
A document-centric approach for developing the tolAPC
Ontology
Aisha Blfgeh 1,2∗, Jennifer D. Warrender 1, Catharien M. U. Hilkens 3 and
Phillip Lord 1

1School of Computing Science, Newcastle University.
2School of Computer Science and Information Technology, King Abdulaziz University, Jeddah,
Saudia Arabia.
3Institute of Cellular Medicine, Newcastle University.

ABSTRACT
Motivation: There are many challenges associated with ontology
building, as the process often touches on many different subject
areas; it needs knowledge of the problem domain, an understanding
of the ontology formalism, software in use and, sometimes, an
understanding of the philosophical background. In practice, it is very
rare that an ontology can be completed by a single person, as they
are unlikely to combine all of these skills.

So people with these skills must collaborate. One solution to this is
to use face-to-face meetings, but these can be expensive and time-
consuming for teams that are not co-located. Remote collaboration is
possible, of course, but one difficulty here is that domain specialists
use a wide-variety of different “formalisms” to represent and share
their data – by the far most common, however, is the “office file” either
in the form of a word-processor document or a spreadsheet.

We consider here, how to use a highly-programmatic and pattern
driven development to enable direct incorporation of office technology
into the ontology pipeline. Specifically, we are developing an ontology
of immunological cell types using spreadsheets. We also consider
how this could be extended to other tools and environments.
Results: We have developed a new ontology, built by instantiating
ontology design patterns written programmatically, using values
from a spreadsheet catalogue of cell types. The spreadsheet was
developed by domain experts, is unconstrained in its usage and can
be freely updated, resulting in a new ontology. This provides a general
methodology for working with data generated by domain specialists.
Availability:

The software tool, Tawny-OWL, is available from http://

github.com/phillord/tawny-owl. The tolAPC ontology is
currently not available.
* Contact: a.blfgeh1@newcastle.ac.uk, abelfaqeeh@kau.edu.sa

1 INTRODUCTION
Ontologies have been used extensively to describe many parts
of biology. They have two key features which make their usage
attractive: first, they can provide a mechanism for standardizing and
sharing the terms used in descriptions, and secondly, they provide a
computationally amenable semantics to these descriptions, making
it possible to draw conclusions which are not explicitly stated.

Ontologies are increasingly used to facilitate the management of
knowledge and the integration of information as in the Semantic
Web [4]. Biological data is not only heterogeneous but requires
special knowledge to deal with and can be large [22]. Ontologies
are good for representing complex and potentially changeable

knowledge. Therefore, they are widely used in biomedicine
with examples such as the Gene Ontology [3], ICD-10 [1] or
SNOMED [10] being the best known.

However, building an ontology is a challenging task [14].
Ontologies use a complex formalism (such as OWL for instance)
especially when modelling complex domain area such as biology or
medicine. Moreover, normally ontology building is a collaboration
between domain specialists and ontology developers. However, any
form of multi-disciplinary collaboration is difficult. In the case, for
example, of the Gene Ontology, these challenges were addressed
through explicit community involvement using meetings, focus
groups and the like [2]. Other methodologies have adopted a more
distributed approach [6].

It is, perhaps, because of these challenges that, despite the
computational advantages of ontologies, the oldest and most
common form of description in biology is free text, or a semi-
structured representation through the use of a standardised fill-in
form. These representations have numerous advantages compared
to ontologies: they are richly expressive, widely supported by
tooling and while the form of language used in science (“Bad
English” [31]) may not be easy to use, understand or learn, it is
widely taught and most scientists are familiar with it. Similarly,
most biologists are familiar with the tools used for producing free-
text and forms, either a word-processor document or a spreadsheet.
Tools for producing this form of knowledge are wide-spread, richly
functional both in application and cloud-delivered form, and support
highly collaborative development.

The ontology community, conversely, has largely built its own
tool-chain for development. Tools such as Protégé are highly
functional in their own right, but have a user interface which is
far removed from those that biologists are used to. There have
been several responses to this problem. First, it is possible to
take existing ontology tools and customize them for use within a
specific community, so that they have a familiar look and feel;
this is the approach taken by iCAT – a version of WebProtégé
built explicitly for the ICD-11 community [25]. A second approach
is to enable existing ontology tools to ingest office documents;
for example, Cellfie is a Protégé plugin which can transform a
spreadsheet into an OWL ontology, which can then be developed
further; however this is a one-off process – once ingested, the data
in the spreadsheet is converted into OWL; further updates cannot be
made using the original spreadsheet formalism. Finally, tools such
as RightField [30] and Populous [12] add ontological features to
office documents, by allowing selection of spreadsheet cells from a

1



A. Blfgeh et al

controlled vocabulary, followed by export to OWL using OPPL [5]
to express the patterns used in the transformation [13].

