
Visualizing Semantic Table Annotations with
TableMiner+

Suvodeep Mazumdar and Ziqi Zhang

Department of Computer Science, University of Sheffield
211 Portobello, Sheffield, UK

{s.mazumdar,ziqi.zhang}@sheffield.ac.uk

Abstract. This paper describes an extension of the TableMiner+ sys-
tem, an open source Semantic Table Interpretation system that annotates
Web tables using Linked Data in an effective and efficient approach. It
adds a graphical user interface to TableMiner+, to facilitate the visualiza-
tion and correction of automatically generated annotations. This makes
TableMiner+ an ideal tool for the semi-automatic creation of high-quality
semantic annotations on tabular data, which facilitates the publication
of Linked Data on the Web.

Keywords: Web table, Named Entity Disambiguation, Semantic Table
Interpretation, table annotation, Linked Data

1 Introduction

Recovering semantics from the growing amount of tabular data on the Web is
a crucial task in realizing the vision of the Semantic Web. Traditional search
engines perform poorly on such data, as they fail to recover the semantics of
tabular structures [1, 2]. Recent years have seen an increase in the research on
Semantic Table Interpretation [1, 4, 2, 5], which annotates relational tables using
schema and entities defined in a reference knowledge base. The process (1) links
entity mentions in content cells to named entities; (2) annotates columns with
concepts if they contain entity mentions, or properties of concepts if they contain
data literals; and (3) identifies the semantic relations between columns.

TableMiner+ [6] is such a method adopting an incremental, bootstrapping
approach that starts by creating preliminary and partial annotations of a table
using ‘sample’ data, then using the outcome as ‘seed’ to guide interpretation of
remaining contents. It has been implemented as open-source software (as part
of the STI library1), however, the system is lacking an intuitive user interface,
which has made it difficult to be used by an average person with limited technical
knowledge.

This work implements a graphical user interface specifically for TableMiner+,
to make it an easy-to-use tool for annotating Web tables using Linked Data, and

1 https://github.com/ziqizhang/sti



2 Lecture Notes in Computer Science: Authors’ Instructions

also extend it by enabling users to visualize and correct the generated annota-
tions and Linked Data triples. As a result, data publishers can use TableMiner+

for transforming tabular data on the Web into high-quality Linked Data, or
creating gold-standard for experiment purposes.

2 Related Work

Recent years have seen an increasing number of work on Semantic Table Interpre-
tation, such as Venetis et al. [3] that uses a maximum likelihood model; Limaye
et al. [1] that uses a joint inference model; Mulwad et al. [2] that uses joint in-
ference with semantic message passing; TableMiner [5] and TableMiner+[6] that
adopt an bootstrapping approach starting by creating preliminary annotations
of a table using automatically selected ‘sample’ data in the table, followed by a
message passing process that iteratively refines the preliminary annotations to
create the final optimal results. These methods differ in terms of the inference
models, features and background knowledge bases used. As discussed before,
existing tools remains difficult to use due to the lack of a user friendly interface.

3 Description of the TableMiner+ Application Interface

We use the TableMiner+ implementation distributed as part of the STI library
as basis for this work. The STI library provides an implementation of the system
introduced in Zhang [6], and a few baseline systems. The library is implemented
in Java, and uses DBpedia as the knowledge base. Currently, a Web-based in-
terface consisting of two components are implemented: one that lets users to
define, configure and start a table annotation task; and the other that lets users
to visualize and correct annotation results. In both cases, interaction is achieved
via a Web browser.

3.1 Starting a table annotation process

The interface for starting a Semantic Table Annotation task is illustrated in
Figure 3.1 (top)2. Users firstly select a Webpage containing relational tables that
are to be annotated. A preview of the Webpage is shown and the list of tables
potentially containing relational data is highlighted. The users then select the
tables they wish to annotate. They can also configure the system to alter settings
such as feature weights and knowledge base query constraints. The users may
provide an email address to subscribe for automatic alert when the annotation
task completes. When the users are satisfied with the configuration and the
input, they click the button to start the task, which will create annotations in
JSON format. These will be interpreted and displayed using the visualization
component described below.

