
Kanopy4Tweets: Entity Extraction and Linking for Twitter

Pablo Torres-Tramón Hugo Hromic Brian Walsh Bahareh R. Heravi Conor Hayes
Insight Centre for Data Analytics @ NUI Galway

{fistname.secondname}@insight-centre.org

ABSTRACT
Named Entity rEcognition and Linking (NEEL) from text
is an essential task in many Natural Language Processing
(NLP) applications because it enables a better understand-
ing of the content. However in the context of Social Me-
dia, NEEL is challenging due to the higher level of writ-
ing mistakes, fast language dynamics and often lack of con-
text. To this end, we adapted Kanopy – an unsupervised
graph-based topic disambiguation system – to be used for
the task of NEEL in the domain of Twitter, a fast-paced
micro-blogging platform. We describe the design of our solu-
tion and report the results obtained by our system using the
official corpus of Tweets for the NEEL 2016 Challenge [10].

Keywords
Information Extraction, Twitter, Entity Linking

1. INTRODUCTION
We designed our system, Kanopy4Tweets, inspired on

Kanopy [7], an approach that interlinks text documents
with a knowledge base such as DBpedia using relations
between concepts and their neighbouring graph structure.
Kanopy is able to discover rich knowledge that is not di-
rectly extracted from the text itself without the need of a
training phase. In NEEL [10], there are two main steps: (1)
named entity recognition and (2) entity linking. The first
is well understood in the literature [2, 4, 5, 6], however the
latter remains challenging and we use Kanopy for this pur-
pose. However, it was not designed for Twitter text, hence
we need to adapt the approach to be used for this popular
micro-blogging platform.

2. KANOPY4TWEETS
Our system must deal with Tweets, very noisy and short

pieces of text. Kanopy was not intended for this type of con-
tent, hence we need to adapt it. Kanopy has three stages:
Name Entity Recogniser (NER), Entity Linking and Entity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

Disambiguation. We need to adapt each one of them in order
to process tweets.

2.1 Named Entity Recognition
We integrated a NER specially designed for Twitter into

Kanopy based on the well-known GATE NLP Framework [4].
In GATE, pipelines for information extraction (IE) can be
built using combinations of processing resources (PR) such
as tokenisers, named entities extractors, POS taggers, lan-
guage detectors, ontologies, gazetteers and many more.

In recent versions, GATE now includes a ready to use
Twitter-specific pipeline for IE called TwitIE [2]. It uses
fine-tuned PRs for Twitter text, with the NER PR being the
most heavily adapted for Twitter data. This NER is based
on the state of the art Stanford NER [6] – which is based on
Conditional Random Fields (CRF) models – and also incor-
porates many findings from the work of Ritter et al. [9]. The
most challenging Twitter text processing tasks addressed by
TwitIE are normalisation of slang, mis-spellings, emoticons
and entity disambiguation [5].

To integrate GATE into Kanopy4Tweets we use an em-
bedded engine in an optimised multi-threading REST API
server. This server operates in two recognition modes: (1)
the TWITTER mode uses the above described TwitIE
pipeline for text processing, and (2) the NORMAL mode
uses the standard ANNIE pipeline included in GATE for
regular text processing. Those two modes are used during
the on-line Tweet processing and the off-line DBpedia in-
dexing stages respectively. More details are in Section 3.

2.2 Named Entity Linking
We built a DBpedia index using a selection of datasets in

order to find suitable resource candidates for each extracted
named entity. The datasets used in our system are: 1 DBpe-
dia ontology, mapping based types, mapping based properties,
titles, short abstracts, article categories, categories(labels),
categories(skos) and redirects.

We stored the DBpedia datasets in a single binary file
using the HDT RDF format [1]. This is a binary repre-
sentation of RDF data that uses compact structures while
allowing fast search functionality without the need of de-
compression. This type of storage has a number of benefits.
For example, HDT allows to quickly browse the datasets for
a particular object, subject or predicate at a glance. We
processed all the mentioned DBpedia datasets and indexed
a subset of resource properties (e.g. title, abstract, redirect,
disambiguation, etc.) that best describe them.

1From: http://dbpedia.org/Downloads2015-04/

Copyright c© 2016 held by author(s)/owner(s); copying permitted
only for private and academic purposes.
Published as part of the #Microposts2016 Workshop proceedings,
available online as CEUR Vol-1691 (http://ceur-ws.org/Vol-1691)

#Microposts2016, Apr 11th, 2016, Montréal, Canada.

