
Web Services Software Architecture

Syahrul Fahmy

School of Informatics, The University of Manchester,
PO Box 88, Manchester M60 1QD, United Kingdom

S.Abdul-wahab@postgrad.manchester.ac.uk

Abstract. Web services have received widespread attention and acceptance in
the software engineering community. Automatic composition of services, to
meet user’s requirements, is a powerful mechanism to ensure satisfaction of
varied needs and thus enable the vision of Web services. Although Web ser-
vices are equipped with the fundamental concepts and supporting technologies,
the architectural style of the composite service composed from Web services is
fixed by the prescriptions of the Service Oriented Architecture, and does not
provide the level of flexibility stipulated by alternative service-based ap-
proaches such as the Service-Based Software vision. To enable the composition
of Web services using alternative architectural styles, the author proposes that
software architecture be included as a parameter in the composition process.
This is enabled by the use of the Alfa framework to model the desired architec-
tural style, and the use of this information to support service discovery.

1 Introduction

Web services are configurable software services that use open standards and proto-
cols to connect and integrate distributed components for creating and managing com-
puter applications. Web services have been becoming a major software trend because
they provide means for integrating data sources and data transfer between applica-
tions. Web services share business logic, data and processes through a programmatic
interface across a network. In order for web services to be operational, interoperabil-
ity of applications over intra/internet is necessary. This interoperability requires a
technology that is independent of hardware, operating system, and software specific
technologies. As such, specific standards are used to address these interoperability
issues that consist of XML to define structured data, SOAP as a messaging protocol,
WSDL to define interfaces, and UDDI as a registry to publish available services.

There are two approaches an organization can adopt to take advantage of Web ser-
vices namely the Service Oriented Architecture (SOA) and the Service-Based Soft-
ware (SBS) approaches. In the SOA approach, a fixed architecture is presumed for
service composition. Little flexibility, if any, is available to the service provider in
determining how the service should be composed. The author argues that the service
provider should be given more flexibility and ‘authority’ in service composition. In
the SBS approach, the service provider is given this flexibility by means of a flexible

 14

composition strategy of individual service provider, i.e. the Know-How capability
(Fig. 1).

SERVICE

USER

Know-How Sub-Contractor

Sub-Contractor

Atomic Service

SERVICE
PROVIDER

specify needs

propose contract

accept contract

provide service

negotiate

select

Fig. 1. Know-How Capability in Service-Based Software

This capability would enable service providers to choose the most appropriate ser-
vice composition method (compose then offer services vs. offer then compose at
execution). Therefore, the architecture for the software from individual services can
be chosen prior to composition. To attain this capability, the software architecture
style of services should be identified and determined, for example pipes and filters,
prior to service composition.

In this paper the author proposes the use of the Alfa framework [1] to model the
software architecture styles of services and to support the discovery of suitable ser-
vices. Section 2 will present some background information on the SBS approach.
Section 3 will present service architecture modeling using the Alfa framework. Sec-
tion 4 will outline the expected results and contribution of this research. Finally, con-
clusion and future work will be presented in Section 5.

2 Background

This section will discuss some background information on Service Oriented Architec-
ture, Service-Based Software, Software Architecture and the Alfa framework.

2.1 Software Oriented Architecture

Service Oriented Architecture (SOA) provides means to find, integrate, and use ser-
vices that are available inside and outside the organization through the network/ Inter-
net. SOA underlines three important issues for implementing Web services: interop-
erability, development and delivery. SOA identifies interoperability issues across
open and proprietary platforms. This would allow organizations to benefit from a
flexible IT architecture built on established standards without limiting the flexibility
of business units to implement technologies that provide the capabilities they need.
SOA also concerns the programming and development approach of services. Web

 15

services represent a programming approach that takes advantage of available objects
and content that would enable faster development cycles and lower costs due to com-
ponent reuse. In addition to that, SOA also deals with the openness and flexibility of
service delivery where organizations can provide access to any type of information
such as inventory transactions and financial data in a reusable and open fashion.

However, SOA limits the flexibility of the service provider to choose the method
for service composition. Services are composed from a predefined and rigid architec-
ture where sometimes the user’s requirements could not be fulfilled completely.

