PRONA: A Plugin for Well-Designed
Approximate Queries in Jena

Zhenyu Song!3, Xiaowang Zhang!®*, and Zhiyong Feng?-3

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
2 School of Computer Software, Tianjin University, Tianjin, China
3 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China
* Corresponding author: xiaowangzhang@tju.edu.cn

Abstract. The time of answering a SPARQL query with its all exac-
t solutions in large scale RDF dataset possibly exceeds users’ tolerable
waiting time, especially when it contains the OPT operations. It be-
comes essential to make a trade-off between the query response time
and solution accuracy. We propose PRONA - an plugin for well-designed
approximate queries in Jena, which provides help for users to answer
well-designed SPARQL queries by approximate computation. The main
features of PRONA comprise SPARQL query engine with approximate
queries, as well as various approximate degrees for users to choose.

1 Introduction

Resource Description Framework (RDF) is the standard data model in the Se-
mantic Web. SPARQL recommended by W3C has become the standard language
for querying RDF data since 2008.

OPT operation takes an core role in UNION-free well-designed patterns. For
simplification, we directly call well-designed patterns instead of UNION-free well-
designed patterns. OPT operation aims to extend solutions for users[3]. It may
take more time to obtain all exact solutions than only “non-optional” solutions.
Removing some “optional” parts of well-designed queries is a natural idea to
obtain approximate queries, which contributes to less query response time. For
instance, consider a pattern @ as follows:

Q = ((?x, rdf:type, artist) OPT ((?x, country, 7y) OPT (?z, company, ?z))).

Based on this natural idea, there are two approximate patterns with less
OPT operators as follows:

— Q1 = (Pz, rdf:type, artist);
— Q2 = ((?z, rdf:type, artist) OPT (?z, country, 7y)).

However, consider Q3 = ((?x, rdf:type, artist) OPT (?axcompany, ?z)), it is not
approximate query since (?x, company, ?z) directly depends on (?x, country, 7y).
The notion of approximation has been proposed in [I]. However, it did not pro-
vide a fine-grained approximation method. Jenal2] is a free and open source Java
framework for building semantic web and linked data applications. But it does
not provide approximate queries for users to answer well-designed queries.

In this paper, we focus on well-designed SPARQL queries, whose “optional”
parts are really optional. Moreover, it is maximal among all fragments of LSQ
[4]. Compared to our previous work [5], furthermore, we develop a plugin for
Jena to answer well-designed SPARQL queries with approximate queries, which
combines our approximate method and query process in Jena.

2 Preliminaries

OPT Normal Form A UNION-free pattern P is in OPT normal form [3] if P
meets one of the following two conditions:

— P is constructed by using only the AND and FILTER operators;

— P = (P, OPT P,) where P; and P patterns are in OPT normal form.
For instance, the pattern @ stated in Section (1] is in OPT normal form.
Three rewriting rules[3] can be applied to transform non OPT normal form

into OPT normal form: let P,Q, R be patterns and C' a constraint,

— (POPT R) FILTER C = (P FILTER C) OPT R;

— (POPTR)AND @ = (P AND Q) OPT R;

— PAND (QOPTR) = (P AND Q) OPT R.

Well-Designed Patterns A UNION-free pattern P is well-designed if the
followings hold:

— P is safe, that is, each subpattern of the form ¢ FILTER C of P holds the
condition: var(C) C var(Q).

— for every subpattern P’ = (P, OPT P,) of P and for every variable 7z
occurring in P, the following condition hold: If 7z occurs both inside P, and
outside P’, then it also occurs in P;.

For instance, the pattern @ in Section [1]is a well-designed pattern.
Note that the OPT operation provides really optional left-outer join due to
the weak monotonicity [3].

3 Approximate Queries

OPT-depth in OPT Normal Form To characterize the different levels of
optional patterns, we define OPT-depth of patterns in OPT normal form.

Definition 1 (OPT-depth). Let P be a pattern in OPT normal form. We use
dep(P) to denote its OPT-depth as follows:

— dep(P) =0 if P is an AF-pattern;

— dep(P) = max{dep(P1),...,dep(Pyn)} +1 if O(P) ={Pi,..., Py}

For instance, the OPT-depth of the pattern () stated in Section [1]is 2.
Approximate Queries Intuitively, approximate patterns are subpatterns
obtained by reducing their OPT-depths.

Definition 2 (k-approximation). Let P be a pattern in OPT normal form
(P OPT P, OPT...OPT P,,) and k be a natural number. The k-approximate
pattern of P (written as P*)) can be obtained in the following inductive way:

— P®) = BGP(P) if k = 0;
— P® = pyoPT P OPT...OPTPY¥ ™V if1 <k < dep(P) —1;
— P®) = P ifk > dep(P).

P®) is more closed to P with higher value of k. For instance, in Section

QY =@ and QW = Q..

