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Analytical resolution of complex queuing systems remains nowadays an open and challenging issue and
may be extensively used in modeling and representing dynamic behavior of sophisticated systems. This is
particularly the case of M/G/c/c+ r queue where exact analytical solution is difficult to reach. In this paper,
we propose a new approximate analytical model in order to evaluate the performance of cloud computing
center using M/G/c/c+ r queuing system. The adopted modeling approach combines two models. The first
one is a transform-based analytical model whereas the second relies on an approximate Markov chain. This
combination enables to compute the one-step transition probabilities for the system M/G/c/c+ r.

Cloud Computing, Performance Evaluation, M/G/c/c+r queue, Transition Matrix, Embedded Markov Chain

1. INTRODUCTION

The US National Institute of Standards and
Technology (NIST) has defined cloud computing
as a model for enabling convenient, on-demand
network access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider interaction
(Mell et al. (2009)).

Cloud services are usually divided into main
three categories. Software-as-a-Service (SaaS) is
a software delivery model in which software and
associated data are centrally hosted on the cloud.
Platform-as-a Service (PaaS) provides a computing
platform like execution runtime, database, web
servers, development tools etc. In infrastructure-as-
a-Service (IaaS), cloud providers offer computers,
as physical or more often as virtual machines,
servers, storage, load balancers, networks, etc.
(Furht (2010)). Typically a service level agreement
(SLA) gives all the aspects of usage of cloud service
and the obligations of service providers and clients. It
also includes various descriptors known as quality of
service (QoS) which includes availability, reliability,

throughput, security, performance indicators (Wang
et al. (2010)).

Providing quality services require a solid model
that provides detailed insights of computing centers.
Assessing the QoS offered by cloud providers
necessitates the accurate performance evaluation of
the cloud center. Khazaei et al. (2012) adopted
M/G/c/c+ r queuing system as the abstract model
for performance evaluation due to the characteristics
of cloud computing centers: having Poisson arrival
of task requests, generally distributed service time,
large number of servers and the finite capacity of
system.

However analyzing of M/G/c/c + r queuing system
is not an easy task, an exact solution for this
model is only possible for special cases, such as
exponential service, a single server, or no waiting
queue at all. Consequently, an extensive research on
performance evaluation of M/G/c queuing systems
was described in the literature (Nozaki et al. (1978),
Yao (1985)). According to Khazaei et al. (2012),
the M/G/c approximation approaches that were
proposed in the literature (Kimura (1983), Tijms et
al. (1981), Boxma et al. (1979)) are not suitable
for performance evaluation of cloud center. They
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cited three issues that make it difficult to apply these
approximations:

• a cloud center can have a large number of
facility (server) nodes (Amazon (2010));

• the complex task service times and higher
coefficient of variation (CoV) of service time
distribution (Zhang et al. (2011), Reiss et al.
(2012));

• due to the dynamic nature of cloud environ-
ments, diversity of users requests and time de-
pendency of load, cloud centers must provide
expected quality of service at widely varying
loads (Reiss et al. (2012), Xiong et al. (2009)).

A new approximate approach used the combination
of a transform-based analytical model and an
embedded Markov chain model for the steady state
probabilities of the M/G/c/c + r queueing system
was proposed by Khazaei et al. (2012). This new
approach is suitable for cases of large number
of servers and when the distribution of service
time has a coefficient of variation more than one.
Improvements for this approach was proposed by
Chang et al. (2014). In these approaches, the
instants of regeneration of the embedded Markov
chain were misinterpreted and the system state
transition behavior was not describe accurately.
This paper makes some progress towards a good
approximation for the computation of the one-step
transition probabilities of the system M/G/c/c + r.
This enables to enhance previous approximations.

The rest of the paper is organized as follows.
Section 2 presents a brief overview of related work
on cloud performance evaluation and performance
characterization of queuing systems. In Section 3,
we present the analytical model in detail. In Section
4, we conclude by outlining same possible new
directions for future work.

2. RELATED WORK

Xiong et al. (2009) modeled a cloud center as the
classic open network, from which the distribution
of response time was obtained by using Laplace
transformation. Using the distribution of response
time, the authors found the relationship between the
maximum number of customers, the minimal service
resources and the highest level of services

Yang et al. (2009) proposed the M/M/c/c + r
queuing system for modeling the cloud center, which
indicates that both inter-arrival and service times are
exponential, the system has a finite buffer of size r
and its distribution of response time was obtained.

