
Ranking Feature for Classifier-based
Instance Matching

Khai Nguyen1,2,3 and Ryutaro Ichise1,2

1 The Graduate University for Advanced Studies, Japan
2 National Institute of Informatics, Japan

{nhkhai,ichise}@nii.ac.jp
3 University of Science, VNU-HCMC, Vietnam

� nhkhai@fit.hcmus.edu.vn

Abstract. Instance matching is the problem of finding the instances
that describe the same object. It can be viewed as a classification prob-
lem, where a pair of two instances is predicted as match or non-match.
A common limitation of existing classifier-based matching systems is the
absence of instance pairs ranking. We propose using a ranking feature to
enhance the classifier in instance matching. Experiments on real datasets
confirm the significant improvement when applying our method.

Keywords: instance matching, classification, ranking.

1 Introduction

Instance matching detects the instances describing the same object in two dif-
ferent repositories, RS and RT . This task can be considered as a classification
problem, in which each example represents a feature vector consisting of the cor-
relation indicators (e.g., literal similarities) of two instances [3, 6, 7]. For training
data, each example is also associated with a class, which is either matched (i.e.,
positive) or non-matched (i.e., negative). The matching task on a new example
is to predict its actual class.

In instance matching, an important technique is blocking, which groups the
potentially matched instances into the same block [1]. For example, a simple
method is to group the instances sharing a number of tokens. By avoiding the
huge |RS × RT | pairwise comparisons, blocking reduces the complexity of the
matching process.

The ranking is important because of the different ambiguity between the
blocks. For example, the block of ‘Smith’ is much larger than ‘Obama’ and thus,
is more ambiguous. Discriminating the matched and non-matched for such blocks
should be based on their local characteristics. In other words, it is better to use
different discrimination strategies for different blocks instead of a single strategy
for all blocks. A ranking algorithm (e.g., stable matching [4, 5], bipartite graph
matching [2], and max-delta [2]) is among possible solutions because it considers
only the most confident pairs in each block as positive.

2 K. Nguyen, and R. Ichise

Traditional classifiers discriminate the positive and the negative based on a
global boundary drawn from all training examples collected from all blocks. The
disadvantage of this approach is the local characteristics of each block is ignored.
Therefore, it is ineffective because the blocks are naturally heterogeneous in
terms of ambiguity.

We propose to reflect the ranking value of an example (i.e., the vector repre-
senting the correlations between two instances) as a feature. For each example,
a ranking feature is computed using the example itself and all the related exam-
ples, which are drawn from the same block. This ranking feature is added to the
original vector as an extra element. As a result, the ranking value is included in
the final feature vector. Finally, the classifiers take the final vectors as the input.

2 The ranking feature and optimization

2.1 Feature design

The general idea of the ranking feature is to capture the preference of an example
against all the related examples. Let Q be a collection of examples drawn from
a block. The ranking feature r(x,Q) of an example x of Q is defined as follows.

r(x,Q) =
1

|Q|
∑
t∈Q

(f(x)− f(t)) (1)

f(x) =
1

1 + e−wx

where f is the logistic function and w is the weight vector. Each element of w
assigns the impact of a feature in the example x. w is optimized by a learning
algorithm using the training data. An example may exist in different blocks.
That is, the ranking feature of an example changes accordingly to the block of
interest. Higher value of r indicates a better rank of an example in a block.

The logistic function is widely used in classification and regression because
it has a good ability to normalize the input, thus, it is useful in analyses. Fur-
thermore, logistic function is convex and easy to be optimized.

2.2 Optimization

The goal of optimization is to find the vector w based on the training data. The
optimality of the ranking feature is to maximize the r(x,Q) (Eq. 1) if x is a
positive example and to minimize this value otherwise. The optimization for w
also reflects this expectation.

Let X be a set of training examples and is divided into different groups:
X = {Q1,Q2, ...}. Each group Qi is respective to the block i, from which the
examples of Qi are drawn. The optimization of w is done by minimizing the loss
L(w,X), which is defined as follows.

Ranking Feature for Classifier-based Instance Matching 3

L(w,X) =
∑
Qi∈X

∑
(x,y)∈Qi×Qi

−(`(x)− `(y))× (f(x)− f(y)) +
1

2
λ||w||2 (2)

where λ is the regularization parameter, which can be determined by using
validation data. ` is the class indicator. `(z) = 1 if z is positive, otherwise
`(z) = 0. The intuition of ` is to take only the preference of the examples of
different classes.

