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Abstract. In this paper, we investigate how to identify entity type based on entity 

category information. In particular, we first calculate the statistical distribution 

of each category over all the types. And then we generate type candidates accord-

ing to distribution probability. Finally we identify the correct type according to 

distribution probability, keywords in category and abstract. To evaluate the ef-

fectiveness of the approach, we conduct preliminary experiments on a real-world 

dataset from DBpedia. Experimental results indicate that our approach is effec-

tive in identifying entity types. 
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1 Introduction 

DBpedia is a large-scale, multilingual knowledge base extracted from Wikipedia. In DBpedia, 

some entities have type information, e.g. “?s rdf:type dbo:Organisation1”, but most of them are 

without type information. For example, only 21.9% entities in the Japanese DBpedia2 have type 

information. Type information is very important in knowledge bases. Knowing what type a cer-

tain instance is, e.g., a person, organisation, place, etc., is key for some applications such as 

question answering, entity search, entity linking, etc. The main approaches for entity type infer-

ence are: content-based and linked-based methods. Gangemi A. et al. [1] use a natural language 

deep parser to produce definition sentences from Wikipedia pages, and then select types and type-

relation from the RDF graph based on graph patterns. Similarly with [1], Kliegr T. and Kliegr O. 

[2] discover types from the first sentence of Wikipedia articles using Hearst pattern matching 

over part-of-speech annotated text.  Paulheim H. and Bizer C. [3] utilize statistical distribution 

of types in the subject and object position of the property for entity’s type prediction. Fossati M. 

et al. [4] convert the chaotic Wikipedia category system into an extensive general-purpose tax-

onomy through four-step processing pipeline.  

Inspired by [3,4], we propose an approach to infer entity type according to entity’s category 

information instead of using all the properties. Categories are chosen because they are predictive 

for entity type. For example, given a statement “?s dcterms:subject 3  dbr-category:Peo-

ple_from_Tokyo4”, we may infer that ?s is a person. Moreover, more than 54% entities of un-

typed entities have category information.  

                                                                 

1  dbo: standing for http://dbpedia.org/ontology 
2  All DBpedia examples in this paper use version 2015-04. 
3  http://purl.org/dc/terms/subject 
4  http://dbpedia.org/resource/Category:People_from_Tokyo 
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2 Approach 

In DBpedia, a resource may have category information via the “dcterms:subject” property. We 

assume that an entity should belong to certain type if it has a certain category value. However, 

not all the type can be inferred from category literally. For example, given entity with cate-

gory “Place_of_birth_missing”, people may think its type is “dbo:Place”. However, 95.6% of 

5416 entities with category “Place_of_birth_missing” have a type “dbo:Person”. Consequently, 

besides the textual content in category, we have to use the statistical distribution of category to 

identify entity types. Next we will introduce how to calculate the distribution probability. 

2.1 Distribution Probability Calculation  

For each category in DBpedia, there is a statistical distribution of entities with different types. 

For a given entity e with a certain category c, make use of the following statistic to measure how 

likely is it that entity e has a type t: P(t|c), that is, the conditional probability of finding an entity 

of type t having c as category. Equation 1 formally defines the probability: 

P(t|c) =
|{(𝑠, 𝑝, 𝑐) ∈ 𝐷𝐾𝐵 ⋀ (𝑠, 𝑎, 𝑡) ∈ 𝐷𝐾𝐵}|

|{(𝑠, 𝑝, 𝑐) ∈ 𝐷𝐾𝐵 ⋀ (𝑠, 𝑎, 𝑜) ∈ 𝐷𝐾𝐵}|
      (1) 

It is the ratio between the number of times the category is used when the entity have a type t 

with its total number of uses except the subjects without a type. DKB means the DBpedia 

knowledge base composed of existing triples (s, p, o), (s, a, t) denotes that s is an entity of type 

t, (s, a, o) denotes that s has a type, and p = dcterms:subject .  

2.2 Candidate Generation and Selection 

In order to determine which entities have type t, we first use distribution probability of cate-

gories to generate some candidates, assume that C is the set of all the categories of a certain entity 

e, C = {c1, c2,…, cn}. For each ci∈C, calculate P(t|ci), if one of the probabilities is larger than a 

certain threshold, add (e, a, t) as a candidate. To get more candidates, set the threshold as low as 

possible.  

Next, candidates are selected or removed through the candidate selection process, which con-

sists of a series of steps: 

Probability Selection Here, we also use the probability P(t|c), as one can imagine,  P(t|c) is close 

to 1 indicates that overwhelming majority of entities with category c  have a type t. So for candi-

date (e, a, t), one of the categories of e has a probability P(t|c) larger than a certain threshold, 

select this candidate, otherwise move to the next step. This threshold is close to 1 and set based 

on experience. 

