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ABSTRACT 

Medical personnel in hospitals often works under great physical 

and mental strain. In medical decision making, errors can never 

be completely ruled out. Studies exposed that between 50 and 60 

percent of adverse events could have been avoided through bet-

ter organization, more attention or more effective security proce-

dures. Critical situations especially arise during interdisciplinary 

collaboration and the use of complex medical technology, for ex-

ample during surgical interventions and in perioperative settings. 

In this paper we present an ontology and an ontology-based soft-

ware system which can identify risks across medical processes 

and which supports the avoidance of errors in the perioperative 

setting in particular. 
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1 INTRODUCTION 

Patient safety is a quality target and an important factor of the 

quality of treatment in hospitals in general (“Empfehlung Zur 

Einführung von CIRS Im Krankenhaus” 2007). Prevention of med-

ical errors and risks is a significant method to improve patient safety. 

Medical personnel often works under great physical and mental 

strain. In medical decision making, errors can never be completely 

ruled out (Mahajan 2010). In 2000, the report "To Err is Human" 

(Kohn 2008) was published by the Institute of Medicine of the US 

National Academy of Sciences (IOM). This attracted great interna-

tional attention and moved the topics of medical risks, errors and 

patient safety into the focus of the scientific interest. The IOM con-

cluded in the report that from 2.9 to 3.7 percent of all patients ad-

mitted to hospitals in the USA suffer an adverse event. In 70 percent 

of these cases, the patient retains no or only minor damage, 7 percent 

lead to permanent damage and 14 percent cause the patient's death. 

The study also exposed that between 50 and 60 percent of these ad-

verse events could have been avoided through better organization, 

more attention or more effective security procedures. Even for Ger-

many, analyses show that the number of medical errors is not negli-

gible. According to a report by the Robert Koch Institute (Hansis et 

al. 2007), the incidence of suspected medical errors is approximately 

40,000 cases across Germany per year. The error recognition rate of 

about 30%, corresponds well to approximately 12,000 recognized 

medical errors. 

Since the publication of “To Err Is Human”, risk management and 

patient safety has consistently remained a topic of interest for scien-

tific studies as well as for suggestions of goals for improvements 

(Bunting et al. 2016). Critical situations arise especially during in-

terdisciplinary collaboration and the use of complex medical tech-

nology, for example during surgical interventions and in periopera-

tive settings. Especially the oversight of medically relevant treat-

ment data or an incomplete medical history may cause an incorrect 

treatment (“Aus Fehlern Lernen” 2008). 

We present an ontology and a conception for an ontology-based 

software tool which can identify and analyze risks across medical 

processes. Furthermore, the tool supports the avoidance of errors in 

the perioperative setting. The results of the risk analysis are trans-

mitted to the medical personnel in form of context sensitive hints 

and alerts. The software architecture is designed to respond not only 

to risks within a single treatment step, but it also takes into account 

the patient’s entire stay in the hospital. For a practical implementa-

tion in the clinical environment, the cochlear implantation (CI) has 

been selected as a surgical use case at Jena University Hospital. 

Here, medical and technical treatment risks were analyzed, and med-

ical guidelines and standards were taken into account. In addition, 

data and information sources have been defined on the basis of an 

anonymized CI patient record. Further sources of critical events 

were collected by undertaking of qualitative interviews with tech-

nical, nursing and medical personnel participating in a CI. On this 

basis, risk situations were defined and integrated into ontological 

models. This work is a part of the BMBF-supported project On-

toMedRisk (“OntoMedRisk” 2016). 

2 METHODS 

2.1 Introduction in General Formal Ontology (GFO) 

The development of the intended ontologies and of the needed on-

tological analyses are carried out within the top-level ontology GFO 

(Herre 2010; Herre et al. 2006). In GFO the entities of the world are 

classified into categories and individuals. Categories can be instan-

tiated, individuals are not instantiable. GFO allows for categories of 

higher order, i.e., there are categories whose instances are them-

selves categories, for example the category “species”. Spatio-tem-

poral individuals are classified along of two axes, the first one ex-

plicates the individuals’ relation to time and space, and the second 

one describes the individuals’ degree of existential independence. 