3 Experiment

We use eight datasets for the experiment. Each dataset contains two repositories
with different properties and a collection of matched instances. We apply the
property alignment, blocking, and similarity estimation modules of cLink [5] to
generate the examples. The property alignment creates the property mappings
between two repositories (e.g., name and label) using an overlap metric on the
values of the properties. The blocking generates the blocks of instances by using
token-based comparison. Two instances are placed in the same block if they share
at least one token. One pair may exist in different blocks. Each of such pairs is
represented by multiple examples with different ranking features. The similarity
estimation computes the feature vector for each instance pair. Each element of a
vector is the result of applying a similarity metric on a property mapping. That
is, multiple metrics can be applied for the same mapping. For strings, we use
exact matching, TF-IDF, Levenshtein, Jaro-Winkler, and Jaccard. For numbers,
we use reversed difference. For date-times and URIs, we use exact matching. The
summary of the datasets are in Table 1.

We compare the performance of the classifier when using and not using the
proposed ranking feature. We apply 5 folds cross-validation. We separate the
training set into two parts: 80% and 20%. The former is for minimizing L(w,X)
(Eq. 2) and the latter is for optimizing λ parameter. The hyperparameters of
the classifiers are not tuned. We split the examples based on the blocks so that
the separated sets are independent. Table 2 reports the F1 scores of 4 clas-
sifiers: Logistic regression (LR), J48 decision tree, Random Forest (RF), and

Table 1. Summary of datasets.

ID Name #Pairwise #Examples #Blocks #Features #Positive
D1 DBLP-ACM 6.00×106 344,587 7,083 37 2,224
D2 ABT-Buy 1.18×106 72,185 2,057 23 1,097
D3 Amazon-GoogleProduct 4.40×106 100,672 8,413 27 1,300
D4 Sider-Drugbank 52.57×106 6,120 1,894 59 1,142
D5 Sider-Diseasome 21.76×106 4,227 604 31 344
D6 Sider-DailyMed 26.71×106 6,440 1,463 31 3,225
D7 Sider-DBpedia 11.17×109 931,701 6,290 58 1,449
D8 Dailymed-DBpedia 41.84×109 973,019 5,465 114 2,454

4 K. Nguyen, and R. Ichise

Table 2. F1 scores of using ranking (marked with ‘*’) and not using ranking

ID LR LR* J48 J48* RF RF* SVM SVM*
D1 0.9702 0.9774 0.9736 0.9866 0.9850 0.9886 0.9652 0.9748
D2 0.5956 0.5980 0.5766 0.6028 0.6470 0.6736 0.5410 0.6024
D3 0.5508 0.5224 0.5252 0.5682 0.5766 0.6380 0.4204 0.5114
D4 0.9480 0.9710 0.9564 0.9740 0.9704 0.9810 0.9486 0.9734
D5 0.9148 0.9114 0.9036 0.9076 0.9472 0.9472 0.9436 0.9436
D6 0.9548 0.9536 0.9780 0.9854 0.9804 0.9902 0.9578 0.9586
D7 0.7104 0.7046 0.7258 0.7232 0.6886 0.6994 0.7096 0.7156
D8 0.7934 0.7968 0.8258 0.8398 0.8562 0.8638 0.7930 0.8094

Support Vector Machine (SVM). In this table, the result of using ranking fea-
ture is marked with ‘*’. The italic and bold numbers indicate the best result in
the context of same classifier and dataset, respectively. According to this table,
Random Forest achieves the best result. Furthermore, using ranking feature en-
hances the performance in 26 out of 32 tests (81%). A paired t-test also reveals
that the improvement is statistically significant (p=0.0012). Such result confirms
the effective role of ranking factor in classifier-based instance matching.

4 Conclusion

The experiment result shows that our proposed feature is promising. For further
research, we are interested in two directions. The first one is to train the models
of the ranking feature and the classifier simultaneously. The second one is to
model any ranking algorithm so that it can be combined with classifiers.

References

[1] Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE Trans. on Knowledge and Data Engineering 24 (9). pp. 1537–1555.
(2012)

[2] Gal, A., Roitman, H., Sagi, T.: From diversity-based prediction to better ontology
& schema matching. In: WWW’2016. pp. 1145–1155. (2016)

[3] Kejriwal, M., Miranker, D.P.: Semi-supervised instance matching using boosted
classifiers. In: ESWC’2015. pp. 388–402. (2015)

[4] Ngomo, A.C.N., Lehmann, J., Auer, S., Höffner, K.: RAVEN - Active learning of
link specifications. In: OM’2011. pp. 25–36. (2011)

[5] Nguyen, K., Ichise, R.: Linked data entity resolution system enhanced by config-
uration learning algorithm. IEICE Trans. on Information and Systems 99(6). pp.
1521–1530. (2016)

[6] Nguyen, K., Ichise, R., Le, H.B.: Learning approach for domain-independent linked
data instance matching. In: MDS’2012. pp. 7–15. (2012)

[7] Rong, S., Niu, X., Xiang, W.E., Wang, H., Yang, Q., Yu, Y.: A machine learning
approach for instance matching based on similarity metrics. In: ISWC’2012. pp.
460–475. (2012)