Ani Brown Mary et al. (2013) modeled a cloud center
as an [(M/G/1) : (∞/GD model)] queuing system
with a single task arrivals and a task request buffer
of infinite capacity. They used analytical methods to
evaluate the performance of queuing system and
solve it to obtain important performance factors
like mean number of tasks, blocking probability
and probability of immediate service. Mean as well
as standard deviation of the number of tasks is
computed.

Analysis of queuing systems with multiple servers
and general distributed service time is more
complex. For these queuing systems the steady
state probability, the distributions of response time
and the queue length cannot be obtained in
closed form. Consequently, several researchers
have developed many methods for approximating its
solution.

Kimura (1983) developed a diffusion approximation
model for the queue M/G/c. The main idea is to
approximate formulas for the distributions of the
number of customers. Kimura (1996a) described
an approximation for the steady state queue length
distribution in M/G/c queue with finite waiting
spaces.
A similar approach in the context of M/G/c queues
was described by Kimura (1996b), but extended so
as to approximate the blocking probability and, thus,
to determine the smallest buffer capacity such that
the rate of lost tasks remains under predefined level.

Nozaki et al. (1978) proposed an approximation
for the average queuing delay in a M/G/c/c + r
queue based on the relationship of joint distribution
of remaining service time to the equilibrium service
distribution. Smith (2003) proposed a different
approximation for the blocking probability based on
the exact solution for finite capacity M/M/c/c + r
queues. The estimate of the blocking probability
is used to guide the allocation of buffers so that
the blocking probability remains below a specific
threshold.

However, the most of the approximations mentioned
above are not directly applicable to performance
analysis of cloud computing center due these
following limitations (Khazaei et al. (2012)):

• for example, approximations proposed by
Kimura (1996a), Smith (2003) are reasonably
accurate when the number of servers is small,
below 10 or so. They are not being suitable
for the cloud computing centers with more than
100 servers;

• approximations proposed by Nozaki et al.
(1978), Yao (1985) are inaccurate when the
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coefficient of variation of the service time, CoV,
is above 1.0;

• approximation errors are particularly pro-
nounced when the traffic intensity ρ is small,
and/or when both the number of servers c
and the CoV of the service time are large
(Kimura (1983), Tijms et al. (1981), Boxma
et al. (1979)).

As these approximations mentioned above are
not directly applicable to performance analysis of
cloud computing center, Khazaei et al. (2012)
described a new approximate analytical model using
M/G/c/c + r queueing system. In order to evaluate
its performances, they used a combination of a
transform-based analytical model and an embedded
Markov chain model, which obtained a complete
probability distribution of response time and number
of task in the system.

Chang et al. (2014) proposed an approximate
analytical model using M/G/c/c + r queueing
system for performance evaluation of cloud center
close to the proposed by Khazaei et al. (2012),
both divided the transition probabilities matrix of this
system into four regions. The difference between
them lie in the approximation formula of the transition
probabilities matrix in regions 3 and 4, because
according to these authors, the approximate formula
proposed by Khazaei et al. (2012) is an inaccurate
approximation for the transition probabilities in these
regions.

3. THE ANALYTICAL MODEL

3.1. Model description

We consider a c-server queueing system with
Poisson arrivals, general service times, and a
capacity limit of c + r for the number of tasks in
the system, for modeling a cloud data center. In this
model we assume that:

• all c servers render service in order of task
request arrivals (FCFS);

• each busy server is independent of the other
busy serves;

• if the waiting queue is empty and there is no
new task request arrival, the server enters in
the idle state;

• if the task arrives while the system capacity
has already been attained, this task will depart
immediately without service;

• each task is serviced by a single server.

The M/G/c/c + r queuing system is a non-
markovian process and can be analyzing by using
the embedded Markov chain (EMC) technique
Kleinrock (1975). This will be discussed below.

Task request arrivals follow a Poisson process, which
means that task inter-arrival time AX(x) , P [X ≤
x] is exponentially distributed with a rate of λ, its
probability density function (pdf) is a(x) = λe−λx and
its Laplace transform is

A∗(s) =

∫ ∞

0

e−sxa(x)dx =
λ

λ+ s
.

Task service times are identically and independently
distributed according to a general distribution
HY (y) , P [Y ≤ y] with a mean service time equal
to h = 1

µ . its pdf is hY (y) and its Laplace transform is

H∗(s) =

∫ ∞

0

e−sxh(x)dy.

