
OntoCASE4G-OWL: Towards a modeling software tool
for G-OWL a visual syntax for RDF/RDFS/OWL2

Michel Héon1, Roger Nkambou1, Mohamed Gaha2

1Université du Québec à Montréal, Montréal, Canada
heon@cotechnoe.com,nkambou.roger@uqam.ca

2Institut de Recherche en Électricité d’Hydro-Québec
Gaha.Mohamed@ireq.ca

Abstract. The W3C Web Ontology Language (OWL) provides the needed ex-
pressiveness formulation of complex concepts. However, the codification of an
ontology is a thought formalization process that sometimes requires extensive
knowledge and is often inaccessible laypersons. The G-OWL (for Graphical
OWL) syntax has been designed to make easier the knowledge expression
(compliant to OWL) in a graphical way. This paper presents the OntoCASE4G-
OWL prototype, software for editing and modeling formal graphical ontology
in G-OWL.

Keywords: OWL2, ontology, visual ontology modeling, visual modeling tool,
visual knowledge representation

1 Introduction

With respect to the knowledge representation in an ontology, W3C offers five
readable syntaxes that range from machine readable to human readable (RDF/XML,
OWL/XML, Turtle, etc.). All of these notations operate in a text mode. In addition to
being a tool for resources description, RDF/RDFS and OWL are usually used as do-
main knowledge representation language. Most aspects of the G-OWL design are
grounded in cognitive science theory and based on years of research in knowledge
engineering. Indeed, studies in cognitive science [1, 2] have shown some effective-
ness (in terms of expression simplicity) when a visual notation is used for the ontolog-
ical knowledge representation.

As an instance, Graffoo1, Graphol2 and VOWL3 offer tools to visualize ontologies.
In the same way, our research on G-OWL [3,4] proposes a visual modeling syntax for
ontology design. G-OWL provides polymorphic and typological constructors [1] in
order to minimize the number of symbols in the syntax. An important factor distin-
guishing G-OWL from other graphical syntaxes is that its design focuses on the OWL
expressivity representation elements (hierarchy of concepts and roles, restriction,
level of abstraction, etc.) and not on the strict visual representation of the syntactic

1 http://www.essepuntato.it/graffoo
2 http://www.dis.uniroma1.it/~graphol/
3 http://vowl.visualdataweb.org/

OWL elements as proposed in the most recent research. The case ❹describes below
illustrates this design principle by the choice of representing Boolean predicates, not
by a “relation” as it is often the case, but rather by a visual “entity” (which is a con-
tainer in this case).

This paper presents OntoCASE4G-OWL4, a prototyped software for G-OWL-
based ontology editing and modeling. The prototype that will be presented in this
Demo implements a subset of OWL expressivity and aims mainly to validate 1) the
structural principles of the G-OWL syntax, 2) the technological architecture that sup-
ports the implementation of G–OWL and 3) the serialization/deserialization mecha-
nism which ensures the ontology translation from Turtle to G-OWL and vice-versa. A
subset of the wine.owl ontology will be used to illustrate the modeling capability of
OntoCASE4G-OWL as well as its expressiveness (in terms of numbers of knowledge
element types that it uses, including complex concept, property taxonomy, restriction,
datatype, factual and conceptual statement, etc.).

2 Implementation of the G-OWL Syntax

As previously mentioned, G-OWL uses polymorphism and typology in order to limit
the number of symbols necessary to model an ontology; hence, we exploit the as-
sumption that using a limited number of symbols while preserving the expressive
power facilitates the understanding of a syntax.

2.1 Hypothesis

For the design of G-OWL, our main hypothesis is that, it is possible to reduce the
number of symbols required to design a G-OWL model while retaining OWL expres-
sivity. To do so, it is necessary to apply polysemy on G-OWL symbols. Polysemy is
the association of a finite number of meanings to a sign. Two techniques allowed us
to increase G-OWL's polysemy:

1. Polymorphism is the expression of an object in several forms. It allows the at-
tribution of configuration symbols on meaning. The meaning can later be disam-
biguated via its topological usage context. For example, in ontological modeling,
the expression of a hierarchy can take two forms, either the class hierarchy or the
properties hierarchy. In G-OWL, the expression of the hierarchy is symbolized by
a Slink. The disambiguation of Slink is guided by the topology for the use of the
links. It could result in rdfs:subClassOf if the Slink is used to link two classes or
in rdfs:subPropertyOf if the Slink links two properties. In this example, the pol-
ymorphism restricts the symbolism of semantics that has only one symbol.

2. Typology assignment is the technique that limits the number of symbols by assign-
ing them with types. Moreover, each type has a limited number of meanings. Dur-
ing modeling, this kind of typing has the advantage of clearly distinguishing the
semantics associated with the language from the domain-dependant semantics as-

4 http://www.cotechnoe.com/ontoase4gowl

sociated to the model. At the moment of formalization, the type is used as a guide
in the disambiguation process.