These tools, however much they support the use of office
software, at some point require leaving this software and moving
into an ontology specific environment. We have developed a new,
highly-programmatic environment for ontology development called
Tawny-OWL [14]. With this approach the ontology is developed
as programmatic source code, which is then evaluated to generate
the final ontology, either in memory or as an OWL file. This offers
a new methodology. In this research, we developed a document-
centric workflow centred on the use of office tooling to construct
the ontology; biologists generate and maintain their dataset in
an unconstrained Excel spreadsheet; we then use this spreadsheet
directly as part of our source code, driven by Tawny-OWL. In
this model, we can apply arbitrary validation and transformation of
the data held in the spreadsheet, into an ontological form. As the
spreadsheet is now part of the source code, rather than being used as
knowledge capture interface, it can be freely updated and the final
ontology regenerated.

In this paper, we describe the application of this methodology to
the generation of a catalogue of immunological cell types, called
the tolAPC catalogue. We discuss the background technology, the
design decisions that we have faced and the general implications
that this approach has for ontology development.

2 BACKGROUND
The tolAPC catalogue is a list of immunological cell types. It has
been captured as part of the EU Cost Action BM1305 (A-FACTT)
which is aimed at increasing data sharing and collaborative working
across the community [24]. These cell types have been “tolerized”
– that is treated so that they suppress the immune response –
and have been created with the intention that they will be used
therapeutically in a variety of situations including: the treatment
of auto-immune disease such as rheumatoid arthritis; or to reduce
rejection following transplantation [7]. Information about these cells
is, therefore, high value. The tolAPC catalogue contains extensive
details about these cell lines, including 9 “sheets” of data. The
catalogue has been created as an Excel spreadsheet, although it uses
the spreadsheet only to represent tabular information (i.e. there is no
use of equations or calculation in the spreadsheet). The spreadsheet
has been created by individual scientists freely; that is, there is no
formal constraint on the legal set of values in each cell, just the
social convention of copying previous cells.

Tawny-OWL is a fully programmatic development environment
for OWL. It has been implemented in Clojure, which is a dialect of
lisp, running on the Java Virtual Machine. It wraps the OWL-API [8]
which performs much of the actual work, including interaction with
reasoners, serialisation and so forth. Tawny-OWL has a simple
syntax which was originally modelled on the Manchester OWL
notation [9], modified to conform to standard Clojure syntax and
to increase regularity [15]. For example, we can create a new class
with an existential restriction as follows:

(defclass A :super (some r B))

Or, we can define a new individual with a property assertion:

(defindividual i :fact (is r j))

As a domain specific language embedded in a full programming
language, we also gain all the features of that environment; for
instance, we can create arbitrary patterns simply by using a Clojure
function. Consider for example:

(defn some-only [property & classes]
(list (some property classes)

(only property
(or classes))))

Here defn introduces a new function, property & classes
are the arguments, and list packages the return values as a
list. some, only and or1 are defined by Tawny-OWL as the
appropriate OWL class constructors. This allows a definition
specifying an existential relationship with a closure axiom as
follows:

(defclass D :super (some-only r A B))

We also gain access to the full Clojure infrastructure: we can edit
and evaluate terms in a power editor or IDE 2; write unit tests and
run them through a build tool, publish and version using git, and
continuously integrate our work with other ontologies.

We have previously used this functionality to create the
karyotype ontology which is generated from a series of interlocking
patterns [28], parameterised using literal data structures in the
source code. The karyotype ontology is highly patternised, with
almost all of the classes coming from a single large pattern.

As a full programming environment, Clojure can also read and
parse arbitrary data formats, which can operate as additional source
during the generation of the ontology. We have previously used
this to scaffold a mitochondrial ontology from a varied set of input
files [27], or to add multi-lingual annotation using key=value
properties files to the pizza ontology. We have also used this
technology with a spreadsheet to specify a set of ontological unit
tests for the karyotype ontology [29]. In this case, the values in
the spreadsheet are used to generate a set of OWL classes which
are then checked for correct subsumption using a reasoner. In this
case, however, these ontological statements are used only as part
of a test suite, rather than intended for downstream usage, and the
spreadsheet was created specifically for this purpose.

