

initial to l0 do {

/* Initialize dist. variables from empirical probability dist. */

dist_0 = init_distribution(‘‘dist_0.txt’’);

... }

...

/* Transition from l0 to l0’ */

internal from l0 to l0’ do {

/* Update x0 using dist_0 */

x0 = select(dist_0); }

/* Transition from l0’ to l0 */

on zero from l0’ to l0 provided (x0 == 0)

/* Transition from l0’ to l1 */

on one from l0’ to l1 provided (x0 == 1)

...

end

Fig. 2: Description of the binary values generator in the SBIP language.

2.1 Properties Specification in SBIP

The properties specification language over stochastic systems in SBIP is a prob-
abilistic variant of bounded Linear-time Temporal Logic (LTL). Using this lan-
guage, it is possible to formulate two type of queries on a given system:

– Qualitative queries : P≥θ[ϕ], where θ ∈ [0, 1] is a probability threshold and
ϕ is a bounded LTL formula (also called path formula).

– Quantitative queries : P=?[ϕ], where ϕ is a bounded LTL formula.

Note that it is possible through those queries to either ask for the actual proba-
bility of a property ϕ to hold on a system (using the second type of queries) or
to determine if the property satisfies some threshold θ (using the first type).

Path formulas, in SBIP, are defined using four bounded temporal operators
namely, Next (Nψ1), Until (ψ1U

boundψ2), Eventually (Fboundψ1), and Always
(Gboundψ1), where bound is an integer value that specifies the length of the
considered system trace and ψ1, ψ2 are called state formulas, that is Boolean



predicates evaluated on the system states. For example, the PBLTL formula

P=?[G
1000(abs(Master.tm− Slave.ts) ≤ 160)]

is equivalent to ask ”What is the probability that the absolute value of the
difference between master variable tm and slave variable ts is always under
the bound 160 ?”. In this example, the path formula is G1000(abs(Master.tm−
Slave.ts) ≤ 160) and the state formula is abs(Master.tm − Slave.ts) ≤ 160.
Note that SBIP gives the possibility to use built-in predefined mathematical
functions in state formulas. For the example above, abs() function is called to
compute the absolute value of the difference between variables tm and ts.

3 The SMC Engine: BIPSMC

The SMC engine implements several statistical testing algorithms for stochastic
systems verification, namely, Single Sampling Plan (SSP), Simple Probability
Ratio Test (SPRT) [27, 28], and Probability Estimation (PESTIMATION) [12].
Figure 3 shows the most important modules of the tool and how they interact
in order to perform statistical model checking.

The tool takes as inputs a stochastic model description in the stochastic BIP
format, a PBLTL property to check, and a set of confidence parameters required
by the statistical test.
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Fig. 3: BIPSMC architecture.

During an initial phase, the tool
performs a syntactic validation of
the PBLTL formula through a parser
module. Then, it builds an executable
model and a monitor for the prop-
erty under verification. Next, it will
iteratively trigger the stochastic BIP
engine to generate execution traces
which are monitored to produce local
verdicts. This procedure is repeated
until a global decision can be taken
by the SMC core module (that imple-
ments the statistical algorithms). As
our approach relies on SMC and since
it considers bounded LTL properties,
we are guaranteed that the procedure
will eventually terminate.

BIPSMC is fully developed in the Java programming language. It uses JEP
2.4.1 library4 (under GPL license) for parsing and evaluating mathematical ex-
pression, and ANTLR 3.25 for PBLTL properties parsing and monitoring. At this
stage, BIPSMC only runs on GNU/Linux operating systems since it relies on the

4 http://www.singularsys.com/jep/index.html
5 http://www.antlr.org/



BIP simulation engine. The current release of the tool has been enriched with
a graphical user interface for more convenience, in addition to the command
line mode. The current version also includes supports of the BIP2 language
(the new version of BIP)6 while still compatible with the previous version. The
model checker is available for download from http://www-verimag.imag.fr/

Statistical-Model-Checking.html, where additional information on how to
install it and use it with the BIP framework can be found.

4 Case Studies

While still at the first release, the SBIP framework has been used to evaluate
several large scale systems that covers different application domains. The first
three studies below consider the modeling and verification of network protocols,
while the two remaining present multimedia applications.

4.1 Precision Time Protocol IEEE 1588

In this study, the Precision Time Protocol (PTP) is deployed as part of a dis-
tributed heterogeneous communication systems (HCS) [4] in an aircraft. It is
used to synchronize the clocks of various devices with the one of a specific server
on the network. This synchronization is important to guarantee a correct behav-
ior of the whole system.
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(a) The stochastic PTP model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

Bound

Probability of bounded accuracy

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(b) Results of accuracy analysis.