2.2 User Interface

OntoCASE4G-OWL is an Eclipse-based application that operates: the Sirius
graphical Framework for the diagram interface implementation, the Eclipse Modeling
Framework (EMF) for data management of the models and Apache Jena for the Turtle
- G-OWL de/serialization. With a Eclipse plug-in architecture, OntoCASE4G-OWL
can be integrated (and is compatible) with other Eclipse software engineering tools,
such as TopBraid Composer® or IBM Rational Software Architect® thus offering to
the ontological engineer an additional functionality to facilitate knowledge elicitation
with the contents experts.

Figure 1 presents a user interface input screen of OntoCASE4G-OWL. The arrow
indicates the icons to create either a modeling project, or a G-OWL model. Five views
are presented to the user. View ①	 presents the tree of the ontology structure. In ②	 is
presented the schematized view accompanied by the palette to create ontological ele-
ments in G-OWL ontology. In ③ is presented a summary of the schema facilitating
navigation in a broad diagram. ④	 presents the properties associated with the selected
item., The interface ⑤	 presents the Turtle code interpretation of the G-OWL model.
Finally, ⑥	presents	the	canvas	palette	of	G‐OWL.

The G-OWL model in ② describes an ontology inspired by wine.owl. The ele-
ment in ❶	represents	an	owl:Class,	 in	❷	 it	 represents	a	rdfs:resource	 and	 in	
❸	it	 represents	an	owl:ObjectProperty.	 In	❹,	 the	model	present	4	 typed	ele‐
ments	 containers,	 that	 is:	 an	 owl:AllDifferent,	 owl:intersectionOf	 boolean	

Fig. 1. Visual environment of OntoCASE4G-OWL

expression,	an	owl:hasValue	restriction	and	an	owl:oneOf	expression.	It	is	to	be	
noted	that	these	four	graphic	elements	are	built	regardless	of	the	fact	that	their	
semantics	 is	 associated	with	 an	 ontological	 entity	 or	 an	 ontological	 predicate.	
This	is	an	important	characteristic	of	G‐OWL.	Indeed,	the	choice	of	the	syntactic	
element	 shape	 is	 determined	 by	 its	 employment	 ሺi.e.	 in	 this	 case	 a	 containerሻ	
rather	than	by	its	nature	in	a	triplet	ሺa	subject/object	or	a	predicateሻ.	Further,	in	
❺	the	polymorphism	of	the	Alink	is	disambiguated	by	rdf:domain	of	rdf:range	
depending	on	 the	arrow	orientation.	For	❻,	 the	equivalent	 link	 ሺDSLinkሻ	poly‐
morphism	 is	 disambiguated	 by	 the	 usage	 context:	 owl:sameAs	 between	 two	
rdfs:Resource,	 owl:equivalentProperty	 between	 two	 owl:ObjectProperty	 and	
finally	by	owl:equivalentClass	between	two	owl:Class.	For	typed	links	in	the	❼	
‐	❽	those	are	disambiguated	in	rdf:type	and	rdfs:subClassOf.		

2.3 G-OWL/Turtle serialization/deserialization	

The Turtle serialization/deserialization module ensures the translation of G-OWL
notations to Turtle and vice-versa in accordance with the vocabulary described in [3,
4]. In the translation process, the module applies a set of rules used to disambiguate
the G-OWL model. OntoCASE4G-OWL is built to perform a “hot”
(dese/se)rialization without any particular import/export actions from the user.

3 Conclusion

Preliminary validation results of G-OWL was already presented in [4] and a thor-
ough empirical validation with users are currently under development. OntoCASE4G-
OWL is now used in two projects: 1) an ontology engineering project for the design
of an expert knowledge base of electrical units, and 2) a project aiming at capturing
data semantics representation in Big-Data. Works are currently underway to extend
the OntoCASE4G-OWL functionality to the whole OWL-2 expressivity. The usage of
polymorphism and typology are greatly exploited to express the various OWL quanti-
fiers in G-OWL.

Acknowledgment
We wish to thank Hydro-Québec and the Canadian MITACS Scholarship Program
funds for the financing of this research.

Reference
1. Paquette, G., Graphical Ontology Modeling Language for Learning Environments. Tech-

nology, Instruction, Cognition & Learning, 2007. 5(2): p. 36..
2. Basque, J., et al., Collaborative Knowledge Modelling with a Graphical Knowledge Rep-

resentation Tool: A Strategy to Support the Transfer of Expertise in Organisations, in
Knowledge Cartography: Software Tools and Mapping Techniques, A. Okada, S.B. Shum,
and T. Sherborne, Editors. 2008, Springer London: London. p. 357-382.

3. M. Héon, R. Nkambou, and C. Langheit, "Toward G-OWL: A Graphical, Polymorphic
And Typed Syntax For Building Formal OWL2 Ontologies," presented at the Proceedings
of the 25th International Conference Companion on WWW, Montréal, Canada, 2016.

4. M. Héon, Web sémantique et modélisation ontologique (avec G-OWL): Guide du déve-
loppeur Java sous Eclipse, Collection Epsilon ed.: Editions ENI, 2014.