· #Microposts2016 · 6th Workshop on Making Sense of Microposts · @WWW2016

http://ceur-ws.org/Vol-1691
http://ceur-ws.org/Vol-1691

After the index is built, we use the named entities found by
our NER component to query DBpedia. For each entity we
obtain a list of resource candidates using the following top-
down strategy: first, we search a resource with exactly the
same title property as the name entity. If a result is found,
we use it immediately for the next stage as a candidate,
otherwise we query again the index looking for a resources
with a title similar to the named entity. Again, if we find
some candidates we use them for the next stage. Each time
we query the index we use a query that is more general than
the previous one. The last query finds matches of the named
entity in the abstract property. This process stop when at
least one candidate is selected. If we found no candidates,
the named entity is assgined as a NIL resource. 2

One challenge we found using this approach is that the
number of found resource candidates tends to be large, in-
creasing the processing time for the disambiguation stage.
In such situations, we reduce the number of candidates by
ranking them according to the document score assigned by
the indexing engine (details in Section 3) and selecting the
top-k elements.

2.3 Named Entity Disambiguation
The selected resource candidates for each named entity

found in a Tweet are processed by Kanopy in an unsuper-
vised graph-based approach for joint disambiguation that
combines the same datasets mentioned in Section 2.2, result-
ing in a graph of linked resources [7]. In this graph, nodes
are DBpedia resources and edges are weighted by the ex-
clusivity of the DBpedia link type with respect to both the
source and target resource nodes.

The disambiguation process takes as input a list of named
entities, each containing a list of candidate DBpedia re-
sources after the linking stage. The output is the selection of
the best candidate resource for each input named entity. For
this, relatedness of the candidates with respect to the can-
didate resources of all the other entities is calculated based
on the number of paths between the resources weighted by
the exclusivity of the edges of these paths [8].

The input named entities are then jointly disambiguated
and linked to the candidate resources with the highest com-
bined relatedness. This process is fully detailed in [7]. The
score assigned by during the indexing step is used as a tie
breaker in the case of multiple combinations of candidates
scoring equal relatedness or in the case of tweets containing
a single entity.

2.4 NIL Resources Clustering
When no resource in the knowledge base can be found

to be linked to a named entity, a NIL resource is assigned.
However, we might have sets of unlinked named entities that
can be similar under some criteria. Hence we are interested
on further clustering all the found NIL-linked named entities.

For this clustering, we use the following hierarchical and
incremental simple approach: we iterate over each NIL-linked
entity and aggregate them into clusters one by one. The first
element is assigned into an initial cluster, then the next item
is compared to the previous ones using the Monge-Elkan
similarity measure [3]. This process is repeated for all the
NIL-typed entities. If the similarity between an item and a
clusters centroid is above a fixed threshold, the item is added

2A place-holder resource for unknown subjects.

to the cluster with the highest similarity. If no current clus-
ter can be found with a similarity above the threshold, a new
cluster for the item is then created. The choice of threshold
was empirically determined.

3. IMPLEMENTATION
Kanopy4Tweets has two different pipelines as shown in

Figure 1. The first pipeline is used during a one-time initial
off-line processing, while the other is used during the normal
on-line processing of input Tweets.

Off-line Pipeline.
As seen in Figure 1, the off-line pipeline starts with a list

of input datasets to create a single HDT file. The num-
ber of datasets depends on the context of the task. In our
case, we selected a small number of datasets that are mostly
composed by text but we discarded those containing RDF
literals. Furthermore, each output RDF triple is filtered in
order to decide whether it should be included for indexing
or not. For example, titles, redirections and disambiguation
links are among the key properties considered.

One fundamental resource property used is the short ab-
stract. For this attribute, we use our NER service in NOR-
MAL mode to extract named entities to be used for index-
ing. On the other hand, the HDT file is also the input for
the graph building. As mentioned in Section 2.2, this graph
contains all the DBpedia resources that are indexed.

Both processes, the index and graph creation, are slow
and usually take a few hours to complete. However the off-
line pipeline is only required to run if the knowledge base
is modified. For the indexing engine we use Elastic 3 and
for handling the graph we use Neo4j 4. Both solutions offer
high performance and robustness.

On-line Pipeline.
The on-line pipeline is the main process that reads an

input TSV file, extracts a list of Tweets and generates an
ouput TSV file with the found linked named entities, all as
shown in Figure 1. Each input Tweet is sent to our NER
service in TWITTER mode and the returned list of named
entities are labelled according to their function of in the text.
Next, each named entity is used to search the index and a
list of candidates is generated. Later, the Tweet is sent to
the disambiguation service that determines which candidate
DBpedia resources are best suited for the Tweet and named
entity. If the link to an entity can not be determined, the
named entity is goes to the NIL clustering component where
it assigned a numbered NIL cluster.