We used SBIP to check the accuracy of clock synchronization which is de-
fined as the absolute value of the difference between the master clock θm and
a slave clocks θs (see Figure 4a). More precisely, we estimate the probability

6 http://www-verimag.imag.fr/New-BIP-tools.html



that the clock deviation always stays under some specific bound ∆ for each
slave device. This requirement is expressed by the following PBLTL formula:
P=?[G

1000(abs(θm− θs) 6 ∆)]. The ultimate goal of the study is to compute the
minimal bound ∆ that ensures full synchronization, i.e, the synchronization of
all the slave clocks in the network with the master clock with probability 1.

The results illustrated in Figure 4b shows the probability evolution of the
devices synchronization (in the y-axis) with respect to various times bounds
in micro seconds (in the x-axis). We can see different curves corresponding to
several devices identified through their addresses in the network. Remark that
the synchronization is guaranteed for a specific device whenever its curve reaches
probability 1. Thus, we can conclude from these experiments that the minimal
bound that ensure full synchronization (synchronization of all the slaves with
the server) occurs at 120µs.

4.2 MPEG2 Decoder

In this study, we used SBIP to check QoS properties of an MPEG2 Decoder for
a video streaming application [3]. This work is about finding a trade-off, when
designing such multimedia systems, between buffer sizes and video quality. In
fact, an acceptable amount of quality degradation can be tolerated (less than
two consecutive frames within a second [3]) in order to reduce buffers sizes.
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Fig. 4: The Generator compound component. µI , µB , µP are probability distri-
butions corresponding to each frame type, µmb is the probability distribution of
the macro-blocks and depends on the generated frame type.

In the study, quality loss is seen as buffer underflow which occurs whenever
the display device does not find sufficient macro blocks to read from the playout
buffer. The amount of underflow can be controlled using the initial playout delay
parameter i.e. the delay after which the video starts to display. Figure 4 shows
the Generator component of the stochastic BIP model of the decoder system.
This is the first element in the video decoding unit, which models the macro-
blocks arrival to the input buffer.

In the first component of Figure 4 (from the left), frames are stochastically
generated with respect to 3 probability distributions (µI , µB , and µP ) that cor-
respond to MPEG2-coded frames types. Next, macro-blocks are generated with



respect to a frame-dependent distribution. Finally, the third component repre-
sents macro-blocks arrival time to the input buffer.
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Fig. 5: Results of QoS property analysis.

Figure 5 illustrates some of the
results obtained when analyzing this
system. It shows three separate curves
representing the probability that the
stream loss is less than two consecu-
tive frames within a second for three
different videos, namely cact.m2v,
mobile.m2v, and tennis.m2v. The
considered videos have the same reso-
lution of 352× 240 and were obtained
from an open source.

Note that for this experiments,
BIPSMC used about 44 to 7145 traces
each time and spent around 6 to 8 sec-
onds in average to check the property
with an error bound of 10−2.

4.3 Avionics Full-DupleX Switched Ethernet

SBIP has been also used for the analysis of QoS properties of the Avionics Full-
DupleX switched ethernet (AFDX) network [6]. AFDX protocol was proposed
as a solution to resolve problems due to the spectacular increase of the quantity
of communication and thus of the number of connections in avionics network.
The main idea behind AFDX is to simulate point-to-point connections between
all the devices in a network using Virtual Links (VL). For such systems, one
challenging point is to guarantee bounded delivery time on every VL.

In order to check the latency requirements, two configurations with different
number of virtual links were considered: 10 and 20 which have the same char-
acteristics. This experiment consist of using PESTIMATION algorithm with
precision 0.01 and a confidence of 0.01 to estimate probabilities for bounds be-
tween 0µs and 2000µs for X = 10 and between 0µs and 3000µs for X = 20.
The results are given in Figures 6a and 6b for respectively X = 10 and X = 20
links. We also used SPRT and SSP algorithms with a confidence of 10−10 and a
precision of 10−7 to validate the results we obtained with PESTIMATION.

4.4 Wireless Sensor Netwrok

The SBIP framework has been used to verify several networked systems based
on different technologies, CAN-based [18], Sensor Network using WiFi [17], and
IoT applications [19]. We briefly present the utilization of SBIP for the modeling
and analysis of a Wireless Sensor Network (WSN) case study.