Spatio-temporal individuals are classified into continuants, pre-

sentials and processes. Continuants persist through time and have a 

lifetime; they correspond to ordinary objects, as cars, balls, trees etc. 
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The lifetime of a continuant is presented by a time interval of non-

zero duration; such time intervals are called chronoids in GFO (Bau-

mann et al. 2014). Continuants are individuals which may change, 

for example, an individual cat C crossing the street. Then, at every 

time point t of crossing C exhibits a snapshot C(t); these snapshots 

differ with respect to their properties. Further, the cat C may lose 

parts while crossing, though, remaining the same entity. The entities 

C(t) are individuals of their own, called presentials; they are wholly 

present at a particular time point, being a time boundary. Presentials 

cannot change, because any change needs an extended time interval 

or two coinciding time boundaries. 

Processes are temporally extended entities that happen in time, for 

example a run; they can never be wholly present at a time point. 

Processes have temporal parts, being themselves processes. If a pro-

cess P is temporally restricted to a time point then it yields a presen-

tial M, which is called a process boundary of P. Hence, presentials 

have two different origins, they may be snapshots of continuants or 

process boundaries. There is a duality between processes and pre-

sentials, the latter are wholly present at a time point whereas this is 

never true for processes. The corresponding classes/sets of individ-

uals, denoted by the predicates Cont(x), Pres(x), and Proc(x), are 

assumed to be pair-wise disjoint. Processes present the most im-

portant kind of entity, whereas presentials and continuants are de-

rived from them. There are several basic relations which canonically 

connect processes, presentials, and continuants (Herre 2010; Herre 

et al. 2006). 

Spatio-temporal individuals, according to the second axis, are 

classified with respect to their complexity and their degree of exis-

tential independency. Attributives depend on bearers which can be 

objects (continuants, presentials) and processes. Situations are parts 

of reality which can be comprehended as a coherent whole (Barwise 

et al. 1983). They are complex presentials and boundaries of sit-

uoids, being processes which satisfy certain principles of coherence, 

comprehensibility, and continuity. A surgical intervention is an ex-

ample of a process or a situoid. A snapshot of this situoid at a certain 

time point is a surgical situation, which has spatial location and in-

cludes various entities such that a coherent whole is established. 

There is a variety of types of attributives, among them, qualities, 

roles, functions, dispositions, and structural features. Categories the 

instances of which are attributives are called properties throughout 

this paper. According to the different types of attributives (relational 

roles, qualities, structural features, individual functions, disposi-

tions, factual, etc.) we distinguish quality properties (or intrinsic 

properties) and role properties (extrinsic properties), and the role 

properties are classified into relational role properties (abr. relational 

properties) as well as social role properties (social properties). 

2.2 Ontological Definition of the Risk Notion 

The solution of all philosophical problems, related to the notion 

of risk, is out of scope of this paper. Instead, we focus on a practica-

ble definition of the risk notion, which can be easily understood by 

the medical staff and is usable for the software tools. Based on this 

definition, it should be possible for the medical staff to specify the 

relevant risk types, and for the software to identify and to analyze 

the risk in a particular treatment situation. 

There are various definitions of the notion of risk. One of the most 

known/popular definitions is that by (Kaplan et al. 1981). These au-

thors divide the notion of risk into three components which are as-

sociated to the following questions:  

1. What can happen, i.e., what can go wrong? (scenario) 

2. How likely is it that that will happen? (probability of the sce-

nario) 

3. If it does happen, what are the consequences? (consequence 

of the scenario) 

A risk, then, is a triple which consists of a scenario, the probability 

of that scenario, and consequence of that scenario. Furthermore, 

there are several standards investigating the notion of risk. The 

ISO/IEC 27005 (“Information Technology -- Security Techniques -

- Information Security Risk Management” 2008) defines the notion 

of risk as “a potential that a given treat will exploit vulnerabilities of 

an asset or group of assets and thereby cause harm to the organiza-

tions.”; the OHSAS 18001 (“OHSAS 18001 (Occupation Health and 

Safety Assessment Series)” 2007) - as a “combination of the likeli-

hood of an occurrence of a hazardous event or exposure(s) and the 

severity of injury or ill health that can be caused by the event or 

exposure(s)”; and the ISO 31000 (Risk management) (Purdy 2010) 

- as an “effect of uncertainty on objectives”. The common ground of 

all these definitions is that all of them consider a risk as a possibility 

for the occurrence of a particular event or situation. Most of these 

definitions consider such events as adverse ones, whereas in the 

standard ISO 31000 both adverse and positive events are admitted. 

