
Proactive Replication of Dynamic Linked Data
for Scalable RDF Stream Processing

Sejin Chun, Jooik Jung, Xiongnan Jin, Seungjun Yoon, and Kyong-Ho Lee

Department of Computer science, Yonsei University, Seoul, Republic of Korea
{sjchun,jijung,wnkim,sjyoon}@icl.yonsei.ac.kr, khlee89@yonsei.ac.kr

Abstract. In this paper, we propose a scalable method of proactively
replicating a subset of remote datasets for RDF Stream Processing. Our
solution achieves a fast query processing by maintaining the replicated
data up-to-date before query evaluation. To construct the replication
process effectively, we present an update estimation model to handle the
changes in updates over time. With the update estimation model, we
re-construct the replication process in response to the outdated data.
Finally, we conduct exhaustive tests with a real-world dataset to verify
our solution.

1 Background

RDF Stream Processing (RSP)1 produces possibly continuous answers to queries
over RDF streams and background data, i.e., Linked Data. The current RSP en-
gines such as C-SPARQL[1] and CQELS[2] support operations on RDF streams
as well as background data by exploiting their RSP query languages. The RSP
languages allow querying RDF streams as well as datasets in remote SPARQL
endpoints using a SERVICE clause.

Due to the limitations of SPARQL endpoints such as availability and perfor-
mance, RSP engines are required to optimize the evaluation of the query with
SERVICE clauses. Since the evaluation time increases in proportion to the number
of remote services, the query response may be delayed significantly. To make a
fast response, many researches exploit a materialized view (MV), which caches
a snapshot returned from a remote SPARQL endpoint. So, an RSP engine pulls
the cached data from MV, so that the number of service invocations can be
reduced at query evaluation.

In comparison with prior works in continuous query evaluation over streams
and background data, several techniques utilize only static data or quasi-static
data for local and centralized repositories. Recently, the authors of [3] propose an
optimization method to limit the number of remote services at query evaluation,
according to user-defined QoS constraints. However, their method generates one
or more remote service invocations at specific query evaluation whenever the
replicated data corresponding to them must be refreshed. Consequently, they
may not guarantee a fast response time.

1https://www.w3.org/community/rsp/

Materialized View

SPARQL Endpoints

NodesRDF Stream

Replicated

RDF Graphs

{NR}
SERVICE

(sub-)queries,
ET

STREAM query

{tc,tu}

RDF

Graphs

)
Update estimation

model

(Continuous)
Answers

RSP query

Fig. 1. The proposed system

2 Solution

Our solution presents a proactive replication of Linked Data for RSP. The pro-
posed solution refreshes the replicated data retrieved from a SPARQL endpoint
before query evaluation. In other words, we maintain the replicated data up-to-
date before joining stream data with remote data. Thus, we achieve a fast query
processing because we do not require any invocations to the endpoints at every
query evaluation while maintaining a high accuracy.

Figure 1 illustrates the proposed system. Given an RSP query that joins
RDF streams with SERVICE patterns, a query manager accepts the query as an
input and divides it into two queries: STREAM and SERVICE queries. The STREAM

query should be delegated to an RSP engine like C-SPARQL, and SERVICE (sub-
)queries should be delivered to a proactive replication component (PR). An RSP
engine registers the STREAM query and evaluates it continuously. Meanwhile, from
the SERVICE (sub-)queries, PR constructs a replication process NR, in which each
instance invokes a remote service and materializes the result to MV. Lastly, a
result integrator combines the results obtained from RSP and PR, and produces
answers continuously.

Specifically, PR consists of three phases: construction, re-composition, and
synchronization. In the construction phase, PR constitutes NR with an update
estimation model. Each instance of NR is assigned to a node in order to obtain
a subset of remote RDF data through a SPARQL endpoint. To model various
changes in the number of updates λ over time, our update estimation model is
based on the inhomogeneous recurrent piecewise constant process [4]. The un-
derlying assumption of such process is that λ repeats every Q time unit, in other
words, λ(T) = λ(T + Q) for all time periods T . Thus, we construct an initial
version of an update process NU by assigning λ to a given time interval.

With the initial version of NU , we create and deploy the instances of NR

based on a set of evaluation time ET to select stream data. Let a time-based
sliding window W consist of (α, β), where α is a width of the window and β
is a slide as the gap between the opening time instants of consecutive windows.
Given a query q that contains one or more Ws, we compute ET = {τ1, · · · , τn}
for q, where each τ indicates the evaluation time for each window Wn of W.
Therefore, we determine the number of instances of NR and their positions by
NU and ET .

Given a time interval Q, the solution mappings µ of a SERVICE pattern and
the update estimation model = (T, λ) for all time periods T , we define a repli-

cation process NR of µ in the following:

NR(µ) = (T ,λ, r(µ)) (1)

Where a vector represents an effective replication instance r(µ) with the λ value
for each time interval T , and each r(µ) is composed of half-opened intervals
of the form [s, f). The start time s is the time at which the SERVICE patterns
corresponding to µ executes and the finish time f is the time of replicating the
solution mappings µ retrieved from the endpoint.