3 BUILDING THE TOLAPC ONTOLOGY
The data for the tolAPC catalogue was captured directly in a
spreadsheet largely co-ordinately through email. As a pre-existing
resource, it made little sense to rewrite directly in OWL either
using Protégé or Tawny-OWL– to do so would have resulted in
transcription errors, and made updates more complex. However, as
described in Section 2, we have all the components that we need to
build an ontology directly from a spreadsheet.

In this section, we describe the issues that have arisen during the
process which can conceptually be split into three phases 3:

1 We have elided namespaces: or and some are also core Clojure functions.
2 We use Emacs but there is rich support in Vim, Eclipse, IntelliJ, or
LightTable
3 In practice, the tolAPC ontology is developed iteratively.

2



A document-centric approach for developing the tolAPC Ontology

1. Extraction

2. Validation

3. Ontologisation

The extraction phase is straight-forward. Clojure offers a number
of libraries capable of reading a spreadsheet. In the case of the
tolAPC catalogue, we read the spreadsheet using the Docjure
library 4, accessed directly from the file system. It would be simple
and straight-forward to read from a network which would support
building ontologies from cloud hosted spreadsheets. Previously, for
performance reasons, we have read and then cached the results
of tests generated from a spreadsheet [29]; however, for the
tolAPC catalogue performance is such that the spreadsheet can be
read in full every time the environment is initialised, significantly
simplifying the development.

In the second phase, values extracted are validated against a set of
constraints specifying those which are legal. For many of the fields,
values are highly stereotyped having only a few different options;
for example, cells can either be Autologous or Allogeneic,
while expression levels can either be + or -. Currently, validation is
performed through the use of ad hoc testing – we expect to move
to a more formal data constraint language in future. The choice
of validation depends on the requirements and modelling choices
made, which will be discussed later.

In the third phase, values are “ontologised”. The top level of
the ontology which provides what we describe as schema terms
is written by hand using Tawny-OWL. In the case of the tolAPC
catalogue, this includes terms such as CellType, Species and
AntigenLoad. Next, a set of patterns is defined using these
schema terms. Finally, these patterns are instantiated using the
values from the second phase, generating entities that we call
patternised terms.

During the development process, both reasoning and manual
inspection of the created ontology is used to ensure that the process
is happening as expected; for the latter process, the ontology is saved
to file and examined, either in the Clojure development environment
or within Protégé, as shown in Figure 1.

We next discuss the modelling issues that have arisen.

4 MODELLING IN THE TOLAPC ONTOLOGY
All entities in the ontology need to be represented by an
IRI. Two broad schemes are used to generate IRIs: semantics
free identifiers which are generally numeric; and semantically
meaningful identifiers which are normally derived from the common
name for the entities. Generally, the latter are easier to work with,
while the former are easier to keep stable over releases.

Currently, for the tolAPC ontology, schema terms have IRIs
which reflect their names (CellType uses an IRI with a fragment
of “CellType”), while patternised terms use an ad hoc schema based
on several of their properties (a single property is not enough to
ensure uniqueness). If we wish to re-evaluate this situation at a later
date, however, Tawny-OWL simplifies the situation; we can easily

4 https://github.com/mjul/docjure

Fig. 1. tolAPC ontolgy displayed from Protégé screen.

allocate IRIs to entities according to any scheme that we choose, by
changing a single function.

A recurrent issue in ontology modelling is whether to use
classes or individuals; within the tolAPC ontology, we faced this
question for cell types. There are a number of different criteria
for making this decision [23]. We considered briefly a “realist”
perspective: modelled as a single entity, cell types are probably
best represented as a metaclass, akin to a taxonomic species [21];
modelling as multiple entities (differentiating between the protocol
and the cell type produced) would also be possible. However,
there appears to be no clear principle to distinguish between
these options. Similar problems also arise for proteins/cell-surface
markers which are described in the ontology. As an additional
problem, these representations introduce considerable unnecessary
complexity [17].

We considered therefore the needs of our application: it seems
unlikely that we will ever need subclasses of a cell type, but might
reasonably wish for cell types to be unique – to state that two cell
types are necessarily the same individual. For these reasons, we
model cell types as individuals.

The tolAPC ontology largely models a set of cell types, with the
rest of the ontology designed to support these descriptions. The
ontology, as a result, contains very little hierarchy, and is at the
extreme end of a normalised ontology [19]. Cell types are defined
as individuals with a large set of different property assertions, as can
be seen from the following definition:

3



A. Blfgeh et al

Fig. 2. Sample of Class Structure.

