
19

Using an Aspect Oriented Layer in SOA for
Enterprise Application Integration

Chinthaka D. Induruwana

School of Computer Science, University of Manchester,
Kilburn Building, Oxford Road

M13 9PL
induruwc@cs.man.ac.uk

Abstract. Service Oriented Architecture (SOA) is a new method for
building information systems. Approaches for integrating different
application services with SOA require the client application to be hard-
wired to the service. For example, if a particular service talks to another
service that uses a different XML standard, then the conversion of the
XML between the two services is hard-wired. In large scale integration,
it is typical to find different communication standards within the
integration layer. This could be the result of incremental adoption or
because a company wants to protect earlier investment. Moreover, the
current SOA model is not able to encapsulate the scattered concerns
that crosscut services which facilitate the integration (for example,
concerns including logging, security, routing, fault tolerance and
transactions). Therefore, to improve maintainability and achieve better
flexibility in the integration of large numbers of heterogeneous
application services, we propose an aspect oriented method, in
particular using an Application Service Integration Layer (ASIL).

1. Introduction

Aspect Oriented Software Development (AOSD) [1] is a new and expanding
field in computer science. The software development process is driven by
modelling and implementing the interactions of various software concerns,1
which can be both functional and non-functional. Functional concerns can be
regarded as belonging to the core application; for example, concerns that
specify the behaviour of a certain application, such as the function of a class,
or the method used by the class. In contrast, non-functional concerns2 are
concerns such as logging, security, routing, fault tolerance and transactions. In

1 Ramnvias Laddad defines a software concern as: “… a specific requirement or

consideration that must be addressed in order to satisfy the overall goal” [2].
2 Non-functional concerns that crosscut are referred to as crosscutting concerns in

aspect oriented terminology and aspects can be used to encapsulate these
concerns (Figure 1b shows an example).

20

this paper we have called these non-functional concerns cross-service
concerns.

Aspect Orientation (AO) is a new software engineering paradigm, the
purpose of which is to encapsulate non-functional software concerns that
crosscut different software components. Aspect Oriented Programming (AOP)
is the encapsulating mechanism that enables AOSD engineers to program
these crosscutting concerns [2, 3]. Code weaving is the mechanism that turns
an AO description into code that implements the concerns.

Service Oriented Architecture (SOA) is a new method for building
distributed information systems. However, there are a number of limitations
with the current SOA model. Existing service software contains pre-embedded
information that is typically concerned with the environment in which it is to be
deployed, such as the specification of the XML that it uses to communicate
with the other services (this is referred to as integration logic in Figure 1). This
pre-embedding of information, or hard-wiring, prevents different components
from being used in other external contexts. Moreover, hard-wiring leads to
code tangling and scattering as shown in Figure 1a. Logging and security are
examples of crosscutting concerns, and Figure 1a shows how the code of
these concerns can be both tangled3 and scattered.4

Figure 1: (a) Tangled implementation as a result of using an adaptor. (b) Application
services integration layer (ASIL) overview.

In order to overcome the architectural limitations of the SOA model,
there is a requirement for a new SOA model in which the services are
independent of the protocols and their deployment environment. We expect

3 Code tangling is when the code for a particular concern becomes intermixed with

code for another concern.
4 Code scattering is when the code for a particular concern becomes scattered across

the system.

21

that an AO approach can be used to encapsulate this non-functional and
crosscutting information.

This paper investigates how the principles of AO can be applied to the
SOA environment. In particular, it proposes the use of an AO-layer to achieve
a more flexible Enterprise Application Integration (EAI)5 [4] solution with the
benefit of encapsulated integration policies.

2. A Novel Integration Layer in Application Services

In order to facilitate the integration of cross-service concerns that support the
complete decoupling of the integration logic from the application service logic,
we present the Application Service Integration Layer (ASIL). The motivation of
ASIL is to support an AO model for EAI with the aim of having a cleaner
composition model than is achievable via the current SOA model. The
advantage of a layered approach is that it enables the encapsulation of cross-
service concerns, as shown in Figure 1b. As a result, ASIL can be used to
achieve better flexibility, reliability and scalability with respect to EAI. ASIL is
designed to enable the encapsulation of both the integration logic and the
cross-service concerns into separate modules. The integration logic concern
deals with the different specifications and standards arising from a
heterogeneous integration environment. Currently adaptors are required to
enable communications between heterogeneous services (Figure 1a). This
integration logic would benefit from being encapsulated separately. The
advantage of encapsulating the integration logic is that, if a particular set of
application services are upgraded, or another one is integrated, and the XML
message specification changes, only the transformation rule at one site needs
to be altered. This makes it easier to integrate heterogeneous services.

The advantage of encapsulating cross-service concerns is that it
enables the non-functional concerns of the system to be handled in a uniform
and consistent fashion across the enterprise. Examples of cross-service
concerns are as follows:

• Logging. The logging concern deals with the encapsulation of the logging

behaviour. When certain points of the program execution are reached, the
system log is updated to store a record of the program execution.

• Security. The security concern deals with different security aspects of the
EAI, for example, the security mechanism which is used to communicate
between the different services.

• Fault tolerance. The fault tolerance concern deals with component failure
and exception handling, among other things.

5 Enterprise application integration can be defined as the integration of processes

across third-party applications as well as legacy systems to decrease the number of
adaptors which have to be developed when connecting two systems [4].

22

3. Case Study and High Level Design

The following case study outlines a typical set of requirements for a simple
enterprise integration scenario. In Section 4 we indicate how ASIL implements
this example.

1. The integration of two application services, where service x1 is using a

legacy version of XML specification, and x2 is using a newer XML
specification. As a result the XML messages en route between the two
services need to be advised6 by ASIL to enable communication. If this
communication policy is encapsulated as an aspect, when a new service is
added that also requires communication with x1, then the same advice can
be applied to support this communication without the need to write another
adaptor.