The ontological analysis of risk is carried out within the frame-

work of GFO and takes into account the available definitions of risk. 

The analysis is built upon the ontology of situations and situation 

types, which partly uses ideas presented in (Barwise et al. 1983; 

Stalnaker 1986). Situations which contain adverse events, being re-

lated to a risk, are called adverse situations. In this paper we use the 

notion of adverse event/situation not only in the sense of “Any unto-

ward occurrence that may present during treatment with a pharma-

ceutical product but which does not necessarily have a causal rela-

tion to the treatment” (Edwards et al. 2000), but we also include 

events/situations that are not related to medical interventions. A sit-

uation S is said to be a risk situation if it satisfies certain conditions 

which imply that one of the possible succeeding situations of S is an 

adverse situation.  

The notion of possible situation is established within the frame-

work of a particular actualist representationism, which postulates 

that possible objects are abstract entities, the existence of which is 

consistent with the currently available knowledge about the actual 

world. This view is partly influenced by (Adams 1974; Roper 1982; 

Zalta 1993). 

We hold that a risk exists in a situation, that it depends on it, and, 

hence, that it can be considered as a situation’s property. We distin-

guish between single (in sense of gfo:Property (Herre 2010)) and 

Fig. 1. Definition of the risk notion (the white arrows represent the is-a relation) 
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composite properties, the latter being composed of single ones and 

which can be disassembled by the relation gfo:has_part. 

Definition 1. A composite property CP is a property that has as 

parts several single properties SP1, ..., SPn. 

Definition 2. A risk for an adverse situation of type AST is a com-

posite property CP such that every situation S possessing the prop-

erty CP has a possible succeeding situation of type AST which can 

be realized with a certain probability. 

Definition 3. A risk is a composite property CP for which there 

exists an adverse situation AST such that CP is a risk for the adverse 

situation AST (as defined by 2). 

Definition 4. A risk situation is a situation having at least one risk 

(Fig. 1). 

Example 1. The risk of a bacterial infection during cochlear im-

plantation in infants depends on various parameters, such as the in-

fants’ age, the corresponding bone thickness of the skull and the in-

ner ear structure. If the child is younger than 5 months, the bone 

thickness mostly remains below 2 mm. Thus, the risk of penetrating 

the skull and injuring the dura mater during surgery increases so that 

the bacterial dura mater infection risk (meningitis) increases as well. 

The ground-truth probability for the adverse event of dura mater in-

fection during CI is about 5-9% (Reefhuis et al. 2003). For menin-

gitis prevention the patient has to be vaccinated against pneumococ-

cus, meningococcus and haemophilus influenzae type b several 

weeks before the surgery (indication phase). In addition, an antibi-

otic prevention should be performed right before the surgery. Ac-

cording to our definition an increased risk for acquiring meningitis 

can be represented as a composite property, consisting of three sin-

gle properties, namely, the young age (< 5 month), the absence of a 

meningitis vaccination, as well as of an antibiotic prevention. This 

example is used in this paper for further explanations. 

3 RESULTS 

3.1 Risk Identification Ontology (RIO) 

We developed a risk identification ontology (RIO, Fig. 2) which 

is built upon the ontological model of the notion of risk. This ontol-

ogy is used for the specification and the identification of periopera-

tive risks. The ontology RIO is embedded into the GFO. As starting 

point we consider the treatment process, which may possess various 

treatment phases (gfo:has_part). The complete treatment as well as 

the phases are complex processes (gfo:Situoid). The treatment has a 

particular temporal extension, called the treatment time (gfo:Chro-

noid). According to GFO processes are projected (gfo:projects_to) 

onto its time intervals. For every time point (gfo:Time_boundary) of 

the treatment exists (gfo:exists_at) exactly one treatment situation 

(gfo:Situation). A treatment time point is according to GFO a bound-

ary of the treatment time (gfo:boundary_of), whereas the corre-

sponding treatment situation is a boundary of the treatment itself. 

