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Abstract. We present an in-memory, cross-platform, parallel reasoner
for RDFS and RDFSPlus . Inferray uses carefully optimized hash-based
join and sorting algorithms to perform parallel materialization. Designed
to take advantage of the architecture of modern CPUs, Inferray exhibits
a very good uses of cache and memory bandwidth. It offers state-of-the-
art performance on RDFS materialization, outperforms its counterparts
on RDFSPlus and can be connected with Jena.

Reasons to see the poster: i) Presentation of the system, how to use
it; ii) Discussion about implementation, source code walkthrough.
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1 Introduction

Answering SPARQL queries over RDFS and RDFSPlus [2] ontologies can either
be solved by applying backward chaining [11, 4] or by materializing the results of
the inference of process so that the queries can be processed by any RDF store
that does not support inference. For both RDFS and RDFSPlus, the inference
can be implemented as a iterative rule application process. In this paper, we
present, for the first time to the Semantic Web community, Inferray [10], a high-
performance forward-chaining reasoner. Inferray is designed to take advantage of
the internals of modern computers: it fully leverages the cache hierarchy through
a careful memory layout that fully utilizes the memory bandwidth. Inferray is
developed at the University of Saint-Etienne, its source code is publicly available
under the Apache 2 License. Being fully developed in Java, Inferray does not
require architecture or operating system specific binaries [8] and is therefore
completely cross-platform1.

Rest of the paper is organized as follows: Section 2 we present a brief overview
of state-of-the-art reasoners, Section 3 describes Inferray internals and the design
choices that underpins its performance, finally Section 3.1 presents experimental
results.

1 https://github.com/jsubercaze/inferray



2 Related Work

Research in reasoner design and implementation roots to the advent of the Se-
mantic Web technologies [3] and the list of related systems and publications is
too long to fit here. We hereby focus on recent comparable systems and refer the
reader to the recent survey of Kaoudi [7].

Forward-chaining reasoning can be performed either by iterative rules ap-
plication, as done in Inferray, or by using the RETE algorithm [5]. The RETE
algorithm, used by Jena and GraphDB(formely known as OWLIM for the rea-
soner module), due to its graph-based data structures, incurs lots of random
memory access, thus hindering global performance [10]. The iterative rules ap-
plication does not specify particular underlying datastructures, leaving room for
various designs. RDFox [8] uses an almost lock-free data structure to efficiently
parallelize hash-based joins and reports a good parallelization results. OWLIM
reasoners family uses a custom rule entailment process with a fixed-point infer-
ence mechanism.

3 System description
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Fig. 1. Inferray Architecture

Inferray imports data either from files on the hard drive or to interact with
the widely used Jena. After importation, the inference process is separated into
different steps, depicted in Figure 1, the highlights are presented as follows:

Transitivy Closure To perform efficient transitivity closure, Inferray performs
this task prior to the iterative rules application. This innovative approach,
relies on a temporary data layout (before vertical partitioning) that allows
the use of the state-of-the-art algorithm from Nuutila[9] to perform the tran-
sitivity closure. When the ontology contains a sufficient number of transitiv-
ity relations, the use of the temporary data layout and the data translation
cost to the vertical partitioning layout are compensated by the efficiency of
Nuutila’s algorithm.



Dictionary Encoding & Vertical Partitioning Inferray uses a tricky dic-
tionary encoding to compact the range of the IDs, while allowing an efficient
data layout. Instead of starting numeration at 0 and increasing the value
with incoming RDF resources, Inferray uses a dense numbering scheme that
allows both vertical partitioning and the use of efficient sorting algorithms.
The s p o triples are then splitted to be vertical partioned, using the stan-
dard partition on the predicate p [1], that offers a best selectivity for rules
application. Triples are stored in arrays, whose indexes correspond to p, as
continuous pairs of o s. Each array is sorted by s and possibly by o to
efficiently perform sort-merge-joins.

Sorting algorithms Efficiently sorting is the cornerstone of high-performance
sort-merge-join algorithms. Based on the dense numbering scheme, Inferray
uses an adaptative sorting approach including a new counting sort algorithm
for sorting pairs of integers. When outside the application domain of the
counting sort, a custom MSD-Radix algorithm for sorting pairs kicks in.
Our sorting experiments report througputs from 20 to 70 millions pairs per
second, results that are at least on par with state-of-the-art algorithms.

Parallel sort-merge-joins Using array based layout, sort-merge-joins are per-
formed efficiently due to a maximization of memory cache usage. In the first
step, joins are perform on parallel, on a per-rule basis. Results of the joins
is the materialisation of inferred triples, that may contains duplicates al-
ready present in the main triple store. The inferred triples are sorted and
then merged in linear time into the main store, again in parallel manner.
This efficient handling of duplicates largely contribute to the efficiency of
Inferray.

Post processing The post-processing step handles corner cases such as rules
having only one condition, this is for instance common in RDFS reasoning.
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Fig. 2. RDFSPlus Inference time in milliseconds, log scale.



3.1 Performance

Experiments were conducted on a Intel Xeon E3 1246v3 processor with 8MB of
L3 cache. Our system is equipped with 32GB of main memory; a 256Go PCI
Express SSD. The system runs a 64-bit Linux 3.13.0 kernel with Oracle’s JDK
7u67. We compared Inferray against RDFox and OWLIM-SE. To perform our
experiments, we developed a dedicated benchmark suite [6] called USE-RB, that
allows to report various performance metrics (cache pressure, memory usage) in
addition to standard execution time. We report in Figure 2 the results obtained
on RDFSPlus inference on various datasets: different size of the LUBM dataset
as well as real-world ontologies. The results highlight the excellent performance
of Inferray on RDFSPlus on both types of dataset.

4 Conclusion

In this paper, we presented Inferray, a high-performance reasoner based on par-
allel sort-merge-join. We believe that the presented system is of the utmost prac-
tical interest for the community. Its performance enable large scale processing of
ontologies and its compatibility with the widely used Jena ensures its adoption
by the end users.
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