In the synchronization phase, PR receives the set of solution mappings re-
trieved by the instance of NR and replicates them into MV. To renew the update
estimation model, the information about the replicated data (i.e., whether the
data changes(tc) or not(tu) is transferred and computed for new λ over a time
period.

In the recomposition phase, PR re-constructs NR using a new λ and a cost
metric at time t such as M(t) and G(t). In detail, M(t) is defined as the num-
ber of updates being missed from MV at time t. Larger M(t) deteriorates the
freshness of MV, and decreases the accuracy of the answer. G(t) is defined as
the number of replication instances in which the result of SERVICE patterns is
equivalent to the duplicated data in the prior release in [0,t]. Thus, reducing
G(t) improves the performance of maintaining MV in terms of stability.

To derive new λ from irregular invocations to endpoints, we use a maximum-
likelihood estimator (MLE) [5]. The MLE computes the expected λ that has the
highest probability of producing the observed set of changes, which are detected
from accesses. Since each access to an endpoint can determine whether the re-
quested dataset has been updated(tc) or not(tu), we estimate new λ without
complete history of updates.

3 Evaluation

Experimental Setup. We developed our solution based on C-SPARQL. To
compare with the state-of-the-art work, we implemented a process of maintain-
ing MV [3]. In addition, we selected CQELS as a baseline method which per-
forms generally better than C-SPARQL. We utilized a query Q6 and its related
datasets from CityBench2. In addition, we extended the query by adding remote
services that provide real-world parking information3,4. Here, to maintain the
average response time of a service, e.g., ≤ 1s, consistently, we used subqueries,
e.g., 〈entityURI〉 ?p ?o. Both the average of result sizes with 850kb and the
number of results with 5000 records are approximately similar at every query
evaluation.
Experimental Result. Figure 2 shows the average execution time of process-
ing Q6 with varying the number of SERVICE patterns. On average, our method
took five seconds less than the method of [3]. Specifically, the amount of reduced
execution time .5 seconds for two services, 1 second for 4 services, 6s for 8 ser-
vices, and 11s for 16 services, respectively. This improvement is due to that our

2https://github.com/CityBench/Benchmark
3https://www.parkwhiz.com
4http://lod.seoul.go.kr/

CBQ6

CBQ6

CBQ6

CBQ6

10 100 1000 10000 100000

16 SERVICEs

8 SERVICEs

4 SERVICEs

Avg. Execution Time (ms)

Th
e

N
um

be
r o

f S
er

vi
ce

s

 The proposed method [3] method
 Baseline method

2 SERVICEs

(Logathmic scale)

Fig. 2. The avg. execution time according
to the number of SERVICE patterns

Fig. 3. Correlation between the accuracy
and the number of missing updates

solution pulls the replicated data from MV at every query evaluation.
Figure 3 shows a correlation between the accuracy and the number of miss-

ing updates. Using parking information during a week, we checked how many
updates were missing from MV. We then measured the accuracy of the repli-
cated data using Jaccard Similarity, that is defined as the size of the intersection
of the replicated and the answer sets divided by the size of the union of them.
At each hour, the result has a higher accuracy and small number of missing
updates, i.e., 00:00 to 05:00 and 06:00 to 24:00, whereas some cases have larger
number of missing updates but the accuracy is also high, i.e., 05:00 to 06:00.
At each hour, it has a higher accuracy and small number of missing updates.
In addition, we utilized that the Pearson correlation coefficient method esti-
mates the correlation which is a strength of relationship between the accuracy
and the number of missing updates. The obtained value of the coefficient was
-.234, which indicates that the correlation is weak. From this experiment, we
learned that our solution of maintaining the replicated data up-to-date before
query evaluation may not have a strong influence on the accuracy of the answer.

Acknowledgement. This work was supported by the ICT R&D program of MSIP/IITP,
Republic of Korea. [B0101-16-1276, Access Network Control Techniques for Various IoT
Services]

References
1. Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:

SPARQL for continuous querying. In: WWW, pp. 1061-1062. ACM. (2009)
2. Le-Phuoc, D., Dao-Tran, M., Parreira, J. X., Hauswirth, M.: A native and adaptive

approach for unified processing of linked streams and linked data. In: ISWC 2011,
pp. 370-388 (2011).

3. Dehghanzadeh, S., DellAglio, D., Gao, S., Della Valle, E., Mileo, A., Bernstein, A.:
Approximate continuous query answering over streams and dynamic linked data
sets. In: ICWE 2015, pp. 307-325 (2015)

4. Bright, L., Gal, A., Raschid, L.: Adaptive pull-based policies for wide area data
delivery. In: ACM Trans. Database Syst., Vol. 31, No. 2, pp. 631-671 (2006)

5. Cho, J., Garcia-Molina, H.: Estimating frequency of change. In: ACM Trans. on
Internet Technology (TOIT), Vo. 3, No. 3, pp. 256-290 (2003).

6. Chun, S., Seo, S., Ro, W., Lee, K.-H.: Proactive Plan-Based Continuous Query
Processing over Diverse SPARQL Endpoints,” In: WI 2015, pp.161-164, 2015.