The traffic intensity is ρ , λ
cµ . The Residual task

service time, H+, is the time interval from an
arbitrary point (an arrival point) during a service time
to the end of the service time. This time is necessary
for our model since it represents time distribution
between a task arrival and departure of the task
which was in service when task arrival occurred.
The Laplace transform of H+ is calculated by Takagi
(1991) as:

H∗
+(s) =

1−H∗(s)

s h
. (1)

3.2. Model Analysis

We use the same EMC technique adopted by
Khazaei et al. (2012) for analyzing the M/G/c/c+ r
queuing system. This EMC technique consists of
selecting the Markov renewal points at the instant
of a new task arrival to the system. We choose two
consecutive arrivals to be the observation interval
for the EMC. The basic structure of the EMC is
shown in Fig.1. Therefore, we model the number
of the tasks in the system (both those in the
service and those in the waiting queue) at the
moments immediately before the new task arrival,
if we enumerate these instances as 0, 1, ..., c + r,
we obtain a homogeneous Markov chain with state
space S = {0, 1, 2, ..., c + r}. This Markov chain is
ergodic because it is irreducible, recurrent non-null,
and aperiodic (Khazaei et al. (2012)).

Let tn and tn+1 the moments of nth and (n +
1)th arrivals to the system respectively, while Xn

and Xn+1 indicate the number of tasks found in
the system immediately before these arrivals, Tn

denotes the inter-arrival time between tn and tn+1,

3



Stochastic Model for Cloud Dada Center
with M/G/c/c+r Queue

Outamazirt • Escheikh • Aı̈ssani • Barkaoui • Lekadir

Bn+1 indicates the number of tasks which depart
from the system between tn and tn+1.
In the rest of this paper we use T to denote any inter-
arrival time.

We must calculate the transition probabilities
associated with EMC, and so we define

pij , P (Xn+1 = j|Xn = i), (2)

otherwise, we must calculate

P (Bn+1 = i+ 1− j|Xn = i), (3)

i.e., the probability that i − j + 1 tasks are serviced
during T . It is clear that

pij = 0, for j > i+ 1. (4)

Figure 1: Embedded Markov points.

Since the EMC is ergodic, an equilibrium probability
distribution π = [π0, π1, π2, ..., πm+r] exists for the
number of tasks present at the arrival instants with
πi = lim

n→∞
P (Xn = i) for 0 ≤ i ≤ m + r, and it is the

solution of equation π = πP , where P is the matrix
whose elements are the transition probabilities pij .

3.2.1. Transition Probability Matrix
To find the elements of the transition probability
matrix P , we need to count the number of tasks
departing from the system in an observation interval.
Each server has zero or more departures in T . The
transition probability matrix P has four regions as
that defined by Khazaei et al. (2012) and Chang
et al. (2014). Before presenting pij in each region,
we first define the departure probabilities Px, Py and
Pz,k as follows:

Px , P (A > H+) = H∗
+(λ), (5)

Py , P (A > H) = H∗(λ), (6)

Pz,k =
[ k∏
i=2

P (A > H|A > (k− i)H +H+)
]
·P (A > H+),

(7)

where:

• Px is the probability of completing the service
of a task, which has already been in service
during the previous observation interval and is
completed in the current interval.

• Py is the probability of completing the service
of a task, which begins to be serviced in the
current interval and is finished within the same
interval.

• If a server completes the service of a task
which has already been begun during the
previous observation interval, in the current
interval, this server will be idle. If the waiting
queue is nonempty, that server as well may
complete a second service in the current
interval, and if the waiting queue is still
nonempty, a new service may be completed,
and so on until the waiting queue gets empty.
The probability of k services are completed by
a single server is given by Pz,k.

After defining the departure probabilities Px, Py and
Pz,k in the embedded Markov chain, we describe
the four different regions of the transition probability
matrix P . These regions are schematically shown
in Fig. 2, where the numbers on horizontal and
vertical axes correspond to the number of tasks in
the system immediately before a task request arrival
(i) and immediately before the next task request
arrival (j), respectively.

Figure 2: Range of validity for pij .

Region 1:

For i + 1 < j, pij = 0, since j cannot exceed i + 1
(Eq. 4).

