
Towards Building Open Knowledge Base From
Programming Question-Answering Communities

Wei Emma Zhang1, Ermyas Abebe2, Quan Z. Sheng1, and Kerry Taylor3

1 School of Computer Science, The University of Adelaide, Australia
2 IBM Research Australia, Australia

3 Research School of Computer Science, Australian National University, Australia

Abstract. In this paper, we propose the first system, so-called Open
Programming Knowledge Extraction (OPKE), to automatically extract
knowledge from programming Question-Answering (QA) communities.
OPKE is the first step of building a programming-centric knowledge base.
Data mining and Natural Language Processing techniques are leveraged
to identify duplicate questions and construct structured information.
Preliminary evaluation shows the effectiveness of OPKE.

1 Introduction

Recent research on Open Information Extraction (Open IE) aims to automati-
cally extract machine-understandable structured information from unstructured
natural language texts [6, 4]. Existing works extract knowledge from web corpus
holding text from, for example, news and articles. No effort has been made on ex-
tracting knowledge from programming Question-Answering (QA) communities,
e.g. Stack Overflow (SO)1. SO is a code-centric QA community that provides
working code solutions to natural language queries. It serves as a knowledge
resource for software developers. In this paper, we provide the first work that
extracts questions and answers from SO and outputs structured triples. Our
method is called Open Programming Knowledge Extraction (OPKE). It is the
initial step of building a programming-centric knowledge base.

OPKE extracts questions and answers for a post and form a triple formatted
as 〈“question”; “answer”; “tag1”,“tag2”,...〉. The tags can be easily obtained and
the answers can be obtained by choosing the accepted answers marked by the
questioner. But it is challenging to extract information from questions. The key
challenge is that questions with similar meanings/purpose exist. This is because
questioner fail to search out answers from previous questions, so they post a
new one. In Stack Overflow, such questions are marked as “Duplicate”. However
this marking is manually performed which could not identify all the duplicate
questions and not all communities provide duplicate identification. Recent works
(e.g.,[1]) perform binary classification on post pairs by considering the features
of these pairs. However, these works consider every two posts as a pair, which

1 http://stackoverflow.com/



2 Wei Emma Zhang et al.

lead to high computation cost. Instead, we propose to use features of posts them-
selves to identify the duplicates. Specifically, we transform every post title to a
numerical vector and perform clustering on a set of vectors. Then we consider
the posts that are closest to a master post (i.e., the original post) as the dupli-
cate posts. After identifying and removing duplicate posts, we extract the key
information from master posts and rewrite them to the “question” component
of knowledge triples. This can be done by using NLP techniques. Finally, triples
are constructed by given question and answer, as well as the tags.

2 Building Programming Knowledge Base

The input of OPKE is the post contents of programming QA communities and
the output is a set of triples. Figure 1 illustrates the extraction process which
contains three main steps: Preprocessing, Question-answer Extraction and Triple
Generation described as following.

Preprocessing

• Extract web page 
contents

• Prune invalid posts

• Obtain language 
specific tag

Question-Answer 
Extraction

• Identify 
paraphrased 
questions

• Select answer

Triple 
Generation

• Form triples 
with questions 
and answers

<Q1; A1; “java”,”casting”,..>

<Q2; A2; “java”,’’string”,..>

<Q3; A3; “java”,..>
…

Fig. 1. Knowledge Extraction Process from Programming Community

2.1 Preprocessing

In the preprocessing step, OPKE parses the post content of the target program-
ming community and extracts all the questions and answers. Invalid posts which
have no accepted answers are pruned. For SO, post contents can be retrieved
through Stack Exchange API2. The accepted answer and tags can be obtained
by considering two parameters ‘AcceptedAnswerId ’ and ‘Tags’ respectively.

2.2 Question-Answer Extraction

OPKE extracts the titles of the posts as the questions. It first identifies duplicate
posts, then extract question information using Part Of Speech (POS) tagging
and dependency parsing. The details are as follows:

– Identify duplicate questions. OPKE firstly transforms all questions to vectors
leveraging word embeddings [2]. Then it performs clustering based on these
vectors. We use the batch solution of K-means for processing large scale post
data [5]. Then for each cluster, a K-D tree is built. We mark the K nearest
neighbors of every master post as duplicate. Duplicate questions are pruned.