2 Follow https://github.com/ziqizhang/sti/tree/master/ui for a demo and on how to
use



Visualizing Semantic Table Annotations with TableMiner+ 3

Fig. 1. User interface: (top) starting an annotation task; (bottom left) annotated table;
(bottom right) a graph visualisation of candidate annotations for users to select

3.2 Visualization and correction of annotations

The JSON files are then passed onto the visualization component, which consists
of two interactive elements: an annotated table and a graph visualization module.

The annotated table is the first point of interaction with the user, and
presents the original table, annotated with the entities, concepts and relations
identified by TableMiner+. The first step for the UI is to investigate the header
cells of the table - TableMiner+ creates a set of candidate concepts that best
describe the header and the data in the column. Each associated concept has a
score indicating the system’s confidence. This set of candidate concepts is pre-
sented as a dropdown with the scores (Figure 3.1 section B). Users can select
any of the concepts to indicate a more appropriate annotation by clicking on the
respective concept. Table cell annotations can be visualized in the same way. As
can be seen from the figure, some entities have already been recognized, while
some haven’t. In case the user can provide a URI that is appropriate for any
missing annotation, this can be done by double clicking the relevant cell, which
will provide a prompt for a text input. Further SPARQL queries can be triggered
to the respective endpoints (based on the user customisations) that can identify
any missing annotations.

The next aspect of the UI is the graph visualization, which is invoked from
the ‘inspect’ button on the first cell of each table row. As an example, the header



4 Lecture Notes in Computer Science: Authors’ Instructions

and it’s relevant candidate concepts have been plotted as a graph in Figure 3.1.
Header cells are shown as nodes labelled with the header columns (0-3), while
the candidate classes are shown as nodes, linked with header elements. The
most relevant class is shown with a strong link, while the others are presented as
dashed lines. Clicking the dashed ones annotate the relevant header cell with the
respective concept, which will then confirm the change with a strong link (here,
a straight thick line). Header cells are also linked with each other with dashed
lines, which is interpreted as only an indicative relation. However, if TableMiner+

creates any relations between the columns, it is reflected as straight lines as can
be seen in Figure 3.1.

The proposed demo will follow the process of identifying a web page, down-
loading and extracting tables and then the annotation process itself. Finally,
the annotations will be visualized with the TableMiner+ UI, enabling users to
correct and provide any missing information.

4 Conclusion

This paper introduced a graphical user interface for TableMiner+ to facilitate the
semi-automatic creation of high quality Linked Data and annotations on Web
tables. Future work will extend the system to support, e.g., different knowledge
bases, other algorithms, fine-grained task definition that enable batch processing
and zoning on tables (e.g., specific columns).

Acknowledgement Part of this work is funded by ADD PROJECT HERE.
We also thank the ADEQUATe3 project team under the lead of Dr Tomas Knap
for contributing valuable design ideas.

References

1. Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and search-
ing web tables using entities, types and relationships. Proceedings of the VLDB
Endowment, 3(1-2):1338–1347, 2010.

2. Varish Mulwad, Tim Finin, and Anupam Joshi. Semantic message passing for gen-
erating linked data from tables. In International Semantic Web Conference (1),
Lecture Notes in Computer Science, pages 363–378. Springer, 2013.

3. Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. Recovering semantics of tables on the web.
Proceedings of VLDB Endowment, 4(9):528–538, June 2011.

4. Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q. Zhu. Understanding
tables on the web. In Proceedings of the 31st international conference on Conceptual
Modeling, ER’12, pages 141–155, Berlin, Heidelberg, 2012. Springer-Verlag.

5. Ziqi Zhang. Towards effective and efficient semantic table interpretation. In Pro-
ceedings of the 13th International Semantic Web Conference, pages 487–502, 2014.

6. Ziqi Zhang. Effective and efficient semantic table interpretation using tableminer+.
Semantic Web Journal, under open review with Tracking: 1339-2551.

3 http://www.adequate.at