Region 2:

For i + 1 ≤ c, 0 ≤ j ≤ c, and i + 1 ≥ j, in this
region, all tasks are in the service (no waiting). The
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probability that i−j+1 tasks are served during T is:

Pij =


Ci−j

i P i−j
x (1− Px)

jPy + Ci−j+1
i P i−j+1

x

(1− Px)
j−1(1− Py), if i+ 1 > j;

(1− Px)
j , if i+ 1 = j.

(8)

Region 3:

For c ≤ i ≤ c + r, c ≤ j ≤ c + r, and i + 1 ≥ j, all
servers are busy during T . Let ω = i− j +1 denotes
the number of departures in the system, with ω ≥ 0
and, we assume each single server completes no
more than three services of tasks in T . We define
the transition probabilities for this region by:

pij =



M(i, j, w) · χ, if i < c+ r;

M(i, j, w − 1) · χ, if i = c+ r;

0, if i > c+ r,

(9)

where:

M(i, j, w) =

min(w,c)∑
s1=min(w,1)

{
Cs1

c P s1
x (1− Px)

m−s1

min(w−s1,s1)∑
s2=min(w−s1,1)

[
Cs2

s1P
s2
z,2(1− Pz,2)

s1−s2

Cw−s1−s2
s2 Pw−s1−s2

z,3

(1− Pz,3)
s2−(w−s1−s2)

]}
, (10)

and χ is the indicator function

χ =

 1, if w − s1 − s2 ≤ s2;

0, if w − s1 − s2 > s2.
(11)

Region 4:

For c ≤ i ≤ c+ r, 0 ≤ j < c, and i+1 ≥ j, all servers
are busy at the beginning of T , and c − j servers
are idle at the end of T . In this region, the transition
probabilities are defined by:

pij =



M(i, j, w) · χ, if i < c+ r;

M(i, j, w − 1) · χ, if i = c+ r;

0, if i > c+ r,

(12)

where:

M(i, j, w) =


M1(i, j, w), if s1 ≥ i− c+ 1;

M2(i, j, w), if n1 < i− c+ 1,

(13)

M1(i, j, w) =

min(w,c)∑
s1=c−j

{
Cs1

m P s1
x (1− Px)

c−s1

min(w−s1,i−c+1)∑
s2=min(w−s1,c−j)

[
Cs2

s1P
s2
z,2

(1− Pz,2)
i−c+1−s2

]}
, (14)

M2(i, j, w) =

min(w,c)∑
s1=c−j

{
Cs1

c P s1
x (1− Px)

c−s1

min(w−s1,s1)∑
s2=min(w−s1,c−j)

[
Cs2

s1P
s2
z,2(1− Pz,2)

s1−s2

Cw−s1−s2
s2 Pw−s1−s2

z,3

(1− Pz,3)
s2−(w−s1−s2)

]}
. (15)

3.2.2. Discussion
Between two successive task arrivals (i.e. during T )
there may be ω = i + 1 − j departures from the
system. In the region 2 there will be at most one
departure from each server of the system, however,
in regions 3 and 4, there can be more than one
departure from any given server.

Let us now examine in detail the equations of the
transition probabilities for regions 2, 3 and 4 that we
propose and we compare these equations with those
proposed by Khazaei et al. (2012) and Chang et al.
(2014).

• Region 2 (i+ 1 ≤ c, 0 ≤ j ≤ c, and i+ 1 ≥ j):
In this region, the nth arrival finds the waiting
queue empty and i servers busy (all i tasks in
the system are in service), then as i ≤ c−1 < c,
it will find an idle server and will immediately
enter into service. However, the (n+1)th arrival
finds exactly j on arrival, i.e. there are i +
1 − j tasks leave the system between two
successive arrivals. We distinguish two cases:

– Case 1: If among these i busy servers,
i − j of them completed the services of
tasks and, the service of the nth arrival is
also completed before the (n+1)th arrival,
then the probability of having i + 1 − j
departures from the system in this case
is equal to:

Ci−j
i P i−j

x (1− Px)
jPy.

– Case 2: If among these i busy servers,
i + 1 − j of them completed the services
of tasks and, the service of the nth arrival
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is not completed, then the probability of
having i+1−j departures from the system
in this case is equal to:

Ci−j+1
i P i−j+1

x (1− Px)
j−1(1− Py).