For each treatment phase particular time points, called risk detec-

tion time points (RDTP), can be defined. The treatment situations, 

existing at these time points, are analyzed with respect to the exist-

ence of risks. Such situations are called potential risk situations 

(PRS), because they do not necessarily contain risks. Situations and 

in particular treatment situations possess various properties 

(gfo:Property). These properties may belong to the situation, but 

also to the participants, as, for example physicians (doctors), medi-

cal instruments, and, most important, to the patients. We consider 

these properties also as properties of the current treatment situation 

(gfo:has_property). Properties of the potential risk situations that are 

relevant for the estimation of the risk are called in this paper KPIs 

(Key Performance Indicators). According to Definitions 1-4 a par-

ticular combination of a subset of the KPIs of a PRS (for example, 

age of patient = 3 months, menginitis vaccination = false) represents 

a risk if the PRS may lead to a later time point to an adverse situation 

(rio:possible_succeeding_situation). 

A PRS may contain various risks, and risks of the same type may 

occur in distinct PRS and may lead to distinct adverse situations 

(rio:risk_for_adverse_situation). Each KPI is associated with poten-

tial risk situations, whereas the risk situations additionally possess 

the composite risk properties. Furthermore, the risks can be related 

to those treatment phases for which they are relevant 

(rio:risk_in_phase). Adverse situations may exhibit various degrees 

of severity and risks may possess various probabilities for the occur-

rence of adverse situations.  

With help of the RIO the risks in a current potential risk situation 

are identified by the software component OntoRiDe, and, hence the 

situation can be classified either as a risk or as a non-risk situation. 

3.2 Risk Specification 

3.2.1 Perioperative risk assessment 

For the development of a perioperative risk identification ontol-

ogy the recognition and assessment of potential medical, technical, 

organizational and human risk factors are an essential prerequisite. 

Therefore, an extensive risk assessment has been performed for an 

otorhinolaryngological use case. The insertion of cochlear implants 

(CI) was chosen in order to demonstrate the features and benefits of 

the ontology-based risk identification system. The perioperative 

medical and technical risk factors, procedure related complications 

and their complication rates as well as prevention strategies were 

Fig. 2. Risk Identification Ontology (RIO) 

Fig. 3. Treatment phases 
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extracted from peer-reviewed publications and evidence-based best-

practice guidelines of the German Society of Oto-Rhino-Laryngol-

ogy, Head and Neck Surgery (Lenarz et al. 2012). In addition, en-

tries of the Critical Incident Reporting System (CIRS) of the Uni-

versity Hospital Jena (Germany) and an example of an anonymized 

patient record have been analyzed for organization and human-

related risk assessment. The derived risk characteristics, potential 

following adverse situations and their causes were used to describe 

relevant perioperative and cross-process risks factors.  

3.2.2 Perioperative process modeling 

The information of risk factors and of potentially adverse events 

has to be provided to the responsible medical personnel in the right 

time by offering appropriate context-sensitive hints and alerts. 

Therefore, the medical and organizational processes have to be taken 

into account. The general perioperative workflow of the CI treat-

ment was modeled and visualized in a process diagram, as event-

driven process chain (EPC). In the following, both generalized and 

use-case specific treatment phases have been defined in the formal 

process model. The generalized treatment phases are depicted in Fig. 

3. Besides the CI treatment process, the defined phases are suitable 

for representing various elective surgeries and interventions. 

The treatment process was modeled by representing the sequence 

of clinical activities, treatment decisions, parallel processes and pos-

sible events, the involved persons as well as resources, like data and 

documents, medical devices or IT systems. In addition, the identi-

fied risk factors, complications and prevention activities were inte-

grated in the process model. 

By mapping the identified risk factors to the dedicated activities 

and treatment phases, the process model has then been used subse-

quently for further risk assessment and perioperative risk modeling. 

This enabled over 120 potential perioperative risks to be identified 

and also mapped to their related process step in the process model. 

3.2.3 Perioperative risks modeling 

In the next step the identified potential risk factors, adverse situa-

tions and critical incidents, which are related to cochlear implanta-

tion interventions, were examined in an extensive risk analysis. 