2 https://api.stackexchange.com/



Building Programming Community Knowledge Base 3

– Parse master questions. We parse the master questions and rewrite it to
capture the meaning of the questions. Our method is inspired by Open IE
work [6], where dependency parsing has been applied to detect query mean-
ing. We discuss OPKE parsing process using an example question “Java -
How do I convert from int to String?”: i) remove language specific words if
exist (e.g. Java), ii) parse dependencies of questions (using method in [3],
see Figure 2(a)), iii) identify subject (I ), if subject is first person pronoun,
then parse object part under the root in following steps (see the circled
part in Figure 2(a)), iv) identify root action (covert), v) identify relation-
ship (〈convert; fromint, tostring〉) and vi) rewrite question (“convert int to
string”). For more details, please refer to [6].

convert

How

do I

from

int

to

string
p
o
b
j

p
o
b
j

(a) Dependency Parse Tree

<“convert int to string”; 
“Normal ways would be Integer.toString(i) or String.valueOf(i)…….”;
“java”>

Final Triple for “Java - How do I convert int to string”:

(b) Generated Tuple

Fig. 2. Parse Questions and Generate Triples

OPKE simply uses the accepted answer as the final answer for a post. Al-
though it might not be the best solution with highest votes, we believe that the
questioner has the judgment on the solutions.

2.3 Triple Generation

After obtaining the questions and answers from previous steps, OPKE gener-
ate triples with the format of 〈“question”; “answer”; “tag1”,“tag2”,...〉 where
question and answers are obtained from Section 2.2 and tags are obtained from
Section 2.1. So for the example question, the triple is depicted as in Figure 2(b).

3 Experiment

The performance of OPKE system has been evaluated by performing extraction
on Stack Overflow dump datasets3 (the version is 2016-06-13). We choose valid
posts with non-empty titles and have accepted answers as the master posts.
We obtain the duplicate and linked posts of these master posts. These result in

3 https://archive.org/details/stackexchange



4 Wei Emma Zhang et al.

339,990 posts in total. We define the evaluation metrics, clustering recall, as the
number of correctly labeled posts (i.e., duplicate or not) divided by the total
posts. Figure 3 reports the clustering recall rate on different number of clusters
for duplicate and linked questions. Duplicate has higher recall rate than linked
ones because linked posts do not always represent the same meaning with the
master questions. When the cluster number is the 1/2000 of the total number
of posts, the recall rate achieves the best.

N/500 N/1000 N/2000 N/5000 N/10000
Number of Clusters (N=number of total posts)

0

10

20

30

40

Re
ca

ll 
Ra

te

24%

36%
38%

32%
35%

22%

36%
34%

30%
33%

Duplicate
Link

Fig. 3. Clustering Recall Rate on Various Number of Clusters

4 Conclusion and Future Works

In this work, we discuss our attempt to extract structured information from
programming QA communities. The method, which combines data mining and
NLP techniques, can also be applied to other QA communities. In the future, we
will develop more fine-grained methods to identify paraphrased questions and
consider the evolvement of programming language/tools. A programming-centric
knowledge base and corresponding QA system will be built.

References

1. M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider. Mining
Duplicate Questions in Stack Overflow. In Proc. of MSR 2016.

2. Q. V. Le and T. Mikolov. Distributed Representations of Sentences and Documents.
In Proc. of ICML 2014.

3. M.-C. D. Marneffe, B. MacCartney, and C. D. Manning. Generating Typed Depen-
dency Parses From Phrase Structure Parses. In Proc. of LREC 2006.

4. S. Nam, Y. Hahm, S. Nam, and K. Choi. SRDF: korean open information extraction
using singleton property. In Proc. of ISWC 2015 (Posters & Demonstrations Track).

5. D. Sculley. Web-Scale K-Means Clustering. In Proc. of WWW 2010.
6. P. Yin, N. Duan, B. Kao, J. Bao, and M. Zhou. Answering Questions with Complex

Semantic Constraints on Open Knowledge Bases. In Proc. of CIKM 2015.