In the two cases cited above, there are
i + 1 − j tasks that leave the system
between two successive arrivals, thus the
probability of having i + 1 − j departures
from the system during T is equal to:

Ci−j
i P i−j

x (1− Px)
jPy +

Ci−j+1
i P i−j+1

x (1− Px)
j−1(1− Py). (16)

This equation was proposed by Khazaei et al.
(2012) and Chang et al. (2014), but when we
have i + 1 = j, i.e. there is the same number
of tasks in the system at the beginning and
at the end of T , Eq. 16 can not be used to
compute the conditional probability P (Xn+1 =
i+ 1|Xn = i). This probability can be obtained
in the following manner:

(1− Px)
j .

That is presents the probability of no having
a departure between two successive arrivals.
Consequently, the transition probabilities for
the region 2 defined in this paper is given by
Eq. 8.

• Region 3 (c ≤ i ≤ c + r, c ≤ j ≤ c + r, and
i+ 1 ≥ j):
The nth arrival finds all c servers are busy
and i − c tasks in the waiting queue. If the
number of tasks in the system is strictly less
than c+r (system capacity), then the nth arrival
will be allowed entry. Therefore, there should
be i − c + 1 tasks in the waiting queue at the
beginning of T .
In this region, there can be more than one
departure from any given server. Among the
c servers, s1 of them complete at least one
service during T . Note that all these completed
services must have already been in service at
the beginning of T . Among these s1 servers,
s2 of them will complete a second service
during T . As we assumed that each single
server completes no more than three services
of tasks in T , then the remaining ω − s1 −
s2 services must be completed in T . These
services will complete by a subset of these s2
servers. The number of servers in the subset
is ω − s1 − s2, that is, there are ω − s1 −
s2 servers, each of which completes exactly
three services in T and, the number of servers
that are still busy processing the third service
should be set to s2 − (ω − s1 − s2). This
number is set to s2 in the equation of the
transition probabilities proposed by Khazaei et

al. (2012), with the probability (1 − Pz,3)
s2 .

According to this authors this equation is equal
to:

pij =

min(w,c)∑
s1=min(w,1)

{
Cs1

c P s1
x (1− Px)

m−s1

min(w−s1,s1)∑
s2=min(w−s1,1)

[
Cs2

s1P
s2
z,2(1− Pz,2)

s1−s2

Cw−s1−s2
s2 Pw−s1−s2

z,3

(1− Pz,3)
s2
]}

. (17)

However, it is impossible to find exactly j tasks
in the system at the end of T in this equation
because the authors considered the number of
servers that are still busy processing the third
service is set to s2. Consequently, Chang et al.
(2014) proposed a new equation for this region,
defined as:

pij =

min(w,c)∑
s1=min(w,1)

{
Cs1

c P s1
x (1− Px)

m−s1

min(w−s1,s1)∑
s2=min(w−s1,1)

[
Cs2

s1P
s2
z,2(1− Pz,2)

s1−s2

Cw−s1−s2
s2 Pw−s1−s2

z,3

(1− Pz,3)
s2−(w−s1−s2)

]}
. (18)

In this equation, the remaining ω − s1 − s2
tasks that will must leave the system, can be
serviced by the subset of s2 servers that have
completed two services. When the number of
s2 servers is small, then it can happen that
the number of remaining tasks exceed this
number, therefore, in order that the assumption
to have ”each single server completes no more
than three services of tasks in T ” can verify, an
indicator function must be used and it is equal
to 1 if the number of remaining tasks in the
system is less than the number of s2 servers,
is equal to 0, otherwise (Eq. 11).

Also, in this region, if the nth arrival finds the
system full (i = c + r), then it will be lost.
Therefore, there will be i − j tasks that will
leave the system between the nth arrival and
the (n + 1)th arrival instead of i + 1 − j tasks.
Accounting for the above analysis we propose
in this paper a new approximate formula for
the computation of the element pc+r,j , for all
j. Consequently, a new accurate approximation
of the transition probabilities for the region 3 is
defined in this paper by Eq. 9. This enables to
enhance previous approximations.

• Region 4 (c ≤ i ≤ c + r, 0 ≤ j < c, and
i+ 1 ≥ j):
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In this region, at the beginning of T there are
i − c + 1 tasks in the waiting queue and all c
servers are busy, while at the end of T , the
waiting queue is empty and there are c − j
servers are idle.
The equation of the transition probabilities
proposed by Khazaei et al. (2012) for this
region is given by:

pij =

min(ω,c)∑
s1=c−j

{
Cs1

c P s1
x (1− Px)

c−s1

min(w−s1,s1)∑
s2=min(ω−s1,c−j)

[
Cs2

s1P
s2
z,2(1− Pz,2)

s1−s2

Cω−s1−s2
s2 Pw−s1−s2

z,3

(1− Pz,3)
s2
]}

. (19)

In this equation, Khazaei et al. (2012) had not
taken into account the number of tasks in the
waiting queue at the beginning of T . However,
in this region we distinguish two cases:

– case 1: If s1 ≥ i− c+ 1, there are at most
i−c+1 tasks that begin service at a subset
of the s1 servers that have completed one
services in T and, there are s1−(i−c+1)
servers remain idle because the waiting
queue is empty.