This case study concerns audio capturing and reproduction over a WiFi wire-
less network. The goal of the study is to check the synchronization between the
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Fig. 6: Results of latency analysis for the AFDX case study.

different nodes of the network essentially the sender-to-receiver. The synchro-
nization protocol is as follows. The base station broadcasts periodically (period
T=5s) a frame containing the hardware clock value (synchro process) to all the
nodes through the wireless network. Each node applies a Phase Locked Loop
(PLL) synchronization technique, to construct a software clock. The PLL sys-
tem takes the broadcasted clock as input and keeps the local clock synchronized
to it. The expected synchronization accuracy, defined as the difference between
the input and output clock, is specified as 1µs. The resulting clock is used by the
micro process to timestamp the audio frames. Subsequently, the base station is
able to reproduce the received audio frames through the speaker process in the
correct chronological order.
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Fig. 7: SBIP model of the Wireless Sensor Network



For the implementation of the WSN application, a wireless sensor network
that consists of three nodes was used. Each node is a UDOO platform7, which
consists of a computational core, a WiFi card, and a sound card. The compu-
tational core is responsible for the node’s processing operations, the WiFi card
for the wireless communication of the network and the sound card for capturing
or reproducing sound. The wireless network is supported by a Snowball SDK
platform8 used as Access Point (AP).

We conducted two sets of experiments, focusing on equally important require-
ments in the development of multimedia sensor networks. The first analyzed the
utilization of the buffer components concerning only the audio capturing and
reproduction in the system. Thus, this experiment focused on a functional re-
quirement, which is influenced by non-functional requirements such as the packet
delivery ratio and the end-to-end delays. In the second experiment we focused
on the obtained clock synchronization accuracy. Therefore, we observed the dif-
ference between the Master clock θm and the software clock computed in every
Slave θs without the impact of the audio capturing and reproduction. These
requirements were described as probabilistic temporal properties, using PBLTL.
The obtained results are presented hereafter.
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Fig. 8: Probabilities of φ1 (left) as a function of the Sbuffer size and φ2 (right)
as a function of the initial playout delay.

We evaluated the property of avoiding overflow or underflow in each buffer
component by considering the following properties: φ1 = Gl(SSbuffer < MAX),
as well as φ2 = Gl(SMbuffer > 0), where SSbuffer and SMbuffer indicate the size
of the Slave and Master buffer respectively (see Figure 7). The value of MAX is
considered as fixed and equal to 400. As illustrated in Figure 8 P (φ1) = 1 for the
considered value of MAX, meaning that the overflow in the SBuffer is avoided.

7 http://www.udoo.org/features/
8 http://www.calao-systems.com/articles.php?pg=6186



Furthermore, the probability of underflow avoidance in the Mbuffer depends on
the initial playout delay. Specifically, in Figure 8 we can observe this for delays
greater than 1430 ms P (φ2) = 1, meaning that the Master should start the
consumption of audio packets when this time duration has elapsed.

The property of maintaining a bounded synchronization accuracy is defined
as: φ3 = Gl(|(θm − θs) − A| < ∆), where A indicates a fixed offset between the
Master and each computed software clock and ∆ is a fixed non-negative number,
denoting the resulting bound. Initially, we used several probabilistic distributions
from the execution results of the application to test if the expected bound ∆ =
1µs is achieved. However, the achieved bound by the simulations was always
above the defined bound of 1µs for A = 100µs. We accordingly repeated the
previous experiments, in order to estimate the best bound. Therefore, we tried
to estimate the smallest bound which ensures synchronization with probability
1, by repeating the previous experiment for a variety of ∆ between 10µs and 80
µs. The simulations have shown that the synchronization bound was 76 µs.

4.5 Image Recognition on Many-cores

In this case study, the SBIP framework is used as part of the design of an em-
bedded system consisting of the HMAX image recognition application deployed
on the STHORM many-core architecture [23, 24].

C2 (max)

S2 (grbf)

C1 (max)

S1 (ndp)

SI (scaled images)

Layer name

RI (raw image)

Fig. 9: HMAX overview.

The HMAX models algorithm [20] is a hier-
archical computational model of object recogni-
tion which attempts to mimic the rapid object
recognition of human brain. In the present case
study, we only focus on the first layer of the
HMAX Models algorithm (see Figure 9) as it is
the most computationally intensive.

We are interested on the overall execution
time and the time to process single lines of
the input image. More precisely, we will com-
pute the probabilities that the overall execu-
tion time is always lower than a given bound ∆
and that the variability in the processing time
of successive lines is always bounded by Ψ . To
this end, we specify respectively the above re-
quirements in BLTL as φ1 = Gl(t < ∆), where
t is the monitored overall execution time and
φ2 = Gl(|tl| < Ψ), where tl is the difference
between the processing time of successive lines.

