
DBpedia Entity Type Inference Using Categories

Lu Fang, Qingliang Miao, Yao Meng

Fujitsu R&D Center Co., Ltd. Beijing 100025, China.

{fanglu, qingliang.miao, mengyao}@cn.fujitsu.com

Abstract. In this paper, we investigate how to identify entity type based on entity

category information. In particular, we first calculate the statistical distribution

of each category over all the types. And then we generate type candidates accord-

ing to distribution probability. Finally we identify the correct type according to

distribution probability, keywords in category and abstract. To evaluate the ef-

fectiveness of the approach, we conduct preliminary experiments on a real-world

dataset from DBpedia. Experimental results indicate that our approach is effec-

tive in identifying entity types.

Keywords: DBpedia, Type Inference, Category

1 Introduction

DBpedia is a large-scale, multilingual knowledge base extracted from Wikipedia. In DBpedia,

some entities have type information, e.g. “?s rdf:type dbo:Organisation1”, but most of them are

without type information. For example, only 21.9% entities in the Japanese DBpedia2 have type

information. Type information is very important in knowledge bases. Knowing what type a cer-

tain instance is, e.g., a person, organisation, place, etc., is key for some applications such as

question answering, entity search, entity linking, etc. The main approaches for entity type infer-

ence are: content-based and linked-based methods. Gangemi A. et al. [1] use a natural language

deep parser to produce definition sentences from Wikipedia pages, and then select types and type-

relation from the RDF graph based on graph patterns. Similarly with [1], Kliegr T. and Kliegr O.

[2] discover types from the first sentence of Wikipedia articles using Hearst pattern matching

over part-of-speech annotated text. Paulheim H. and Bizer C. [3] utilize statistical distribution

of types in the subject and object position of the property for entity’s type prediction. Fossati M.

et al. [4] convert the chaotic Wikipedia category system into an extensive general-purpose tax-

onomy through four-step processing pipeline.

Inspired by [3,4], we propose an approach to infer entity type according to entity’s category

information instead of using all the properties. Categories are chosen because they are predictive

for entity type. For example, given a statement “?s dcterms:subject 3 dbr-category:Peo-

ple_from_Tokyo4”, we may infer that ?s is a person. Moreover, more than 54% entities of un-

typed entities have category information.

1 dbo: standing for http://dbpedia.org/ontology
2 All DBpedia examples in this paper use version 2015-04.
3 http://purl.org/dc/terms/subject
4 http://dbpedia.org/resource/Category:People_from_Tokyo

mailto:mengyao%7d@cn.fujitsu.com
http://purl.org/dc/terms/subject

2 Approach

In DBpedia, a resource may have category information via the “dcterms:subject” property. We

assume that an entity should belong to certain type if it has a certain category value. However,

not all the type can be inferred from category literally. For example, given entity with cate-

gory “Place_of_birth_missing”, people may think its type is “dbo:Place”. However, 95.6% of

5416 entities with category “Place_of_birth_missing” have a type “dbo:Person”. Consequently,

besides the textual content in category, we have to use the statistical distribution of category to

identify entity types. Next we will introduce how to calculate the distribution probability.

2.1 Distribution Probability Calculation

For each category in DBpedia, there is a statistical distribution of entities with different types.

For a given entity e with a certain category c, make use of the following statistic to measure how

likely is it that entity e has a type t: P(t|c), that is, the conditional probability of finding an entity

of type t having c as category. Equation 1 formally defines the probability:

P(t|c) =
|{(𝑠, 𝑝, 𝑐) ∈ 𝐷𝐾𝐵 ⋀ (𝑠, 𝑎, 𝑡) ∈ 𝐷𝐾𝐵}|

|{(𝑠, 𝑝, 𝑐) ∈ 𝐷𝐾𝐵 ⋀ (𝑠, 𝑎, 𝑜) ∈ 𝐷𝐾𝐵}|
 (1)

It is the ratio between the number of times the category is used when the entity have a type t

with its total number of uses except the subjects without a type. DKB means the DBpedia

knowledge base composed of existing triples (s, p, o), (s, a, t) denotes that s is an entity of type

t, (s, a, o) denotes that s has a type, and p = dcterms:subject .

2.2 Candidate Generation and Selection

In order to determine which entities have type t, we first use distribution probability of cate-

gories to generate some candidates, assume that C is the set of all the categories of a certain entity

e, C = {c1, c2,…, cn}. For each ci∈C, calculate P(t|ci), if one of the probabilities is larger than a

certain threshold, add (e, a, t) as a candidate. To get more candidates, set the threshold as low as

possible.

Next, candidates are selected or removed through the candidate selection process, which con-

sists of a series of steps:

Probability Selection Here, we also use the probability P(t|c), as one can imagine, P(t|c) is close

to 1 indicates that overwhelming majority of entities with category c have a type t. So for candi-

date (e, a, t), one of the categories of e has a probability P(t|c) larger than a certain threshold,

select this candidate, otherwise move to the next step. This threshold is close to 1 and set based

on experience.

