
EXISTStential Aspects of SPARQL

Peter F. Patel-Schneider and David Martin

Nuance Communications
peter.patel-schneider@nuance.com, david.martin@nuance.com

The SPARQL 1.1 Query Language [1] permits patterns inside FILTER expres-
sions using the EXISTS construct, specified by using substitution. Substitution
destroys some of the aspects of SPARQL that make it suitable as a data access
language. As well, substitution causes problems in the SPARQL algebra and
produces counterintuitive results. Fixing the problems with EXISTS is best done
with a completely different definition that does not use substitution at all.

EXISTS is used inside FILTER constructs to determine whether a pattern matches
or does not match. EXISTS can be used to find people who do not have any
names, as in this example from the SPARQL specification [1, §8.1.1]:

SELECT ?person WHERE { ?person rdf:type foaf:Person . [1]
FILTER NOT EXISTS { ?person foaf:name ?name } }

Any SPARQL pattern can be used in an EXISTS, including subqueries, as in a
query to find people who know someone who knows more than 100 others:

SELECT ?person WHERE { ?person foaf:knows ?friend .
FILTER EXISTS { SELECT ?friend WHERE { ?friend foaf:knows ?y . }

GROUP BY ?friend HAVING (COUNT(*) > 100) } }

Definition The definition of EXISTS in SPARQL starts with a translation to
the SPARQL algebra [1, §18.2.2.2], replacing EXISTS{P} with exists(translate(P)).
The function exists is described as “exists(pattern) is a function that returns true
[iff] the pattern evaluates to a non-empty solution sequence.” [1, §18.5] The for-
mal definition of exists uses substitution into its argument

Substitute Let µ be a solution mapping.
substitute(pattern, µ) = the pattern formed by replacing every occurrence of
a variable v in pattern by µ(v) for each v in dom(µ). [1, §18.6]

Evaluation of Exists Let µ be the current solution mapping for a filter
and P a graph pattern: The value exists(P), given D(G) is true if and only
if eval(D(G), substitute(P,µ)) is a non-empty sequence. [1, §18.6]

Counterintuitive Results Blank nodes in the graph being queried often
produce counterintuitive results with EXISTS. In Query [1] the substitution is
performed for every node in the graph that has an rdf:type link to foaf:Person. If
one of these nodes is a blank node, say :Bill, the evaluation ends up matching
:Bill foaf:name ?name against the graph. As :Bill is a blank node, it acts like a

variable and can itself be mapped. As a consequence, no answers will be returned
from Query [1] for the graph

ex:John rdf:type foaf:Person ; foaf:name ”John” . [G]
:Bill rdf:type foaf:Person .

1

This counterintuitive result is particularly pernicious as it can occur any time a
FILTER variable is used to query the graph inside an EXISTS.

MINUS is also problematic inside EXISTS. One might expect the result of
SELECT ?x WHERE { BIND (:b AS ?x)

FILTER EXISTS { ?x :p :b . MINUS { ?x :p :b } } }
to be empty because any solution mapping on the left side of the MINUS is elim-
inated by the same mapping from right side. However, substitution replaces ?x
with :b so the two sides don’t share a variable and then, because of its definition
in SPARQL, the MINUS does not remove any solution mappings.

Substitution also interferes with SPARQL constructs that act like variable
bindings. One might expect that

SELECT ?x WHERE { ?x :p :b . [2]
FILTER EXISTS { ?x :p :b . { SELECT (:d AS ?x) WHERE { } } } }

has no solutions except for ?x mapped to :d because otherwise solutions from
?x :p :b, i.e., with ?x mapped to something other than :d cannot be joined to
solutions from SELECT (:d AS ?x) WHERE { }. However, the substitution
replaces ?x throughout with :d so the “variable” that comes out of the subquery
is not ?x but instead is whatever ?x was mapped to.

Implementations of SPARQL don’t produce all these counterintuitive results,
instead diverging from the specification, but some do produce some of them.

Semantic Anomalies The substitution for EXISTS does not distinguish be-
tween the different uses of variables in SPARQL constructs. It substitutes in
triples, as it needs to, and in expressions, which it also needs to, but it also
substitutes in other places. In Query [2] this ends up with solution mappings
that map non-variables to values, counter to the semantic definitions underlying
SPARQL.

This semantic anomaly happens in SELECT clauses, as above, but also in
BIND constructs like

SELECT ?x WHERE { BIND (:b AS ?x) BIND (:b AS ?y)
FILTER EXISTS { BIND (:j AS ?x) BIND (:k AS ?y) } }

and in VALUES constructs [4, errata-query-10]. In each case mappings are created
that do not conform with the definition of solution mappings in SPARQL.

Other semantic anomalies can also arise, as in
SELECT ?x WHERE { :b :p ?x . FILTER EXISTS { FILTER BOUND(?x) } }

where the BOUND function is applied to a non-variable, counter to its definition
in SPARQL.

Some of these anomalous situations have further problems, as in
SELECT ?x WHERE { BIND (:b AS ?x) BIND (:b AS ?y)

FILTER EXISTS { { SELECT (:d AS ?x) WHERE { } }
{ SELECT (:e AS ?y) WHERE { } } } }

Here both ?x and ?y end up being substituted as :b so the join between the
results from the subqueries ends up being empty, which is counterintuitive as
well as being semantically anomalous.

We have not found a SPARQL implementation that reports these semantic
anomalies. Either they silently allow illegal internal constructs or they silently
do something different from the specification.