Thereof, a risk classification for formal risk specification was de-

rived. The identified risk factors were subsequently classified into 

different categories of medical, organizational, technical or human-

related risks. Thus, the treatment phases were categorized into risk 

detection phases, in which the corresponding risk is relevant and 

could potentially lead to an adverse situation. Additionally, there is 

a category for cross-process risks, which could lead anytime to an 

adverse situation, e.g. the risk of dizziness and falls or the high 

bleeding risk during surgery due to anticoagulant medication. 

For each treatment phase different KPIs have been defined, which 

allow the identification of specific perioperative risks. The KPIs are 

linked with operators and a certain data type value to a conditional 

expression of a possible risk factor (e.g., c1: Age_in_months IN [0, 

5), c4: Vaccination_status == “no”, Fig. 4, Example 1). The KPI 

data type values could be for instance a Boolean value, text, date or 

number. A combination of these conditional expressions is formal-

ized as a risk specification rule. If the risk specification rule becomes 

true, due to the values of their conditions and KPIs, there is a high 

occurrence probability of adverse situations, which have to be also 

specified for each risk. In addition, for each adverse situation an oc-

currence probability and a severity (on a separate sheet) have been 

defined. In the risk specification, the KPIs were described along with 

their possible acquisition sources. Therefore, the risk specification 

defines both the required measurement phases and the measurement 

sources, like patient-related data and sensor data, e.g. data from the 

digital patient record, the hospital information system, checklists or 

situations in actual process execution. In Fig. 4 a risk specification 

based on Example 1 is presented. 

The tool RIOGen, developed within the project, generates onto-

logical entities from the risk specification and inserts it into RIO. 

For every risk condition, for example, a subclass of the correspond-

ing KPI is inserted. Here the class names are automatically gener-

ated according to certain rules. For every condition class an anony-

mous equivalent class is created as property restriction, based on the 

property has_data_value (Fig. 5). Then, for the risk a subclass of 

rio:Risk is defined, which is named as the risk. For the risk subclass 

also an equivalent anonymous class is defined which is based on the 

has_part property and on the corresponding condition classes; this 

anonymous class represents the risk specification rule (Fig. 6). Fur-

thermore the treatment phases are created and connected with those 

KPIs and risks which are relevant for them. Finally, we define the 

connection between risks and those adverse situations, which possi-

bly evolve from them (incl. probability and severity as data property 

restrictions). 

3.3 Ontology-based Risk Detector (OntoRiDe) 

We developed an ontology-based software module, called Ontol-

ogy-based Risk Detector (OntoRiDe), which allows the identifica-

tion of the ontologically specified risks. This tool receives the KPIs 

of the current potential risk situation as input parameter, and carries 

out the risk specification rule, which is contained in the ontology; 

then it classifies the current situation as risk or non-risk situation and 

returns the results. If the current KPIs satisfy one of the rules (i.e., 

at least one risk is recognized) then the considered situation is a risk 

situation, otherwise it is a non-risk situation. 

Further information, which the tool returns to the user, includes 

the description of the existing risks, the treatment phases, in which 

the risks are relevant, but also the adverse situations which may 

evolve from them (with probability of occurrence and degree of se-

verity). A particular position is the possibility to recognize the risks, 

but, furthermore, to determine and provide for every recognized risk 

all possible combinations of current KPIs which are responsible for 

every recognized risk. Using this information the user is able to 

eliminate all of the risks‘ causes. 

In the following we briefly sketch the functionalities of the Onto-

RiDe. For every risk class the corresponding risk specification rule, 

which is specified as an anonymous equivalent class (Fig. 6), is in-

Fig. 5. Risk conditions 

Fig. 4. Risk specification 
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terpreted and transformed into a disjunctive normal form (by step-

wise execution of the de Morgan rules and of the law of distributiv-

ity). Any of the conjunctions presents a possible explanation for the 

risk (e.g., c1 AND c4 AND c6, Fig. 4). Then, the single conditions 

(Fig. 5) are checked, i.e., it is determined whether the current KPI 

value is included in the specified value range. If all conditions of the 

conjunction are satisfied, then the corresponding KPIs and further 

information are provided for the user as explanation. 