Entity Name Selection We found that some entities obviously do not belong to the type accord-

ing to their names. We can filter out some candidates by some simple rules. These rules are

simply made that the entity names contain some special words, such as the word list for English,

一覧 for Japanese. Remove the candidates that match the rules. And then, we also use a simple

string matching algorithm, which requires the category name contains the type name or its plural

form in the type name list, such as people for person, companies for company. The subclass

names are also in the name list. For example, if the category name contains the word people, we

can keep the candidate (e, a, person). Likewise, if the category name contains artist, because

artist is the subclass of person, keep the candidate (e, a, person) as well. For Japanese category

names, translate them into English names before string matching because the type names are

defined with English in DBpedia ontology. Some of the Japanese categories have the correspond-

ing English categories linked by the property owl:sameAs, and translate the category names

which do not have the corresponding English categories by machine translation tool. Remove all

the candidates which are not kept in this step. Then move to the next step.

Abstract Selection We can easily get abstracts of entities from DBpedia using property dbo:ab-

stract. The first sentence of the abstract is usually the definition of the entity, and definition

usually indicates type. We do not need a complex algorithm to extract type from the sentence,

just check if the first sentence contains the type name or sub-type name in a candidate, if the

answer is true, select this candidate, or go to the next step.

Category List Selection At last, for a candidate (e, a, t), assume C is the set of all the categories

of e, C = {c1, c2, …, cn}, and list L is the set for categories of all the entities with a type t, check

the ratio between the number of ci in list L with the number of C set. For example, there are four

categories of entity e, and two of them are in the list L, so the ratio is 0.5. If the ratio is larger

than 0.7, candidate (e, a, t) is selected, or it is removed.

3 Evaluation

In order to evaluate the effectiveness of the proposed approach, we conduct our experiments by

using test data5 from Japanese DBpedia. The data is randomly selected from Japanese DBpedia,

and it includes three classes Person, Organization and Place. Each class contains 500 entities.

Our gold-standard dataset is created from human annotations. In particular, three annotators with

a background in information systems are recruited to annotate the test data. To construct the final

gold standard, we adopted the following procedure. For entities that have received the same type

from all three annotators, we assigned this agreed-upon type. For a small number of entities that

have received differing assessment from these three annotators, we had all three annotators go

through these entities and discuss their assessment with each other in a face-to-face meeting. We

then used their consensual assessment as the final type. We use all the typed entity in DBpedia

to calculate the category distribution probability over types. We use method in [3] as baseline

and precision, recall and F-Measure are used to evaluate the results.

Table 1 shows the experiment results of entity type identification. From table 1, we can see

our approach and baseline obtain relative high in precision. However, baseline method performs

less effective in recall. Through careful analysis, we find low recall are caused by property spar-

sity. Only 11% un-typed entities have particular properties beside general purpose properties.

While our method could capture more useful information from category information.

Table 1. Results for typing un-typed entities

Dataset Method Precision Recall F1-measure

Person Ours 0.962 0.962 0.962

Baseline 0.812 0.806 0.809

Organization Ours 0.948 0.996 0.971

Baseline 0.942 0.552 0.696

Place Ours 0.930 0.998 0.963

Baseline 0.945 0.516 0.668

5 The test data is available at http://36.110.45.46:8090/API/test_data.txt

To evaluate the effect of threshold in the probability selection step, we conduct experiment with

different threshold. Table 2 shows the experiments. From table 2, we can see precision increases

with the threshold increases, while recall drops a little.

Table 2. Results for different threshold

Dataset Threshold Precision Recall F1-measure

Person 0.90 0.962 0.962 0.962

0.95 0.963 0.962 0.962

0.98 0.965 0.962 0.963

Organization 0.90 0.948 0.996 0.971

0.95 0.957 0.996 0.976

0.98 0.959 0.996 0.977

Place 0.90 0.930 0.998 0.963

0.95 0.938 0.996 0.966

0.98 0.945 0.966 0.955

4 Conclusions

In this paper, we study how to infer entity type based on entity category information from DBpe-

dia. Preliminary experiment results indicate the method is promising. The main difference be-

tween existing methods is that our approach focuses on category which contains rich type infor-

mation. Moreover, since our method only process the category information, it is more efficient

for large scale dataset such as DBpedia. Our method is language independent and we have iden-

tified type for 234 thousand and 471 thousand entities in Japanese and English DBpedia respec-

tively. In the future work, we can also identify other entity types and fine-grained entity types

using this method, namely, all the class and subclass in DBpedia ontology. For example, class

“Person” and its sub class “Artist”, “Actor” and many more. And we are going to identify entity

type for entities without category information. Finding more predictive properties for entity type

identification is another direction. We also plan to use machine learning method to solve this

issue.

5 References

1. Gangemi, A., Nuzzolese A. G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Au-

tomatic typing of DBpedia entities. In: Proceedings of the International Semantic Web Con-

ference (ISWC 2012), 65-81(2012).

2. Kliegr, T., Zamaza, O.: Towards linked hypernyms dataset 2.0: Complementing DBpedia

with hypernym discovery and statistical type inference. In: Proceedings of the Conference

on Language Resources and Evaluation, 3517-3523(2014).

3. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Proceedings of the Interna-

tional Semantic Web Conference (ISWC 2013), 510-525(2013).

4. Fossati, M., Kontokostas, D., Lehmann, J.: Unsupervised learning of an extensive and usable

taxonomy for DBpedia. In: The International Conference, 177-184(2015).

