
Model-driven Adapter Development

for Web Services Interactions

Hamid Reza Motahari Nezhad1;2

1 The School of Computer Science and Engineering,
The University Of New South Wales

Sydney, NSW 2052, Australia
hamidm@cse.unsw.edu.au

2 National ICT of Australia (NICTA)
Sydney, NSW 1430, Australia

1 Introduction

Application integration has been one of the main drivers in the software market
during the late nineties and into the new millennium. The typical approach to
integration and process automation is based on the use of adapters and message
brokers [1, 13, 5]. Adapters wrap the various applications (which are in general
heterogeneous, e.g., have di�erent interfaces, speak di�erent protocols, and sup-
port di�erent data formats) so that they can appear homogeneous and therefore
integrated more easily.

Web services have emerged as a solution to (or at least as a simpli�ca-
tion of) the integration problem [1]. The main bene�t they bring is that of
standardization, in terms of data format (XML), interface de�nition language
(WSDL), transport mechanism (SOAP) and many other interoperability aspects.
Standardization reduces heterogeneity and makes it therefore easier to develop
business logic that integrates di�erent (Web service-based) applications. While
standardization makes interoperability easier, it does not remove the need for
adapters. In fact, although the lower levels of the interaction stacks are standard-
ized, di�erent Web services may still support di�erent interfaces and protocols.
For example, although two driving direction services may support XML and
use SOAP as transport mechanism, they may still provide operations that have
di�erent names, di�erent parameters, and di�erent business protocols (that is,
di�erent constraints on the order in which they should be invoked for the clients
to achieve a certain functionality).

The need for adapters in Web services comes from two sources: one is the
heterogeneity at the higher levels of the interoperability stack (e.g., at business
protocol level), and the other is the high number and diversity of clients, each
of which can support di�erent interfaces and protocols, thereby generating the
need for providing multiple faces to the same service.

In this paper, we elaborate on the problem of developing adapters for Web
service interactions. In the following, �rst, we characterize the problem of adap-
tation by identifying and classifying di�erent kinds of adaptation needs in Web
services (Section 2). Then, we brie
y explain our preliminary contribution on



38 Hamid Reza Motahari Nezhad

adapter development for Web services (Section 3.1). Section 3.2 highlights the
open problems, plans and research directions. Finally, Section 4 discusses related
work.

2 Characterizing the Problem of Adapter Development

for Web services

Interoperability among Web services, just like interoperability in any distributed
system, requires that services use the same (or compatible) protocols, data for-
mats, and semantics. Broadly speaking, we identify the following integration
layers:

{ Messaging. Any interaction requires information to be transferred among
two or more parties. Hence, services should support messaging protocols
interoperability, regardless of the syntax and semantics of the information.
In Web services, the most common protocol at this layer is SOAP.

{ Basic Coordination. The coordination layer is concerned with require-
ments and properties related to a set of message exchanges among two or
more partners. For example, two or more services may need to coordinate
to provide atomicity based on 2-Phase commit [1]. WS-Transaction is an
example of speci�cation at this level.

{ Business-level interfaces and protocols. The above layers are concerned
with the transfer of messages among services. To interact, services must also
have compatible:
� Interfaces (i.e., the set of operations supported by services). WSDL is
the common standard for expressing interfaces.

� Business protocols (i.e., the supported message exchange sequences by
the service). These can be expressed for example using BPEL abstract
processes, WSCI, or other protocol languages (see, e.g., [4, 1]).

{ Policies and non-functional aspects. The de�nition of a service may
include policies (e.g., privacy policies) and other non-functional aspects (e.g,
QoS descriptions) that are useful for clients to understand if they can/want
interact with the service.

Standardization e�orts in Web services reduces the heterogeneities between
service speci�cations, and thereby the number of required adapters. Nonethe-
less, standardization does not address all interoperability problems and does not
remove the need for adaptation. One typical interoperability issue arises by stan-
dard evolution, so that services, which are using di�erent versions of the same
standard may not be able to interoperate. For instance, SOAP 1.2 allows the use
of HTTP GET method, while SOAP 1.1 supports only HTTP POST method.
This change is in the syntax of the speci�cation, but it a�ects the interoperation
of interacting services. Ryan et. al. [2] study this problem and employs a trans-
lator to translate the message from one format to another. The interoperation
problem at the higher integration layers, e.g., business-level interfaces and pro-
tocols is more discernible. What standardization provides at these layers is a set



Model-driven Adapter Development for Web Services Interactions 39

of languages to de�ne service speci�cations and hence leaves these speci�cations
open to syntactical, structural and semantics heterogeneities, even though they
are described using the same languages. Since interoperation at the other layers
has been the subject of other research (e.g., [2]) or standardization, we focus on
interoperability issues and adapter development at the business-level interfaces
and protocols layer.

We classify the need for adaptation in Web services in two basic categories:
adaptation for compatibility and for replaceability. The �rst category refers to
wrapping a Web service so that it can interact with another service. It is needed
when two services are functionality-wise compatible, but incompatible in inter-
face or protocol speci�cations. The second category refers to modifying a Web
service so that it becomes compliant with (i.e., can be used to replace) another
service (see [4] for detailed discussion on compatibility and replaceability).