We developed a parametric SBIP model for the S1 layer of HMAX (see
Figure 10), where every image is handled by one ”processing group” consisting
of a Splitter, one or more Worker processes and a Joiner, connected through
FIFO channels. The computation of the entire S1 layer is coordinated by a single
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Fig. 10: The SBIP model of HMAX (S1 layer).

main process. In this model, several image scales are handled concurrently and
the processing is pipelined using a pipelining rate PR.

We checked the aforementioned performance requirements, i.e. φ1 and φ2 for
different pipelining rate PR = {0, 2} and bounds ∆,Ψ . In this experiment, we
chose arbitrary FIFOs sizes: Main-Splitter= 10 KB, Splitter-Worker= 112 B,
Worker-Joiner= 336 B, and Joiner-Main= 30 KB (see Figure 10) to fit the
STHORM L1 memory of a single cluster.

Table 1: Probabilities to satisfy φ1 for different ∆ (PR = 0).
∆(ms) 572.75 572.8 572.83 572.85 572.89 572.95

P(φ1) 0 0.28 0.57 0.75 0.98 1

Nbr of required traces 66 1513 1110 488 171 66

Table 1 shows the probabilities to satisfy the first requirement φ1 for different
values of ∆, in the case where PR = 0. The table also reports, in the last
column, a performance metric, i.e. the number of traces that were necessary for
the SPRT algorithm to decide each time. For instance, based on these results,
one can conclude that the expected overall execution time (for processing one
image scale) is bounded by ∆ = 572.91ms with probability ≥ 0.99.

Figure 11 shows the probabilities to satisfy the second requirement φ2 when
varying Ψ . Figure 11a is obtained with no pipelining, i.e. (PR = 0), whereas
Figure 11b is obtained with PR = 2. One can note that the two curves show
similar evolutions, albeit the curve in Figure 11b is slightly shifted to the right,
i.e. the values of Ψ in this case are greater than Figure 11a. This actually means
that this configuration induces more processing time variation between successive
lines. We recall that when PR = 0, all the processes are perfectly synchronized
which yields small variation over successive lines processing time. Using PR > 0
however leads to greater variation since it somehow alters this synchronization.
Concretely, Figure 11 shows that without pipelining, we obtain smaller expected
time variation (of processing successive lines). For instance when PR = 0, Ψ =
2128µs with probability 0.99, whereas for PR = 2, Ψ = 2315µs with the same
probability. Hence, one may choose PR = 0 if interested in a higher throughput.
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Fig. 11: Probability to satisfy φ2 for PR ∈ {0, 2}.

We finally note that the SMC time was relatively small given the obtained
model size: 5 hours in average for each property. It is worth mentioning that we
used the SPRT algorithm iteratively (with a binary search and a fixed decimal
precision) to compute specific probability values as it normally provides a yes/no
answer. The stochastic BIP model has 47 components and about 6000 lines of
code. Components have in average 20 control locations and 10 integer variables
each, which induces a big state space. For instance, processing a single line by
the 14 parallel Workers can lead to approximately 514 states, as each Worker
performs each time 5 steps, namely read, compute, and 3 writes (3 directions).

5 Conclusion

In this paper, we presented the SBIP framework which consists of a stochastic
extension to the BIP formalism, and the BIPSMC statistical model checker. It
is worth mentioning that stochastic BIP models can be analyzed independently
using other techniques such as numerical probabilistic model checking.

As shown in Section 4, the SBIP model checker has been used in several
case studies. However, several ameliorations are still ahead to enhance its per-
formance. Compared to more mature tools like Prism [16] or Uppaal-smc [11],
it still needs various improvements. A major amelioration is at the level of the
interface with the BIP simulation engine, which is quite rudimentary for the
moment and induces a considerable latency. We are planning to re-implement
it more properly for the next release of the tool. Another amelioration will con-
sist to extend the PBLTL input language to support nested operators and to
improve the automatic generation of properties monitors.

In the future, we are also planning to extend the graphical user interface with
a plotting feature such as in Prism and Uppaal to enable building curves within
the tool. Finally, a more long-term extension will consist to implement a parallel
version of the statistical model checking algorithms. SMC still actually suffers
from scalability issues when confronted with industrial-size system models. A



parallel implementation, together with a model abstraction technique [25], may
eventually enable a more efficient model analysis.
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