USE-RB : Benchmarking how reasoners work in
harmony with modern hardware

Christophe Gravier* and Julien Subercaze

Univ Lyon, UJM-Saint-Etienne, CNRS
Laboratoire Hubert Curien UMR 5516
F-42023 Saint Etienne, France
{christophe.gravier, julien.subercaze}@univ-st-etienne.fr
http://laboratoirehubertcurien.fr/

Abstract. As our computers embed more cores, efficient reasoners are
designed with parallelization but also CPU and memory friendliness in
mind. These latter contribute to make reasoner tractable in practice de-
spite the computational complexity of logical fragments. However, cre-
ating benchmarks to monitor this CPU-friendliness for many reasoners,
datasets and logical fragments is a tedious task. In this paper, we present
the Université Saint-Etienne Reasoners Benchmark (USE-RB) that auto-
mates the setup and execution of reasoners benchmarks with a particular
attention to monitor how reasoners work in harmony with the CPU.

Keywords: Reasoning, performance, benchmark, caches, memory.

1 Introduction

The number of Web applications relying on a triplestore and a reasoner has seen
an exponential growth in the last years. This has resulted in new Web frontends
for browsing, searching, and expressing complex queries over online data. As
online data has never been as interlinked as today, the emerging challenge is
to process these data in a computationaly efficient manner, especially when
reasoning.

However, reasoning is a computational expensive task, and there are many
logic fragments around, albeit no logic fragments fits all applications. For exam-
ple, subsumption computation complexity in SHOZN description logic is decid-
able and exhibit a NEXPTIME time complexity. While such order of complexity
may prevent the working ontologist to include a reasoner in their application —
although the benefits to leverage implicit triples — the situation is not so desper-
ate from practical point-of-view. Actually, even when the theoretical complexity
seems to be intractable, there are optimized reasoners available [2,4] that are
usable for practical real world cases.

Historically, reasoning scalabilty has been tackled from a distributed com-
puting point-of-view with practical system such as WebPie [1]. While these sys-
tems provided an unprecedented scalability, they fall short of scaling linearily

* This work has been supported by the CNRS PEPS-Secu project.



2 Lecture Notes in Computer Science: Authors’ Instructions

with the number of nodes in the cluster. One can observe that the most re-
cent research have shifted towards parallelization on a single node equipped
with many cores [2-4]. These approaches focus on designing in-memory, efficient
and cache-friendly data structures and algorithms in order to win back other-
wise lost CPU cycles as in hardware-unoptimized counterparts. By designing
cache-friendly systems, data and code locality are expected to fully exploit CPU
subsystems such as the prefetcher, the translation lookaside buffers and page
management, to name a few. Actually, most of reasoning consists in memory
I/O rather than raw arithmetic computations — few computations are made but
usually data structures are to be traversed several times in different ways. For
instance, systems such as RDFOx [2] are defying Amdahl law as they exhibit a
close-to-linear scalability with respect to the number of threads devoted to the
reasoning task. With major chips makers such as Intel running a many cores
policy for the next years, one can expect that research efforts combined with
technology advances will lead further reasoning performance to the real field. In
order to sustain the research effort, it is therefore of the utmost practical interest
to go deeper in understanding reasoners performance — examinating reasoners
from a CPU-friendliness point-of-view is a mandatory effort.

Through USE-RB — University Saint-Etienne Reasoner Benchmark — we en-
vision a CPU-friendly reasoners benchmark. USE-RB integrate all the facilities
to plug any existing / to-be reasoners or datasets, to easily run and evaluate
how a reasoner is working in harmony with the CPU. We believe that provid-
ing our benchmark to the community will contribute to the research for high
performance many-cores reasoners.

2 USE-RB

2.1 Outline

USE-RB is expected to be configured with a list of reasoners, a list of datasets
and a list of logic fragments. The cartesian product of these sets results in as
many benchmark configuration to be run — a benchmark task. The module
named USE-RB, the entry point of the execution of the program, is actually
responsible for sequentially spawning as many instances of an external program
named ReasonersBenchmarked — thus each benchmark task is run in isola-
tion. A Java interface provides functional genericity in order to easily integrate
new reasoner to the benchmark. Each execution of ReasonersBenchmarked can
be parameterized with the number of warm-up iterations and the number actual
iterations for which USE-RB will measure CPU counters.

2.2 Performance metrics

USE-RB track down CPU counters for each execution of a ReasonersBench-
marked instance. The primary counter is the wallclock time taken by the pro-
gram to run one benchmark configuration — the actual number of CPU cycles,



Title Suppressed Due to Excessive Length 3

translated to temporal units, used by the CPU for this process. Other metrics
focus on hardware-specific counters for various CPU component, categorized as
follows.