NER Component.
Regardless of the NER operation mode (which is defined

per instance), the REST API exposes a single POST method
for entity extraction from text. This method accepts an ar-
ray of texts to process and returns an array of the same
texts including a per-text array of found named entities.
These entities returned contain the position indices in the
text where they are located, their class and any meta-data
that the GATE pipeline identified, i.e. first and last names
for a Person class or additional data from a gazetteer for Lo-
cations, among others. This meta-data can be later used to

3http://www.elastic.co
4http://neo4j.com

· #Microposts2016 · 6th Workshop on Making Sense of Microposts · @WWW2016 65

Figure 1: Diagram of the solution proposed

refine and/or further disambiguate the initially found named
entities. The returned entities classes belong to the set of
annotations available in the TwitIE and ANNIE pipelines:
Hashtag, UserID, URL, Address, Date, Identifier, Loca-

tion, Money, Organization, Percent, Person and Phone.

When operating in NORMAL mode (using ANNIE), the
Hashtag, UserID and URL classes are never returned.

4. RESULTS AND CONCLUSION
We evaluated Kanopy4Tweets using the NEEL 2016

dev and training datasets. The results for each dataset
are shown in the table 1. The three measures used to eval-
uate our system are: i) Strong-typed Mention Match
(SMM) is a micro-averaged evaluation of entity mentions
including the entity offset and type, ii) Strong Link Match
(SLM) is a micro-averaged evaluation of links, iii) Men-
tion Ceaf (MC) is based on a one-to-one alignment be-
tween system and gold entity clusters.

Table 1: Precision (Pr), recall (Re) and F1-score (F1) for
each dataset and measure.

Dataset Pr Re F1 Pr Re F1

SMM SLM
dev 0.334 0.355 0.344 0.491 0.324 0.390

training 0.435 0.459 0.447 0.386 0.330 0.355

MC

dev 0.802 0.793 0.798
training - - -

We presented Kanopy4Tweets, a system for NEEL of
Twitter data. Our approach uses Kanopy, an unsupervised
system that exploits the graph structure of DBpedia in or-
der to disambiguate a list of candidate resources for named
entities. Furthermore, our system implements a hierarchi-
cal clustering approach for grouping unlinked named entities
according to their textual similarity.

Our results reported a relatively poor performance, how-
ever we believe this is mostly because of the small number
of entities found in the Tweets and the hardness of lack of
context in Twitter data. In addition, hashtags (words used
by users to tag their Tweets) and user mentions require fur-
ther special considerations in the NER phase. Finally, we
want to investigate better approaches for traversing the dis-
ambiguation graph.

5. ACKNOWLEGMENT
This publication has emanated from research conducted

with the financial support of Science Foundation Ireland
(SFI) under Grant Numbers SFI/12/RC/2289 and 14/TIDA
/2419, and National University of Ireland Galway under the
Hardiman Scholarship.

6. REFERENCES
[1] M. Arias et al. Hdt-it: Storing, sharing and visualizing

huge rdf datasets. In 10th International Semantic Web
Conference (ISWC 2011), 2011.

[2] K. Bontcheva et al. Twitie: An open-source
information extraction pipeline for microblog text. In
RANLP, pages 83–90, 2013.

[3] W. Cohen et al. A comparison of string metrics for
matching names and records. In Kdd workshop on
data cleaning and object consolidation, volume 3,
pages 73–78, 2003.

[4] H. Cunningham. Gate, a general architecture for text
engineering. Computers and the Humanities,
36(2):223–254, 2002.

[5] L. Derczynski et al. Microblog-genre noise and impact
on semantic annotation accuracy. In Proceedings of the
24th ACM Conference on Hypertext and Social Media,
pages 21–30. ACM, 2013.

[6] J. R. Finkel et al. Incorporating non-local information
into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages
363–370, 2005.

[7] I. Hulpuş et al. Kanopy: Analysing the semantic
network around document topics. In Machine
Learning and Knowledge Discovery in Databases,
pages 677–680. Springer, 2013.

[8] I. Hulpuş et al. The Semantic Web - ISWC 2015,
Proceedings, chapter Path-Based Semantic Relatedness
on Linked Data and Its Use to Word and Entity
Disambiguation, pages 442–457. 2015.

[9] A. Ritter et al. Open domain event extraction from
twitter. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1104–1112. ACM, 2012.

[10] G. Rizzo, M. van Erp, J. Plu, and R. Troncy. Making
Sense of Microposts (#Microposts2016) Named Entity
rEcognition and Linking (NEEL) Challenge. In 6th
Workshop on Making Sense of Microposts
(#Microposts2016), pages 50–59, 2016.

· #Microposts2016 · 6th Workshop on Making Sense of Microposts · @WWW2016 66