2.2 Service-Based Software

The Service-Based Software (SBS) is based on the Software as a Service (SaaS)
project, carried out by the Pennine group involving academicians from three UK
universities. SBS is a new paradigm proposed by the group for software engineering,
a service-based approach to structuring, developing and deploying software. SBS
comprises of a number of small software components that meet user requirements.
When a component needs to be updated or replaced; it is disengaged; suitable re-
placement is searched and acquired from the marketplace; integrated; and executed.
SBS are acquired and paid for on demand, as and when needed. Research efforts in
SaaS have been working on the principles and practicality of SBS. An architecture for
SBS has been proposed and the feasibility of the concept and primitives of the SBS
architecture has been demonstrated [2]. The basics of SBS have also been demon-
strated using prototypes to perform service negotiation, composition, discovery, me-
diation and binding [3]. Studies in SBS also include the supplier-customer relation-
ships [4], the negotiation process [5]. A ‘Negotiation Description Language’ has also
been proposed for SBS [6].

SBS is a better approach for Web services compared to SOA as it gives the flexi-
bility of identifying and determining the method for services composition.

2.3 Software Architecture

Software Architecture is generally referred to as the ‘blueprint’ of a software system
that describes its coarse-grain components. Software architecture is often defined in
terms of patterns of structural organization or Software Architecture Style (SAS) [7].
Each style has a vocabulary of components and a set of constraints on how they can
be combined. SAS provides a collection of proven solutions to recurring design prob-
lems and demonstrates a method for integrating individual style into heterogeneous
structures. SAS have been used informally and explicitly, and more than one style can
be used. Examples of SAS include Pipes and Filters and Implicit Invocation. In addi-
tion to the styles in [7], there are also other styles found in literature for example
[8],[9],[10],[11] and [12].

Clearly, there is wealth of software architecture styles that can be used in the ser-
vice composition. However, these components need to be fine-grained and formalized
before it can be used in the composition process.

 16

2.4 Alfa

Alfa is an assembly language for software architecture and supports the modeling of
data, processing, and connecting elements of an architecture [13]. However, Alfa
goes beyond architectural description as it is based on a small set of architectural
primitives with precise dynamic semantics. Alfa also supports comprehensive style
conformance analysis and architectural composition using domain-independent primi-
tives. Alfa’s characterization of styles for composing architecture is adopted from the
characterization of distributed styles using five dimensions: Data, Structure, Interac-
tion, Behavior and Topology [14]. There are seventeen styles that have been charac-
terized in Alfa including Client-Server and Layered systems.

Alfa’s primitives have been shown to be expressive enough to model any interac-
tions involving a regular expression of input/output events on point-to-point channels
[13]. As such, Alfa can be used to represent the software architecture style for the
service composition process.

3 Service Architecture Modeling Using Alfa

This section will present the idea of service architecture modeling using Alfa. The
architecture of Web services can be modeled using one or more software architecture
styles. For example, based on a set of user’s requirements, the service provider de-
cides that the best way to fulfill the requirements is by using Event-Based Integration
(EBI) software architecture style.

Generally, EBI refers to a system where the components can announce or broad-
cast one or more events. Other components in the system can register an interest in
any event by associating a procedure with it. When the event is announced, the sys-
tem invokes all of the procedures that have registered for the event. As such, the
system would have at least 3 components namely the Publisher, Subscriber and Dis-
tributor that announces, registers for, and manages the registration of events, respec-
tively (please refer to Fig. 2).

Using Alfa’s characterization of styles and primitives, this architecture is formal-
ized and fine-grained to computational elements in the system. These would lead to
the identification and determination of the data type; structure of the system and its
components; topology of the system; interactions and behavior between the compo-
nents. Using topology as an example, we could determine that the Publisher’s publish
interface is connected to the Distributor’s accept interface; the Subscriber’s subscrip-
tion interface is connected to the Distributor’s subscription interface; and the Dis-
tributor’s distribute interface is connected to the Subscriber’s consume interface.

Alfa’s primitives provide information on the computational elements in the com-
ponents and system. For example, RELAY is a connector that contains multiple
INPUT and OUTPUT portals, and enables multi-point interaction. Each portal is
housed in a separate INTERFACE. Data items from each INPUT portal are for-
warded to every OUTPUT portal of the RELAY. DATUMs allowed at all the portals
of a RELAY are identical (words in capital are Alfa’s primitives).

