
An On-Line Learning to Query System

Jedrzej Potoniec

Faculty of Computing, Poznan University of Technology
ul. Piotrowo 3, 60-965 Poznan, Poland
Jedrzej.Potoniec@cs.put.poznan.pl

Abstract. We present an on-line system which learns a SPARQL query
from a set of wanted and a set of unwanted results of the query. The
sets are extended during a dialog with the user guided by recall and F1

measure. The system leverages SPARQL 1.1 and does not depend on any
particular RDF graph.

1 Introduction

A common problem with querying a Linked Data dataset is that the user must
have prior knowledge about the vocabulary used by the dataset and know a
querying language, e.g. SPARQL [3]. A typical approach to remedy the prob-
lem is to use some tool helping the user to formulate a SPARQL query, using
e.g. faceted browsing [2], natural-language interfaces [4], visual interfaces [7] or
recommendations [1]. In all these system the user specifies the query by vari-
ous means. We propose a different approach, where the user only specifies what
should and what should not be in the results of the query, and the system takes
care of formulating the query. The user does not need to know SPARQL, it is
enough for her to be able to distinguish wanted and unwanted results. If the user
is already familiar with the data (e.g. knows its representation in some other for-
mat), it is quite an easy task for her. The system operates by conducting a dialog
with the user. In each part of the dialog, the user is asked about a small set of
URIs and for every URI she must decide if it should or should not be present
in the results of the final query. A similar approach was already presented in
[5], where the system used mostly computational power of the computer system
of the user. We leverage new features of SPARQL 1.1 and move most of the
computation to a SPARQL endpoint, especially the process of query refinement
guided by recall and deciding on termination depending on F1 measure.

Thought this work, we use the following prefixes: dbr: for http://dbpedia.
org/resource/, dbo: for http://dbpedia.org/ontology/, dbp: for http:

//dbpedia.org/property/, dct: for http://purl.org/dc/terms/, xsd: for
http://www.w3.org/2001/XMLSchema#.

http://dbpedia.org/resource/
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://dbpedia.org/property/
http://purl.org/dc/terms/
http://www.w3.org/2001/XMLSchema#


2 System Description

A screenshot of the on-line system is presented in Figure 1. The source
code of the system is available in a Git1 repository available at https://

bitbucket.org/jpotoniec/kretr/. An instance of the system is available at
https://semantic.cs.put.poznan.pl/ltq/. It uses a SPARQL endpoint set
up on Blazegraph2 2.1.1 and loaded with DBpedia 2015-04. Note that the sys-
tem itself does not depend neither on Blazegraph nor DBpedia, as it can use any
SPARQL 1.1 endpoint.

1 2

3a 3b

4
5

Fig. 1. A screenshot of the system while the user is supposed to assign new examples
to correct sets. The view is divided into six areas: new examples, which are to be
assigned (1), the current query (2), the URIs already assigned by the user: wanted (3a)
and unwanted (3b), a form to add a new URI by hand (4) and demo scenarios (5).

The aim of the system is to build a SPARQL SELECT query with a single
variable in the head. The variable has a modifier DISTINCT. The query contains
only a WHERE clause (i.e. there is no GROUP BY, ORDER BY etc.), and in
the clause there is only a basic graph pattern (BGP, i.e. triple patterns and filter
expressions). The undirected graph corresponding to the BGP is a connected

1 https://git-scm.com/
2 https://www.blazegraph.com/

https://bitbucket.org/jpotoniec/kretr/
https://bitbucket.org/jpotoniec/kretr/
https://semantic.cs.put.poznan.pl/ltq/
https://git-scm.com/
https://www.blazegraph.com/


graph and the filter expressions are of a form variable >=/<= literal. An example
of such a query is

SELECT DISTINCT ?uri

WHERE {
?uri dct:subject dbr:Category:City_counties_of_Poland .

?uri dbo:populationTotal ?anon1.

FILTER(?anon1 >= "205934"^^xsd:nonNegativeInteger). }

Fig. 2. A typical workflow with the system. First the user specifies a small set of
examples, then the system works in a loop: asses a hypothesis, refines it, finds new
examples and asks the user to decide about them.