– case 2: If s1 < i− c+1, there are s1 tasks
begin service at a subset of the s1 servers
that have completed one services in T .

Chang et al. (2014) proposed a new equation
for the transition probabilities for this region:

pij =
1

(1− Pz,3)c−j

min(ω,c)∑
s1=c−j

{
Cs1

c P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,c−j)

[
Cs2

min(i−c+1,s1)
P s2
z,2(1− Pz,2)

s1−s2

Cω−s1−s2
min(max(i−c+1−s1,0),s2)

Pω−s1−s2
z,3

(1− Pz,3)
s2−max(i−c+1−s1−s2,0)

]}
. (20)

In this equation, the authors considered the
number of servers that are still busy processing
the third service is equal to s2 − max(i − c +
1 − s1 − s2, 0), because they assumed that all
servers that enter in the idle state during T they
do not complete the service, even though the
servers are idle. In order to correctly account
for the c − j idle servers at the end of T ,
they multiplied the equation of the transition
probabilities for this region by 1

(1−Pz,3)c−j .

In the case where s1 ≥ i− c+1, the Eq. 20 will
be equal to:

pij =
1

(1− Pz,3)c−j

min(ω,c)∑
s1=c−j

{
Cs1

c P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,c−j)

[
Cs2

i−c+1P
s2
z,2(1− Pz,2)

s1−s2

Cω−s1−s2
min(max(i−c+1−s1,0),s2)

Pω−s1−s2
z,3

(1− Pz,3)
s2−max(i−c+1−s1−s2,0)

]}
, (21)

therefore, the max(i − c + 1 − s1, 0) = 0,
min(max(i−c+1−s1, 0), s2) = 0 and max(i−
c+ 1− s1 − s2, 0) = 0. As the waiting queue is
empty (all i− c+1 tasks in waiting queue enter
service because s1 ≥ i−c+1), then the number
of servers that will complete three services
during T is equal to 0 (i.e. ω − s1 − s2=0).
Therefore, the number of servers that will be
idle at the end of T is equal to s2, i.e. c−j = s2.
Thus, Eq. 21 will be equal to:

pij =

min(ω,c)∑
s1=c−j

{
Cs1

c P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,c−j)

[
Cs2

i−c+1P
s2
z,2

(1− Pz,2)
s1−s2

]}
. (22)

In this equation, if the number of servers that
complete the second service is equal to i−c+1,
then at the end of T , the number of servers
remain busy processing the second service is
equal to i − c + 1 − s2, while in the Eq. 22,
this number is equal to s1 − s2, consequently,
the number of tasks in the system at the
end of T exceeds j. Therefore, the coefficient

1
(1−Pz,3)c−j is not valid when s1 ≥ i− c+ 1, but
it is valid just when s1 < i− c+ 1.

Accounting for the above analysis for this
region we study the two cases cited above
separately and we propose in this paper a new
approximate formula for each case (Eq. 14,
Eq. 15 resp.). Consequently, a new accurate
approximation of the transition probabilities for
the region 4 is defined in this paper by Eq. 12.

4. CONCLUSION

In this paper we used the same analytical model,
M/G/c/c+ r queuing system, proposed by Khazaei
et al. (2012) for modeling the cloud computing
center. However, we focused on the one-step
transition matrix of this model because we constated
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that the analysis of this model differs from an
author to another (see the analysis of Khazaei
et al. (2012), Chang et al. (2014)). So, we
proposed a new approximation formulas for the
one-step state-transition probabilities. Compared to
the existing approximation formulas for the one-
step state-transition probabilities, our approximation
formulas improved the computation of the transition
probabilities of the M/G/c/c+ r transition matrix.

Our future work, will be consecrate to the
presentation of the numerical results. We also plan
to extend the model M/G/c/c + r queuing system
with one-step transition matrix by considering the
services with different priorities and batch-task
arrivals.
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