(individual cell-name
:fact (is fromGroup group)

(is hasLocation loc)
(is fromClinicalDisease clinic-disease)
(is fromSpecies from-species)
(is hasStatus stat)
(is hasType c-type)
(is hasDescription desc)
(is hasActivation active)
(is hasAntigenLoad anti-load)
(is itsOrigin cell-org)
(is withStartMaterial start-material)
(is hasIsolation isol))

Here, cell-line, group, loc and others are variables,
therefore, this definition describes a pattern. fromGroup,
hasLocation and others are specific object properties from the
schema terms of the ontology. individual, :fact: and is are
part of Tawny-OWL syntax. The whole definition defines a new cell
type, and its association with a set of individuals.

The values of the property assertions fall into one of three main
categories.

Open but Limited: Many properties support a very limited,
but nonetheless open, range of values. Examples of these are
withStartMaterial which describes the tissue or part of the
tissue from which the cells are derived. These values are modelled
as disjoint classes, explicitly stated in the ontology. Although, we
could have used an external ontology at this point, as only a few
options are actually used, we have not imported one. The same
principle applies to Species, as the cells are extracted from only
three species.

Constrained Partition: Many properties support an exact
number of options. These are modelled using a Value Partition [20].
Fortunately, Tawny-OWL provides explicit support for this design
pattern, which allows a relatively succinct definition. An example
of this is CellOrigin which is defined as follows:

(defpartition CellOrigin
[[Allogeneic
:comment "Allogeneic is a cell from

a donor blood"]
[Autologous
:comment "Autologous is a cell from

a patient own blood"]])

Fig. 3. N-ary Relation in tolAPC ontology.

Fig. 4. Workflow using Excel spreadsheet and Tawny OWL Patterns.

Unconstrained Values: Some properties have unconstrained
values such as Location, Group (i.e. the people responsible for
the cell type) or AntigenLoad. These are currently modelled as
individuals, created on-demand.

In addition to these three main categories, we are adding
phenotype descriptors to the cell types, in terms of raised or lowered
expression levels. For these, we are modelling the expression levels
as a value partition, while the overall phenotype is modelled using
the N-ary relationship pattern [18], as shown in Figure 3.

5 DISCUSSION
In this paper, we have described the development of the tolAPC
ontology, describing data about immunological cell types. This
ontology is unusual in that it is derived directly from another
data resource, the tolAPC catalogue which is maintained as an
Excel spreadsheet. Essentially, the ontology provides context and
semantics to data which is available in another form.

The value of recasting a spreadsheet into a form with strong
machine interpretable semantics is obvious, but there are less
apparent virtues arising from the process. In the initial validation
step, for example, we have had to clarify parts of the tolAPC
catalogue which are otherwise unclear. For example, one cell-line
is described as “Autologous/Allogeneic”. The original author intent
here is unclear: this could be intended to mean either autologous
or allogeneic (possible), both (probably inconsistent) or just the
absence of knowledge. Similarly the process of ontologisation
forces us to clarify some areas of the biology; including questions
about whether cell types produced by the same protocol at different
times are “the same” or otherwise, which touches on issues of
reproducibility. Where these issues have arisen, either the ontology
schema, patterns or the spreadsheet can be modified accordingly. As
shown in Figure 4, information flows in both directions between the
speadsheet and ontology.

4



A document-centric approach for developing the tolAPC Ontology

The development of the tolAPC ontology is a work in progress.
As can be seen from Table 1, while parts of the tolAPC catalogue
have been recast, there are significantly more spreadsheet cells
which need to be converted. However, while including machine
interpretable semantics is useful in its own right, we have not yet
addressed the issue of interoperability with other ontologies. For
example, concepts such as “species” and “clinical disease” have
clearly be described in (many) other ontologies. Currently, these
terms are not reused inside the tolAPC ontology. At the current
time, we have not prioritized this process because confidentiality
restrictions on the tolAPC catalogue limit our ability to share the
results anyway. We do not expect the addition of this interoperability
to be complex though, as we can reuse the “scaffolding” process
described previously [27].

tolAPC Catalogue
Number of Sheets 9
Number of Cells 1181
Number of Cell types 15

tolAPC Ontology
Number of Classes 21
Number of Individuals 101
Number of relations 13

Table 1. Current Statistics of Excel sheet and tolAPC ontolgy.