3 Model-driven Adapter development for Web services

The intended bene�t of model-driven adapter development is to help program-
mers to develop adapters through a methodology and semi-automated code gen-
eration, starting from the protocol de�nitions. In the following, we �rst explain
our preliminary contribution in this direction and then outline the open problems
and future work.

3.1 Capturing Mismatches between Protocols as Design Patterns

Essentially, an adapter is a service which sits in between incompatible services
and compensate for their di�erences [13]. This requires performing activities
such as receiving and storing messages, transforming message data, and invok-
ing service operations. These tasks can be modeled by process-centric service
composition languages such as BPEL. We have analyzed interfaces and proto-
cols of Web services to identify the most typical di�erences and for these we have
captured the corresponding mismatches in form of mismatch patterns, which are
design patterns [3]. Each mismatch pattern includes an adapter template, which
is represented as a BPEL process skeleton to handle the mismatch, as well as a
sample usage. The template can be used both as guideline for adapter developers
and as input to a tool that automatically generates the adapter code.

We distinguish between two types of mismatches: interface-level and protocol-

level. Mismatches at the interface-level characterize heterogeneities related to
operation de�nition in WSDL interfaces. Examples at this level include oper-
ation signature mismatch and parameter constraint mismatch. The former is
concerned with identifying di�erences and providing mappings between the sig-
natures of operations (e.g., operation names, name and type of in/out messages
and and their parameters), and the latter deals with potential mismatches be-
tween the constraints on parameters in the input/outputs messages (e.g., ac-
cepted value ranges). Protocol level mismatches characterize heterogeneities re-
lated to message choreography and temporal/transaction properties. Examples



40 Hamid Reza Motahari Nezhad

include di�erences on the order in which each protocol accepts a certain mes-
sage, there is an extra (missing) messages in one protocol, or the case where
the information required in one message in one protocol is captured in several
messages in the other and so there is a need for a merge/split action.

Given the mismatch patterns, an analyst can identify the di�erences between
business protocols by instantiating the mismatch patterns as many times as re-
quired. Currently, we are developing mechanisms to compose adapter templates.
We are also implementing all research on adapter development using Java/J2EE
as plug-ins in the Eclipse platform. These include a mismatch pattern editor and
an adapter code generator, which generates BPEL code.

3.2 Towards an Extensible Framework for Model-driven Adapter
Development

We believe the e�ective use and widespread adoption of service technologies and
standards requires high-level frameworks and methodologies for supporting au-
tomated development and interoperability. The requirement of such a framework
are as the followings:

{ (Semi-)Automatic identi�cation of mismatches. Our research so far
does not address the problem of (semi-) automatically identifying di�erences
between two business protocols. This problem is extremely challenging as any
solution to it must take into account advances in multiple research disciplines
including software component matching and adaptation [14, 13], protocol
algebra for Web services [4] and schema matching [12] and semantic Web
services [15{17]. This problem could be studied at two levels:

� Interface level. The goal is to (i) (semi-)automatically identify mis-
matches between WSDL interfaces of services in terms of identi�ed mis-
match patterns, (ii) generate relevant mappings between operations and
messages in the interfaces to be the input for the adapter templates in
the mismatch pattern. It is a very challenging problem, and a variation
of it has been the subject of other research [6, 9, 7], although they do not
consider service interfaces with the constraint of protocol models.

� Protocol level. The goal is to be able to semi-automatically discover
mismatches between two protocols. We use an extended state machines
formalism to specify protocols [4]. Protocols also can be represented using
citeabstract process notion of process-centric languages such as BPEL.
The research at this level is mostly related to adapter development for
protocols in software components [13] and model-driven service develop-
ment [10]. Our preliminary investigation into semi-automatic identi�ca-
tion of mismatch shows that the problem of �nding mismatches at the
protocol level would be considerably simpli�ed by identifying the map-
pings at the interface level. So, an approach to tackle this problem is to
�rst elaborate on the problem of generating mappings at the interface
level and then extend it to the protocol level.



Model-driven Adapter Development for Web Services Interactions 41

{ A methodology to guide semi-automated adapter development.
There is a need for an extensible model-driven framework and a method-
ology to generate adapter code from given protocol models. The framework
should be extensible to allow for interpolating of variant methods for inter-
face and protocol mismatch identi�cation, when they become available.

4 The State of the Art in Adapter Development

There has been substantial e�orts and progress in in the area of Web services
most of which has been focused on service description models and languages,
standards, and on automated service discovery and composition [1]. Recently,
researchers have considered the problem of similarity and compatibility at dif-
ferent levels of abstractions of a service speci�cation (e.g., [4, 8, 6, 9, 7, 11, 16]).