Instructions. Instructions metrics includes the number of branch mispredic-
tions (branch misses) by the CPU. This is relevant for reasoners given the
tremendous amount of data structures to traverse — these traversals are to
be as much uniform as possible, therefore predictable for early CPU pipeline
units. USE-RB also reports the total number of instructions, the number
of instructions per CPU cycle, and the number of stalled CPU cycle per
instruction.

Memory. Memory metrics includes the number of page faults, the number of
transactional lookaside buffer loads and misses (total number and hit ratio).
It also includes the number of stall CPU cycles when accessing any hierarchy
of the memory.

Cache. Cache metrics are a sub category of Memory metrics — a highly promi-
nent set of metrics when designing high performance applications, so that it
falls into its own category in USE-RB. Cache metrics include the miss rate
on all levels of cache. It also provides a per cache hierarchy level information
on cache hit and misses. As for the first level of cache (L1), USE-RB differ-
entiates data and instruction L1 caches. In case of a high cache miss rate,
this allows to undersand whether the reasoner falls short to provide a good
data or instruction locality.

2.3 Results and extensibility

USE-RB is shipped with vanilla datasets, logical fragments, and reasoners. It is
natively able to run benchmarks by creating Benchmark configurations (see 2.1)
by selecting one or several datasets, logical fragments and reasoners among :

— Datasets : 9 different sizes of a BSBM dataset (from 100,000 triples up to
100 million triples), Wikipedia Ontology, Wordnet ontology, Yago taxonomy,
7 LUBM datasets (from 1 and up to 100 million triples). We also ship ded-
icated datasets focusing on benchmarking the closure computation of the
subsumption axioms.

dTLB-load-misses rate page-faults per 1K Triples

Fig. 1. Cache misses, TLB misses and Page Faults per triple inferred for the RDFS
benchmark.



4 Lecture Notes in Computer Science: Authors’ Instructions

— Reasoners : JENA [5], OWLIM [6]*, SLIDER [3], SESAME (7], RDFOX [2],
and Inferray [4].
— Logical Fragments? : RDFS default, RDFS-Full, Rho-DF, RDFS+.

One can easily add his/her own dataset, reasoner or logical fragment?. Fig-
ure 1 provides an example of figure that can be drawn from the execution of
USE-RB. This figure reports data TLB misses and page faults per triple in-
ferred for a RDFS-Full benchmark configuration?. Though the benchmark was
run on all vanilla reasoner, we kept the most performant reasoners — omitted
reasoners are outperformed by several order of magnitude as reported in [4].

3 Conclusion

In this paper, we presented USE-RB, a system for creating reasoners benchmarks
and to observe how reasoners works in harmony with the CPU through the
monitoring of CPU counters. USE-RB is publicly available at https://github.
com/telecom-se/USE-RB. We believe that the presented benchmark is of the
utmost practical interest for the researchers and industries who are willing to
provide high performance reasoners. We also think that such frameworks are
mandatory for promoting reproducibility of experiments, whenever possible. This
framework also includes various popular datasets, reasoners, and implemented
logical fragments — while providing the customizable features.

References

1. Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: WebPIE: A web-
scale parallel inference engine using MapReduce. In: Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, Vol. 10, pp. 59-75 (2012)

2. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel Materialisation
of Datalog Programs in Centralised, Main-Memory RDF Systems. In: AAAI, pp.
129-137 (2014)

3. Chevalier, J., Subercaze, J., Gravier, C., Laforest, F.: Slider: an Efficient Incremental
Reasoner. In: SIGMOD, pp. 1081-1086 (2015)

4. Subercaze, J., Gravier, C., Chevalier, J., Laforest, F.: Inferray: fast in-memory RDF
inference. In: VLDB, 9(6), pp. 468-479 (2016)

5. McBride, B.: Jena: A semantic web toolkit. In: IEEE Internet computing 6(6) pp.
55 (2002)

6. Bishop, B. et al: OWLIM: A family of scalable semantic repositories. In: Semantic
Web 2(1), pp. 33-42 (2011)

7. Broekstra, J., Arjohn, K., Van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: ISWC, pp. 54-68 (2002)

! Requires a OWLIM-SE licence

2 Logical fragments description in [4]

3 https://github.com/telecom-se/USE-RB

4 This exlcudes BSBM dataset since it does not support the expressivity of the RDF-
Full logical fragment.