This work is a further demonstration of the value of programmatic
and pattern-driven ontology development using the Tawny-OWL
library; it builds on earlier work on a karyotype ontology where
patterns are instantiated using in-code literal data structures, the
mitochondrial ontology which is scaffolded using a variety of
different input formats, or our reworking of SIO which patternises
a pre-existing ontology [26]. Patternization allows the development
of an ontology to be performed rapidly and repeatedly.

The fully programmatic environment also demonstrates its value,
as we have been able to add a new input format, even a very
complex format such as an Excel spreadsheet with relative ease,
building on tools provided by other people. This validates our earlier
experiences with Tawny-OWL, where we have easily adapted a
complete software development environment to the task of ontology
development.

The use of Excel spreadsheets to drive ontology patterns is not
new of course; it is directly supported with Protégé plugins as well
as with tools such as RightField and Populous. The key addition
of our methodology is to incorporate the spreadsheet as a part of
the ontology source code. The spreadsheet can be updated, changed
and consulted with by the domain specialists who created it, and still
remain part of the ontology development process. The importance
of the right format should not be under-estimated; for example,
early versions of the Gene Ontology were developed in their own
bespoke syntax (later to evolve into OBO Format), something
which persisted for a considerable time after the development and
release of OWL. The reasons for this were simple: OBO Format
behaved well in a version control system, and can be easily created,
edited and manipulated in a text editor, something not true of
RDF serialisations of OWL. We wish to build on these lessons:
ontologists should seek to interact and build on the tools that domain
specialists already use, if they hope to describe the knowledge that
these specialists have.

The tolAPC ontology and the document-centric approach it
embodies is a first step toward establishing a richer methodology,
where we interact with domain specialists using their own tool chain
to capture knowledge. While spreadsheets are a first useful step,
we plan to next focus on word processors and, more generally, the
narrative document. It is the most common format for representing
and transferring knowledge – indeed, it is what you are reading now.
Currently, there has been significant interest in recasting scientific
papers into semantic documents [16, 11], so that the semantics can
add value to the papers. Conversely, we wish to incorporate these as
part of our ontology development methodology, so that the papers
can add value to our semantics.

ACKNOWLEDGEMENT
We thank Dr Paloma Riquelme (University Hospital Regensburg)
for help in generating the tolAPC catalogue and participants of the
AFACTT network for providing data for the tolAPC catalogue.

Funding: COST is part of the EU Framework Programme
Horizon 2020 (action to focus and accelerate cell-based tolerance-
inducing therapies, BM1305, http://www.afactt.eu).
Also, thanks to King Abdulaziz University, Jeddah, Saudia Arabia
for granting a scholarship and supporting the study.

REFERENCES
[1]WHO International Classification of Diseases (ICD), 2016

(accessed June 20, 2016). http://www.who.int/
classifications/icd/en/.

[2]M. Bada, R. Stevens, C. Goble, Y. Gil, M. Ashburner, J. Blake,
M. Cherry, M. Harris, and S. Lewis. A Short Study on the
Success of Gene Ontology. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(2):235–240, 2004.

[3]M. Bada, R. Stevens, C. Goble, Y. Gil, M. Ashburner,
J. A. Blake, J. M. Cherry, M. Harris, and S. Lewis. The
Gene Ontology: What It Is (and What It Isn’t) - go-web-
semantics.pdf, 2015.

[4]P. Bernus and M. J. Shaw. International Handbooks on
Information Systems. 2007.

[5]M. Egaña, R. Stevens, and E. Antezana. Transforming
the Axiomisation of Ontologies: The Ontology Pre-Processor
Language. Proceedigns of OWLED, 2009.

[6]A. Garcia, K. O’Neill, L. J. Garcia, P. Lord, R. Stevens,
O. Corcho, and F. Gibson. Developing ontologies within
decentralised settings. In H. Chen, Y. Wang, and K.-H. Cheung,
editors, Semantic e-Science, pages 99–140. Springer, 2010.

[7]C. Hilkens. Cell therapies: From the laboratory to
the clinic. https://www.youtube.com/watch?v=
Y1ESfJBxvqY, 2016.

[8]M. Horridge and S. Bechhofer. The OWL API: A Java API for
OWL Ontologies. Semantic Web Journal, 2, 2011.

[9]M. Horridge and P. Patel-Schneider. Owl 2 web ontology
language manchester syntax. http://www.w3.org/TR/
owl2-manchester-syntax/, 2012.