We decided not to use a standard reasoner. Firstly, we want to 

apply rules of types which cannot be easily interpreted by standard 

reasoners, especially rules which contain mathematical expressions 

or predefined constants. Such special types of rules are implemented 

by the OntoRiDe. Secondly, standard reasoners carry out various 

tasks (checking consistency, classification, and realization), not all 

of them are relevant for risk identification, but which reduce the ef-

ficiency of the overall system. Finally, OntoRiDe must provide the 

user with all possible explanations about the existence of a risk in 

the current situation in an understandable way. The problem of de-

tection and exploration of all possible explanations and justifications 

of an entailment is a well-known task, for the solution of which there 

exists several methods and tools, (Kalyanpur et al. 2007; Horridge 

et al. 2012; Riguzzi et al. 2013). Furthermore, there are various in-

vestigations about the cognitive complexity and the understanding 

of the considered justifications (Horridge et al. 2013; Horridge et al. 

2011). In this context a justification of an entailment is understood 

to be “the minimal set of axioms sufficient to produce an entailment“ 

(Kalyanpur et al. 2007). In the case of RIO and OntoRiDe the solu-

tion is rather simple. The OntoRiDe translates the risk specification 

rules into a disjunctive normal form and checks all conditions of the 

respective conjunctions. By this procedure all KPI-combinations, 

verified by the rule as true, and the corresponding conditions (value 

ranges), can be provided for the user in form of understandable ex-

planations (e.g., age < 5 month and vaccination = “no” and antibiotic 

prevention = false). 

3.4 Agent System 

An agent system was developed to get access to the distributed 

data in various systems in hospital needed to derive elementary in-

formation for the risk detection. The KPIs mainly determine the data 

which has to be captured by the agent system, respectively the pa-

rameters which have to be monitored. Throughout the entire periop-

erative treatment process the agent-based system retrieves risk-rele-

vant data from different data sources and provides these data for fur-

ther risk analyses in a centralized fashion. The results of such an 

analysis will be transferred to medical experts as context-sensitive 

hints and alerts. In doing so, continuous patient-specific risk moni-

toring is facilitated for each treatment phase of the perioperative 

treatment process. The OntoRiDe is an important component of the 

agent system, because it determines the KPIs which have to be mon-

itored and it identifies the risks which have to be analyzed. This re-

duces the risk of adverse situations and complications through early 

and adequate interventions. The software-based agent system has 

been implemented using the Java Agent Development Framework 

(JADE), which embodies a framework, a platform and the middle-

ware for a FIPA-standardized development of multiagent systems 

(MAS). The main functions of a JADE-based agent system can be 

categorized into agent behavior and agent communication. The 

agents communicate in an asynchronous, message-based fashion, 

using the Agent Communication Language (ACL) (“Jade: Java 

Agent DEvelopment Framework” 2016; “The Foundation for Intel-

ligent Physical Agents” 2016). The architecture of the agent system 

consists of the OntoRiDe, a Blackboard, a Risk Analysis Unit and 

various agents. The functionality of the agent system can be sepa-

rated into data acquisition and risk communication (Fig. 7). The in-

ternal data storage of the agent system is based upon the HL7-FHIR-

Spezification. Therefore, the data is represented as FHIR-Resources 

(“FHIR: Fast Healthcare Interoperability Resources” 2016). 

4 RELATED WORK 

Several approaches towards the formal representation of risks and 

adverse events through ontologies are described in the literature. We 

analyzed these existing ontologies for their potential to detect peri-

operative risks in hospitals, but we concluded that none of these on-

tologies and tools could be applied to our project. 

Bouamrane et al. (Bouamrane et al. 2010; Bouamrane et al. 

2009a; Bouamrane et al. 2009b) report on the development of an 

ontology-based system to support clinical decision making. The sup-

port is provided in a two-step process. First, the developed system 

calculates risk scores using numerical formulas. In this step, the sys-

tem does not use the developed ontology but computes numeric val-

ues using an open-source Java-based rule engine (JBoss Rules). Af-

ter calculating the relevant risk scores, the DL reasoner (Pellet) clas-

sifies the patient into a number of predefined categories for risks, 

recommended tests and precaution protocols, using the OWL-DL 

representation of the patient medical history profile and the decision 

support ontology. The decision support ontology is divided into 

three domains: a risk assessment ontology, a recommended test on-

tology and a precaution protocol ontology. The aim of the risk as-

sessment ontology is to detect potential risks of intra-operative and 

post-operative complications in a given formal representation of a 

patient medical profile.  