2

Bottom-up Evaluation SPARQL is supposedly designed so that queries can
be evaluated “bottom-up [and] subqueries are evaluated logically first, and the
results are projected up to the outer query.” [1, §12] However, EXISTS is at odds
with this design because EXISTS substitution creates altered subqueries that did
not exist before the substitution. Because of this, for some queries the results of
an evaluation based on substitution will differ dramatically from those produced
by bottom-up evaluation, as exhibited by:

SELECT ?x WHERE { ?x :b ?y .
FILTER EXISTS { SELECT ?z WHERE { ?z :f ?y . } } }

The problem is particularly acute with uses of variables that would not con-
tribute to solution mappings, such as the nested use of ?y in the following. In
this query, the results prescribed by substitution not only differ from bottom-up
results, but they are also strongly counterintuitive, as in the query below where
no results will be returned because ?y is replaced, even though this variable does
not contribute mappings to the results returned from the inner query.

SELECT ?x WHERE { ?x :p ?y .
FILTER EXISTS { SELECT ?x WHERE { ?x :p ?y . }

GROUP BY ?x HAVING (COUNT(*) > 1) } }
There is a suggested erratum that these variables should not be subject to

substitution [4, errata-query-8]. Different implementations of SPARQL produce
different answers for these queries, as noticed by Hernndez et al [2]. They argue
that näıve substitution has many known problems and propose a notion of dif-
ferent kinds of variables that governs when substitution is to be applied. Their
solution solves problems related to substitution in subqueries but does not solve
the counterintuitive results related to MINUS and blank nodes.

Fixing the Definition To summarize, EXISTS produces counterintuitive re-
sults, generates semantic anomalies, hinders bottom-up evaluation, is not imple-
mented as specified, and has divergent implementations. The problem lies firmly
with substitute, which näıvely replaces variables with values even in places where
this substitution produces undefined algebra constructs or changes their mean-
ing. Making a more nuanced version of substitute that does not substitute in these
problematic spots is not possible without extensive changes to the SPARQL al-
gebra, because such approaches would leave variables incorrectly unconstrained
as, for example, in Query [1].

Given that a fixed version of substitute is not possible, is another kind of
definition of EXISTS a solution? Yes, a definition of EXISTS based on solution
mappings is possible. The core of this definition basically moves the FILTER
solution mapping to the beginning of the argument to EXISTS. For the solution
mapping {(?person, :Bill)} in [1] above, the EXISTS, in effect, evaluates

{ VALUES ?person { :Bill } ?person foaf:name ?name . }
(except that :Bill is a blank node in graph [G], which is not possible in VALUES).

The technical details of this fix to EXISTS are as follows:

1. Add a new construct, Initial, to the SPARQL syntax and algebra. Initial will
be used to set up the initial multiset of solution mappings inside an EXISTS.

3

It will work much like VALUES except that it will transfer solution mappings
through the EXISTS instead of setting up a constant solution mapping.

2. When collecting FILTER elements replace EXISTS{pattern} in the filter ex-
pression with exists(Initial(t),translate({Initial(t) pattern’})) where t is a fresh
token, and similarly for NOT EXISTS{pattern}. If pattern is a SubSelect then
pattern’ is {pattern} otherwise pattern’ is just pattern.

3. Translate Initial(t) as itself.

4. Change the definition of the exists function to:

Let µ be the current solution mapping for a filter, t a token, and P a graph
pattern: The value exists(Initial(t),P) given D(G) is true iff eval(D(G),P’)
is a non-empty multiset of solution bindings, where P’ is P with Initial(t)
replaced by {µ}.

This definition eliminates all the semantic anomalies resulting from EXISTS.
It also fixes the counterintuitive results above. It corresponds better to how
EXISTS behaves in SPARQL implementations. As well, under this definition all
subqueries in SPARQL queries can then be evaluated completely bottom up
and independently of anything outside of the subquery. In particular, subqueries
inside EXISTS can be evaluated before the solution mappings going into the
FILTER are known.

Variants of this definition are possible, for example, by adding Initial(t) to
the beginning of GroupGraphPatterns and not just at the top, that modify the
behaviour of EXISTS without reintroducing any semantic anomalies.

Pre-binding [3] is an operation provided by many SPARQL implementations
that creates a prepared query and then evaluates this query with a given initial
solution mapping. SPARQL implementations provide inadequate descriptions of
pre-binding so it is very hard to determine how it works in detail.

Pre-binding can be given a formal definition using the technique proposed
here for EXISTS. This version of pre-binding pushes a solution mapping into the
query by adding Initial(0) to the WHERE clause as in Point 2 evaluates the
resulting query in the same way that EXISTS is evaluated.

The definition of EXISTS proposed here eliminates the counterintuitive results of
SPARQL, avoids producing any semantic anomalies, and makes SPARQL more
suitable as a data access language. It is in all ways better than the current
substitution definition.

References

1. Steve Harris and Andy Seaborne. SPARQL 1.1 query language. W3C Rec.,
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/, 21 March 2013.

2. Daniel Hernndez, Claudio Gutierrez, and Renzo Angles. Correlation and substitu-
tion in SPARQL. https://scirate.com/arxiv/1606.01441, 7 June 2016.

3. Jena Class QueryExecutionFactory. https://jena.apache.org/documentation/...
/QueryExecutionFactory.html, retrieved 21 June 2016.

4. Errata in SPARQL 1.1. https://www.w3.org/2013/sparql-errata, 30 January 2016.

4