[10]IHTSDO. International health terminology standards
development organisation, 2016 (accessed June 17, 2016).
http://www.ihtsdo.org/snomed-ct/.

[11]A. D. Iorio, A. Gonzalez-Beltran, F. Osbourne, S. Peroni,
F. Poggi, and F. Vitali. It rocs! – the rash online conversion

5



A. Blfgeh et al

service. https://rawgit.com/essepuntato/rash/
master/papers/rash-poster-www2016.html.

[12]S. Jupp, M. Horridge, L. Iannone, J. Klein, S. Owen,
J. Schanstra, K. Wolstencroft, and R. Stevens. Populous: a tool
for building OWL ontologies from templates. Semantic Web
Applications and Tools for Life Sciences, 13(Suplement1):55,
2010.

[13]S. Jupp, M. Horridge, L. Iannone, J. Klein, S. Owen,
J. Schanstra, K. Wolstencroft, and R. Stevens. Populous:
a tool for building owl ontologies from templates. BMC
Bioinformatics, 13(Suppl 1):S5, 2011.

[14]P. Lord. The Semantic Web takes Wing: Programming
Ontologies with Tawny-OWL. OWLED 2013, Mar. 2013.

[15]P. Lord. Manchester syntax is a bit backward. http://www.
russet.org.uk/blog/2985, 2014.

[16]P. Lord, S. Cockell, and R. Stevens. Three steps to heaven:
Semantic publishing in a real world workflow. Future Internet,
4(4):1004–1015, 2012.

[17]P. Lord and R. Stevens. Adding a little reality to building
ontologies for biology. PLoS One, 2010.

[18]N. Noy and A. Rector. Defining n-ary relations on
the semantic web. https://www.w3.org/TR/
swbp-n-aryRelations/, 2006.

[19]A. Rector. Normalisation of ontology implementations:
Towards modularity, re-use, and maintainability. Proceedings
Workshop on Ontologies for Multiagent Systems (OMAS) in
conjunction with European Knowledge Acquisition Workshop,
2002. Siguenza, Spain.

[20]A. Rector. Representing specified values in owl: “value
partitions” and “value sets”. W3C Working Group Note, 2005.

[21]S. Schulz, H. Stenzhorn, and M. Boeker. The ontology of
biological taxa. Bioinformatics, 24(13):i313–i321, Jul 2008.

[22]R. Stevens, C. a. Goble, and S. Bechhofer. Ontology-based
knowledge representation for bioinformatics. Briefings in

bioinformatics, 1(4):398–414, 2000.
[23]R. Stevens and U. Sattler. An object lesson in choosing

between a class and an object. http://ontogenesis.
knowledgeblog.org/1418, 2013.

[24]A. Ten Brinke, C. M. U. Hilkens, N. Cools, E. K. Geissler, J. A.
Hutchinson, G. Lombardi, P. Lord, B. Sawitzki, P. Trzonkowski,
S. M. Van Ham, and et al. Clinical use of tolerogenic dendritic
cells-harmonization approach in european collaborative effort.
Mediators of Inflammation, 2015:18, 2015.

[25]T. Tudorache, C. I. Nyulas, N. F. Noy, T. Redmond, and
M. Musen. icat: A collaborative authoring tool for icd-
11. http://ceur-ws.org/Vol-809/paper-09.pdf,
2011.

[26]J. Warrender. The Consistent Representation of Scientific
Knowledge: Investigations into the Ontology of Karyotypes and
Mitochondria. PhD thesis, School of Computing Science,
Newcastle University, 2015.

[27]J. Warrender and P. Lord. Scaffolding the mitochondrial disease
ontology from extant knowledge sources, 2015.

[28]J. D. Warrender and P. Lord. The Karyotype Ontology: a
computational representation for human cytogenetic patterns.
Bio-Ontologies 2013, 2013.

[29]J. D. Warrender and P. Lord. How, What and Why to test an
ontology, 2015.

[30]K. Wolstencroft, S. Owen, M. Horridge, O. Krebs, W. Mueller,
J. L. Snoep, F. du Preez, and C. Goble. RightField: embedding
ontology annotation in spreadsheets. Bioinformatics (Oxford,
England), 27(14):2021–2, jul 2011.

[31]A. Wood, J. Flowerdew, and M. Peacock. International
scientific english: The language of research scientists around
the world. Research Perspectives on English for Academic
Purposes, pages 71–83, 2001.

6