2. The communications between services x1 and x2 require both logging and
security. The enterprise has an encapsulated aspect repository that
specifies the logging and security specifications for the entire enterprise as
part of the ASIL. The ASIL layer can therefore be used to advise the
communications between the two services. First, the message en route has
to be encrypted before it is sent by one service to the other, and then
logged. ASIL has to intercept the message invocation from the receiving
service, decrypt the message and log it before delivering it. The cross-
service concerns of logging and security are thus applied before and after
interception.

The cross-service concerns described in this example are concerns that

require advising both at the service and at the message interception levels.
For example, the logging concern requires advising directly at the service
level. This is because, if a fault occurs within the service, preventing it from
sending back a message, the log would not be updated. An example of
advising at the message interception level is security, as messages en route
to the services can be intercepted and then encrypted or decrypted.7

4. Implementation

ASIL uses an interface definition language (ASIL-IDL) which is based on
AspectXML [5]. This is needed for the task of composing the different cross-
service concerns in a decentralised manner. Figure 2 shows an example of an
ASIL-IDL descriptor. The example shows the specification of the aspect,
advice and joinpoint. The aspect is the security cross-service concern. It

6 An advice is the behaviour of an aspect at a particular join-point (Figure 2 shows an

example). A join-point is a well defined place in the structure (execution flow) of a
program where the additional behaviour of an aspect can be attached (advised).

7 ASIL supports advice at the service statically or dynamically via advising messages
en route between services.

23

advises at the message interception level, and the advice is the WS-Security
specification.

Figure 2: Interface Definition Language (IDL) Descriptor.

A detailed discussion of implementation is beyond the scope of this
paper. However, a detailed description of the implementation specifications
will be presented at the workshop.

5. Related Work

There are currently a number of academic and industrial research efforts
trying to link AO with middleware technologies. The JBoss framework [6] is
one of the most popular Application Platform Suite (APS)8 middleware
technologies. Others include J2EE, JAsCo [7], JAC [8] and Caesar [9].
However, these systems allow only implicit association of an aspect
implementation.9 Moreover, these technologies are dependent on the vendor
and their aspects are restricted to the ones offered by that particular vendor.
Therefore, these systems are not suitable for EAI.

There are also a number of compositional approaches;10 these include
orchestration languages, such as AO4BPEL [10]. AO4BPEL is an AO
extension to BPEL4WS; it enables a more modular and dynamically adaptable
web service composition. However such languages have a number of
limitations. One of the main limitations is that it may not be possible for the
orchestration code at a particular service to be modified. This could be due to
the fact that the integration involves a legacy version of the orchestration

8 Application platform suites are middleware technologies that are dependent on the

vendor. Therefore, they only function within certain environments.
9 By this we mean that aspects of services currently depend on a particular framework

and, as a result, they have to be modified when they are reused within a different
framework. With ASIL this is not the case.

10 Service composition involves orchestration and choreography. Orchestration
languages, such as BPEL4WS, describe the internal behaviour of a service within
collaboration. Choreography languages, such as those used for the semantic web,
can describe the interactions between services using ontologies. However, they are
not mature and are not widely supported by industry.

24

language or because the service can not be taken offline. Another limitation of
orchestration languages is that they only support static composition. A
dynamic composition mechanism would be beneficial as certain services and
service interactions can only be known at run-time.

The advantage of ASIL is that it is a dynamic layer which can be placed
on top of heterogeneous platforms to facilitate integration. As a result it can be
used to integrate legacy services, which may or may not use standards such
as WSDL or BPEL4WS, whilst utilising the advantages of AO.

6. Conclusion

This paper has introduced the ASIL framework, which is an AO layered
approach for EAI. ASIL allows the decoupling of concerns, such as security,
from the core of the application within the SOA. The paper also suggests how
a dynamic, AO, XML-based, implementation-independent pointcut language is
well suited for achieving this decoupling.

7. References

1. Gregor Kiczales, J.I., John Lamping, Jean Marc Loingtie R, Cristina Videira
Lopes, Chris Maeda, Anurag Mendhekar, Aspect-Oriented Programming.
Proceedings of the European Conference Object-Oriented Programming,
1997: p. 220-243.

2. Laddad, R., AspectJ in Action. 2003: Manning Publications.
3. Robert E. Filman, T.E., Siobhan Clarke, Mehmet Aksit, Aspect-Oriented

Software Development. 2004: Addison Wesley.
4. Sayavedra, A.L.a.L., EAI Business Drivers. EAI Journal, 2003. 2: p. 27-29.
5. AspectXML open source community project, http://www.aspectxml.org/.
6. JBoss AOP 2005, http://www.jboss.org/products/aop.
7. María Agustina Cibrán, M.D.H., Davy Suvée, Wim Vanderperren, Viviane

Jonckers, JASCO for Linking Business Rules to Object-Oriented Software.
System and Software Engineering Lab Vrije Universiteit Brussel, 2003.

8. A Renaud Pawlak, L.S., A Laurence Duchien, Gerard Florin, A Fabrice
Legond-Aubry, A Laurent Martelli, JAC: An Aspect-based Distributed
Dynamic Framework. Softw. Pract. Exper., 2004. 34(12): p. 1119--1148.

9. Mira Mezini, K.O., Conquering Aspects with Caesar. Proceedings of the
International Conference on Aspect-Oriented Software Development, 2003.
Boston, USA.: p. 90 - 99.

10. Anis Charfi, M.M., Aspect-Oriented Web Service Composition with
AO4BPEL. The European Conference on Web Services, 2004. Erfurt,
Germany.