 17

Distributor

subscription

acceptpublish
Publisher

Relay
Selector

Subscriber

Birelay

Event

Send
Receive

Subscription
Send

subscription Receive

Receive Send Handle

Receive

Send

Handle

Receive

Send

Send

consumeHandle

distributeSend

Fig. 2. Event-Based Integration Architectural Style Composed using Alfa

This information is also used for service discovery to fulfill specific requirements
regarding the architecture of the service. Examples would be specific type of DA-
TUMs, behavior of a specific PARTICLE, means of interaction either DUCT,
RELAY or BIRELAY.

This section has presented an approach of using Alfa to model software architec-
ture for the service composition process. For this approach to be implemented, soft-
ware architecture and Alfa’s primitives need to be included in the search criteria of
Web services and the composition process.

4 Expected Results and Contribution

This research is still in an early stage where it proposes a more flexible approach to
the composition of Web services by including the aspect of software architecture. In
order accomplish this, at least two issues need to be addressed, a vocabulary of terms
that will be used and the description of available services, both taking into account
the software architecture aspects in the service composition process. Ontology of
service architecture should be developed to ensure uniformity of terms used. Not only
does this cover software architecture styles, but also the components in a specific
style. Method for describing available services needs to be identified and developed
in order for the services to be advertised and discovered. It is anticipated that the Web
Ontology Language (OWL) and Web Services Description Language (WSDL) could
be used for these purposes with the probability of extending WSDL to accommodate

 18

Alfa’s primitives. A prototype would be developed at a later stage to demonstrate the
feasibility of the whole SBS approach for Web services composition.

5 Conclusion and Further Work

This paper has outlined the SBS approach for Web services composition. The concept
and use of software architecture and Alfa in for modeling and composing Web ser-
vices were presented. Work in the near future will be investigating the use of OWL
and WSDL in this research as discussed in the previous section.

References

1. Nenad Medvidovic, Nikunj R. Mehta, and Marija Mikic-Rakic. (2002). A family of soft-
ware architecture implementation frameworks. In Proceedings of the 3rd IFIP Working In-
ternational Conference on Software Architectures , Montreal, Canada.

2. Bennett, K. H., M. Munro, et al. (2001). An Architectural Model for Service-Based Soft-
ware with Ultra Rapid Evolution. Proceedings of the 2001 International Conference on
Software Maintenance (ICSM 2001), Florence, Italy, IEEE Computer Society.

3. Bennett, K. H., M. Munro, et al. (2002). Prototype Implementations of an Architectural
Model for Service-Based Flexible Software. Proceedings of the 35th Hawaii International
Conference on System Sciences (HICSS-35 2002), Big Island, HI, IEEE Computer Society.

4. Brereton, P. (2004). "The Software Customer/Supplier Relationship." Communications of
the ACM 47(2): 77-81.

5. Elfatatry, A. (2002). Service-Oriented Software: A Negotiation Perspective. PhD Thesis,
UMIST.

6. Elfatatry, A. & P. J. Layzell (2004). "Negotiating in Service Oriented Environments."
Communications of the ACM August 47(8).

7. Shaw, M. & D. Garlan (1996). Software Architecture: Perspectives on an Emerging Disci-
pline. New Jersey, Prentice Hall.

8. Andrews, G. R. (1991). "Paradigms for Process Interaction in Distributed Programs." ACM
Computing Surveys 23(1): 49-90.

9. Berson, A. (1992). Client/ Server Architecture, Mc-Graw Hill.
10. Mettala, E. and M. H. Graham (1992). The Domain-Specific Software Architecture Pro-

gram. Technical Report CMU/SEI-92-SR-9, Carnegie Mellon Software Engineering Insti-
tute.

11. Tracz, W. (1994). Collected Overview Reports from the DSSA Project. Owego, Loral
Federal Systems.

12. Harel, D. (1987). "Statecharts: A Visual Formalism for Complex Systems." Science of
Computer Programming 8: 231-274.

13. Nikunj R. Mehta, Nenad Medvidovic. (2003). Composing Architectural Styles from Archi-
tectural Primitives. ESEC / SIGSOFT FSE. 347-350.

14. Fielding, R.T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis. University Of California, Irvine.