A typical workflow with the system is presented in Figure 2. First, the user
specifies a small set of URIs that should be present in the results of the final
query, and a small set of URIs that should not be present in the results. Then, the
system refines the query by adding to it a new triple pattern (or a triple pattern
and a filter expression) while maintaining recall of at least 0.99, i.e. covering
at least 99% of the positive examples. In a typical case of multiple possible
refinements, they are sorted by F1 measure and precision and the one with the
highest values is chosen. Next, the system generates a few new positive and
negative examples. The positive examples are simply selected from the results
of the refined query, while the negative examples are computed by subtracting
from the results of the original query the results of the refined query. In each
case we require the found examples to be new, i.e. they must not be already
labeled by the user. If finding the new examples is impossible, the refinement
is retracted and the next in order is tried. The user is then asked to decide
about each example if it should or not be present in the results of the final query
(i.e. the user extends the sets defined in the beginning). After the user decides,
the system checks if the decisions agrees with the query. If they do not, the
cycle repeats: the system refines the query, asks the user and assess the query.
Otherwise, the system assumes that the correct query was found. The query is
displayed to the user along with the results of the query. If the user decides that
the results are not satisfactory, she must add at least one new URI to one of
the sets. More details about the algorithm, along with the templates of queries
used, is presented in [6].



3 Proposed Demo

During the demo, we will present to the participants how to use the system,
what types of queries are possible to learn and what are the limitations. The
system has embedded two demo scenarios: the first one to find a query to select
all capitals of the member states of European Union and the second one to find
a query to select all Polish cities having more than 200′000 citizens. For the
presentation, we will use the on-line instance available at https://semantic.

cs.put.poznan.pl/ltq/.

4 Conclusion

In this paper we presented a system which is able to learn a SPARQL query from
two sets of URIs obtained from the user in a dialog. The system leverages new
features of SPARQL 1.1 and does not depend on any particular RDF graph. It
also does not require any precomputation before it is ready to use. The source
code is publicly available.

Acknowledgement. Jedrzej Potoniec acknowledges the support from the Pol-
ish National Science Center (Grant No 2013/11/N/ST6/03065).

References

1. Campinas, S.: Live SPARQL auto-completion. In: Horridge, M., Rospocher, M., van
Ossenbruggen, J. (eds.) Proc. of the ISWC 2014 Posters & Demonstrations Track.
CEUR Workshop Proceedings, vol. 1272, pp. 477–480 (2014)

2. Ferré, S.: SPARKLIS: a SPARQL endpoint explorer for expressive question answer-
ing. In: Horridge, M., Rospocher, M., van Ossenbruggen, J. (eds.) Proc. of the ISWC
2014 Posters & Demonstrations Track. CEUR Workshop Proc., vol. 1272, pp. 45–48
(2014)

3. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation, W3C
(Mar 2013), http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

4. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngomo, A.C.N.: Survey
on challenges of question answering in the semantic web. Semantic Web Journal
(accepted for publication) (2016)

5. Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base.
In: Antoniou, G., Grobelnik, M., et al. (eds.) The Semantic Web: Research and
Applications. LNCS, vol. 6643, pp. 63–79. Springer (2011)

6. Potoniec, J.: Learning to Query: from Concepts in Mind to SPARQL Queries. Tech.
Rep. RA-9/16, Institute of Computing Science, Faculty of Computing, Poznan Uni-
versity of Technology (aug 2016), http://goo.gl/B7J008

7. e Zainab, S.S., Saleem, M., Mehmood, Q., et al.: Fedviz: A visual interface for
SPARQL queries formulation and execution. In: Ivanova, V., Lambrix, P., et al.
(eds.) Proc. of the International Workshop on Visualizations and User Interfaces for
Ontologies and Linked Data. CEUR Workshop Proc., vol. 1456, p. 49 (2015)

https://semantic.cs.put.poznan.pl/ltq/
https://semantic.cs.put.poznan.pl/ltq/
http://goo.gl/B7J008

	An On-Line Learning to Query System