Entity Name Selection We found that some entities obviously do not belong to the type accord-

ing to their names. We can filter out some candidates by some simple rules. These rules are 

simply made that the entity names contain some special words, such as the word list for English, 

一覧 for Japanese. Remove the candidates that match the rules. And then, we also use a simple 

string matching algorithm, which requires the category name contains the type name or its plural 

form in the type name list, such as people for person, companies for company. The subclass 

names are also in the name list. For example, if the category name contains the word people, we 

can keep the candidate (e, a, person). Likewise, if the category name contains artist, because 

artist is the subclass of person, keep the candidate (e, a, person) as well. For Japanese category 

names, translate them into English names before string matching because the type names are 



defined with English in DBpedia ontology. Some of the Japanese categories have the correspond-

ing English categories linked by the property owl:sameAs, and translate the category names 

which do not have the corresponding English categories by machine translation tool. Remove all 

the candidates which are not kept in this step. Then move to the next step. 

Abstract Selection We can easily get abstracts of entities from DBpedia using property dbo:ab-

stract. The first sentence of the abstract is usually the definition of the entity, and definition 

usually indicates type. We do not need a complex algorithm to extract type from the sentence, 

just check if the first sentence contains the type name or sub-type name in a candidate, if the 

answer is true, select this candidate, or go to the next step.  

Category List Selection At last, for a candidate (e, a, t), assume C is the set of all the categories 

of e, C = {c1, c2, …, cn}, and list L is the set for categories of all the entities with a type t, check 

the ratio between the number of ci in list L with the number of C set. For example, there are four 

categories of entity e, and two of them are in the list L, so the ratio is 0.5. If the ratio is larger 

than 0.7, candidate (e, a, t) is selected, or it is removed.  

3 Evaluation 

In order to evaluate the effectiveness of the proposed approach, we conduct our experiments by 

using test data5 from Japanese DBpedia. The data is randomly selected from Japanese DBpedia, 

and it includes three classes Person, Organization and Place. Each class contains 500 entities. 

Our gold-standard dataset is created from human annotations. In particular, three annotators with 

a background in information systems are recruited to annotate the test data. To construct the final 

gold standard, we adopted the following procedure. For entities that have received the same type 

from all three annotators, we assigned this agreed-upon type. For a small number of entities that 

have received differing assessment from these three annotators, we had all three annotators go 

through these entities and discuss their assessment with each other in a face-to-face meeting. We 

then used their consensual assessment as the final type. We use all the typed entity in DBpedia 

to calculate the category distribution probability over types. We use method in [3] as baseline 

and precision, recall and F-Measure are used to evaluate the results. 

Table 1 shows the experiment results of entity type identification. From table 1, we can see 

our approach and baseline obtain relative high in precision. However, baseline method performs 

less effective in recall. Through careful analysis, we find low recall are caused by property spar-

sity. Only 11% un-typed entities have particular properties beside general purpose properties. 

While our method could capture more useful information from category information.  

Table 1. Results for typing un-typed entities 

Dataset Method Precision Recall F1-measure 

Person Ours 0.962 0.962 0.962 

Baseline 0.812 0.806 0.809 

Organization Ours 0.948 0.996 0.971 

Baseline 0.942 0.552 0.696 

Place Ours 0.930 0.998 0.963 

Baseline 0.945 0.516 0.668 

                                                                 

5  The test data is available at http://36.110.45.46:8090/API/test_data.txt 



To evaluate the effect of threshold in the probability selection step, we conduct experiment with 

different threshold. Table 2 shows the experiments. From table 2, we can see precision increases 

with the threshold increases, while recall drops a little.  

Table 2. Results for different threshold 

Dataset Threshold Precision Recall F1-measure 

Person 0.90 0.962 0.962 0.962 

0.95 0.963 0.962 0.962 

0.98 0.965 0.962 0.963 

Organization 0.90 0.948 0.996 0.971 

0.95 0.957 0.996 0.976 

0.98 0.959 0.996 0.977 

Place 0.90 0.930 0.998 0.963 

0.95 0.938 0.996 0.966 

0.98 0.945 0.966 0.955 

4 Conclusions 

In this paper, we study how to infer entity type based on entity category information from DBpe-

dia. Preliminary experiment results indicate the method is promising. The main difference be-

tween existing methods is that our approach focuses on category which contains rich type infor-

mation. Moreover, since our method only process the category information, it is more efficient 

for large scale dataset such as DBpedia. Our method is language independent and we have iden-

tified type for 234 thousand and 471 thousand entities in Japanese and English DBpedia respec-

tively. In the future work, we can also identify other entity types and fine-grained entity types 

using this method, namely, all the class and subclass in DBpedia ontology. For example, class 

“Person” and its sub class “Artist”, “Actor” and many more. And we are going to identify entity 

type for entities without category information. Finding more predictive properties for entity type 

identification is another direction. We also plan to use machine learning method to solve this 

issue.  
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