In [6] and [9], techniques for assessing the similarity of WSDL interfaces of
services are proposed for service discovery but these do not consider the prob-
lem of identifying interface mappings. In [7], a framework for handling di�erences
among service interfaces is proposed, however, the assumption that Web service
interfaces are derived from a common base limits its application to real world
scenarios. This problem of identifying interface mapping is akin to that of identi-
fying correspondence and mappings in schema matching [12] with the di�erence
that in schemas there is no notion of messages and also the operation abstraction
to relate them.

In terms of protocols speci�cation and analysis, existing approaches provide
models (e.g., based on pi-calculus or state machines) and mechanisms to com-
pare speci�cations (e.g., protocols compatibility and replaceability checking) [4,
8]. Considering from the software engineering perspective, in [14], the authors fo-
cus on analyzing di�erences related to data types and to pre- and post-conditions
in component interfaces. In [5] CORBA IDL is extended based on pi-calculus
to incorporate protocol de�nition that is then used in checking for components
compatibility and replaceability. In [13] the focus is on developing adapters for
software components that have compatible functionality but incompatible inter-
faces and protocols. However, this approach assumes that interface mappings
are provided. These e�orts provide mechanisms that can be leveraged for Web
service protocols adaptation, but are not su�cient. In fact, service protocols re-
quire richer description models than component interfaces and protocols. This
is because clients and services are typically developed by separate teams, pos-
sibly even by di�erent companies, and service descriptions are all that client
developers have to understand to know how the service behaves.

Another related area is the work on semantic Web services [15{17]. The idea
here is to empower the description of Web services with semantic information
using ontologies. Two main approaches in this area are: describing services us-
ing ontology languages such as OWL-S3 [15], and annotating service descriptions
with semantics (e.g., like in WSDL-S4)[16]. The main idea of the latter approach

3 http://www.w3.org/Submission/OWL-S/
4 http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html



42 Hamid Reza Motahari Nezhad

is to use the same set of WS-* family of standards as opposed to proposing new
standards for Web service descriptions in OWL-S, and relax the choice of on-
tologies to some other alternatives in addition to OWL. The use of semantics
information in form of shared ontologies diminishes the semantic heterogeneities
of service interfaces and protocols, thus simpli�es service adaptation [16, 17].
However, the issues related to de�ning reference ontologies to be shared, on-
tology compatibility checking, merging and customization has a�ected the wide
acceptance of these approaches.

In a nutshell, in this work we aim at transforming the development of adapters
for web services from a tedious and error prone work to a process that is model-
driven and, to a large extent, automated. To the best of our knowledge, there is
no existing work that considers this problem for Web services.

References

1. Alonso, G., Casati, F. , Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures, and Applications. Springer, (2004)

2. Ryan N. D., Wolf, A. L.: Using Event-Based Translation to Support Dynamic Pro-
tocol Evolution. ICSE'04. Edinburgh, Scotland, United Kingdom (2004)

3. Benatallah, B., Casati, F., Grigori, D., M. Nezhad, H.R., Toumani, F.: Developing
Adapters for Web services Integration. CAiSE, Porto, Portugal (2005)

4. Benatallah, B., Casati, F., Toumani, F.: Representing, Analysing and Managing
Web Service Protocols. Data and Knowledge Engineering. Elsevier Science (2005)

5. Canal, C., Fuentes, L., Pimentel, E., Troya, J., Vallecillo, A: Adding Roles to
CORBA Objects. IEEE TSE, 29(3), (2003)

6. Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., Zhang, J: Similarity Search for
Web Services. VLDB Conference. Toronto, Canada, (2004)

7. Ponnekanti, S. R., Fox, A.: Interoperability among Independently Evolving Web
Services. Middleware. Toronto, Canada (2004)

8. Bordeaux et al: When are two Web Services Compatible? VLDB TES, (2004)
9. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery,

WISE, Roma, Italy, December (2003)
10. Baina, K., Benatallah B., Casati, F., and Toumani, F.: Model-Driven Web Service

Development. CAiSE, Riga, Latvia, June (2004)
11. Wombacher, A., Mahleko, B., Fankhauser, P., Neuhold, E.: Matchmaking for Busi-

ness Processes based on Choreographies. EEE. Taipei, Taiwan (2004)
12. Rahm, E., Bernstein, Ph. A.: A Survey of Approaches to Automatic Schema Match-

ing. VLDB J. 10(4), (2001) 334-350.
13. Yellin, D. M., Strom, R. E.: Protocol Speci�cation and Component Adaptors. ACM

TOPLAS, 19(2), (1997)
14. Zaremski, A. M., Wing, J. M.: Speci�cation Matching of Software Components.

ACM TOSEM, 6 (4) , October (1997)
15. Martin, D., et. al.: Bringing Semantics to Web Services: The OWL-S Approach.

SWSWPC, San Diego, USA (2004)
16. Patil, A.A., Oundhakar, S.A., Sheth A.P., Verma, K.: Meteor-s Web Service An-

notation Framework. WWW '04, New York, USA (2004)
17. Williams, S.K.; Battle, S.A.; Cuadrado, J.E.: Protocol Mediation for Adaptation in

Semantic Web Services. Hewlett-Packard Technical Report (HPL-78). May (2005)