4 PRONA Plugin

PRONA Overview PRONA is written in Java in a 3-tier design shown in Fig-
ure The bottom layer consists of the Jena framework and the ARQﬂ query
engine, both used as a black box for evaluating queries. Before answering SPAR-
QL queries, the second layer provides the rewriting process and approximation
evaluation, which lead to the generation of approximate queries.

GUI is shown in Figure For single query solution s, we denote its amount
of domain as dom(s). For instance, consider solution pu = {72 — a,?y — b},
dom(u)=2. Given an approximate query solution S, which contains solution sy,
S2, +*+, Sp. It is notable that the total of domain (dom(s;) + dom(se) + --- +
dom(sy,)) reflects solution precision.

© Approximate Evaluation

Query [atasicapproximatefcomplete| [select

‘ Gu ‘ Approximate Value k:

DataSet [iromefiksepuemUBML.At | [select

PRONA

Solution Path [fhomefikse/ | [select

Core functionalities

Query Approximate Query
PREFIX rdfi<http:/www.w3. PREFIX rdf:<http:/fwww.w3
0rg/1999/02f22-rdff-syntax- org/1999/02/22-rdf-syntax-
NS> PREFIX Ub:<http:/tjlu s PREFIX ub: <http:/tju
.edu.cn#> SELECT * WHER .edu.cn#> SELECT *WHER

Jena framework E { {{{{{7Xrdfitype ub:Fu E {{{{{{?X rdfitype ub:Full
lIProfessor} OPTIONAL {7X Professor.?X ubimastersDe
ub:worksFor <httpi/fwww.D greefrom ?xL} FILTER (71!

epartmento.University.ad ="<http: . Universityo.

P ARQ U>}1{7X ubimastersDegre edu=")} OPTIONAL {7X ub;
RDF repository eFrom 7x1} FILTER (?x11=" worksFor <http:ffwww.Dep
Jena
Time: [4958 ms | Solution Precision:[1171250
Query by jena

(a) PRONA architecture (b) PRONA GUI

‘ OPT normal form rewriter | | Approximation evaluation

Fig. 1. PRONA Overview

Experiments The purpose of our experiments is to evaluate (1) the perfor-
mance improvement of approximate well-designed SPARQL queries, and (2) the
solution precision percentage after approximate queries.

In our experiments, LUBME is used as dataset. Two 4-approximation well-
designed SPARQL queries are designed. @)1 contains 4 OPT operators, 6 triple
patterns and 6 variables. Q2 contains 14 OPT operators, 17 triple patterns and
16 variables. Approximate solution precision dividing original query solution
precision leads to the solution precision percentage.

It has shown in Figure [2| and Figure [3| that both query response time and
solution precision reduce with the increment of approximate degree (k value

* http://jena.sourceforge.net/ARQ
® http://swat.cse.lehigh.edu/projects/lubm

decreases). Solution precision percentage decreases about 10% with 25% query
response time decreasing when k changes from 4 to 3 in Figure [3]

1 k k=0 | k=1 | k=2 | k=3 |k=4
// LUBM1 |11.02|16.53|22.05|82.23| 100

— L LUBMS5 |11.05]16.58|22.10(83.13| 100
oot LUBM10{11.13|16.70{22.26|83.11| 100

(a) Performance (b) Solution Precision Percentage(%)

200

100

10°

== LuBML
—o— LUBM35
s —e— LUBM10

Fig. 2. Q1 over PRONA

k |k=0[k=1] k=2 | k=3 k=4
LUBMLI |0.01[5.19(68.74]93.75| 100
LUBMS5 [0.01[5.25(68.70(93.59] 100
R R LUBM10(0.01]5.27|68.7593.68| 100

k

(a) Performance (b) Solution Precision Percentage(%)

Fig. 3. Q2 over PRONA

5 Conclusion

In this paper, we propose PRONA which helps users answer well-designed SPAR-
QL queries by approximate computation. In the future, we are going to handle
other non-well-designed patterns and deal with more operations such as UNION.

Acknowledgement. This work is supported by the program of the Nation-
al Key Research and Development Program of China (2016YFB1000603) and
the National Natural Science Foundation of China (NSFC) (61502336).

References

1. P. Barcelo, R. Pichler, and S. Skritek. Efficient evaluation and approximation of
well-designed pattern trees. In Proc. of PODS 2015, pages 131-144, 2015.

2. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: implementing the semantic web recommendations. In Proc. of WWW 2004,
pages 74-83, 2004.

3. J. Prez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34(3):30-43, 2009.

4. M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C. N. Ngomo. LSQ: The
linked SPARQL queries dataset. In Proc. of ISWC 2015, pages 261-269, 2015.

5. Z. Song, X. Zhang, Z. Feng, X. Wang, and G. Rao. LSQ: The linked SPARQL
queries dataset. In Proc. of SemiBDMA 2016, to appear, 2016.

	PRONA: A Plugin for Well-Designed Approximate Queries in Jena
	Introduction
	Preliminaries
	Approximate Queries
	PRONA Plugin
	Conclusion