Similar to the Bouamrane system, our approach also provides two 

components of decision support namely OntoRiDe and Risk Analy-

sis Unit (Fig. 7). They can perform similar tasks as those of 

Fig. 6. Risk specification rule 

Fig. 7. Architecture of the agent system 
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Bouamrane’s system. In addition, OntoRiDe will also use the self-

developed RIO for risk identification similarly to the usage of the 

risk assessment ontology. However, there are also important differ-

ences between the two ontologies and systems. The risk assessment 

ontology focuses only on the patients risk related to intra-operative 

and post-operative complications such as cardio-vascular and respir-

atory risks, whereas RIO covers various risk types such as special 

and general treatment risks, technical risks, organizational risks etc. 

The second significant difference is that our approach integrates the 

treatment process, its steps and situations in the risk conceptualiza-

tion. In this way, it is possible to analyze and identify cross process 

risks or risk situations so that errors especially in the perioperative 

field could be avoided. 

In (Third et al. 2015) the authors describe a model for representing 

scientific knowledge of risk factors in medicine. This model enables 

the clinical experts to encode the risk associations between biologi-

cal, demographic, lifestyle and environmental elements and clinical 

outcomes in accordance with evidence from the clinical literature. 

The major advantage of our approach in comparison with the model 

developed by Third is the formal representation of cross process 

risks that can lead to potential adverse situations during different 

treatment phases. Another added value of our approach is that it can 

also cover risks related to human and environmental factors such as 

technical or organizational risks. These types of risks are not con-

sidered in Third’s model. 

(Sigwarth et al. 2015) present an ontology of the Open Process 

Task Model (OPT-Model). This ontology is primary intended as a 

generic knowledge base, which implements the various influences 

of processes and their relations in medical environments, for a pro-

spective risk analysis. The advantage of RIO over the OPT-model-

ontology is that it provides an accurate risk analysis. By using RIO, 

OntoRiDe is able to perform risks classification according to the risk 

occurrence time. This process allows us to identify the time point 

and treatment phase on which a risk arise. Another further benefit of 

RIO is the implicitly embedded risk specification, which meets the 

spirit of evidence-based medicine. This implicit domain knowledge 

is encoded in OWL rules and can be inferred automatically using 

ontological reasoning to assess current perioperative risk situations. 

(Bau et al. 2014) report a clinical decision support system (CDSS) 

for undergoing surgery based on domain ontology and rules reason-

ing in the setting of hospitalized diabetic patients. Similar to our ap-

proach this system uses logical rules to complement the domain 

knowledge with implicitly embedded risk specification and clinical 

domain knowledge. The important upside of our approach is that it 

does not make restrictions based on certain diseases such as diabetes 

mellitus, whereas CDSD focuses only on glycemic management of 

diabetic patients undergoing surgery. 

The Ontology of Adverse Events (OAE) (He et al. 2014) and the 

Ontology of Vaccine Adverse Events (OVAE) (Marcos et al. 2013) 

(Marcos, Zhao, and He 2013), which was developed based on OAE, 

describe data relating to adverse events. The OAE was designed to 

standardize and integrate data relating to adverse events that occur 

after medical intervention. The OVAE is used for representing and 

analyzing adverse events associated with US-licensed human vac-

cines. In OAE the notion adverse event is defined as a pathological 

bodily process that occurs after a medical intervention (e.g., follow-

ing a vaccination), while a risk is represented by a factor associated 

with the occurrence of an adverse event. The work presented here 

focuses instead on the risk situations and proposes a generic model 

for the risk specification in the perioperative area. Thus, we don’t 

restrict ourselves to risks that are causally and exclusively related to 

medical interventions. Contrary to OAE, our approach also consid-

ers other risk types such as technical and organizational risks. More-

over, we use the term “adverse situation” in order to avoid excluding 

situations that are not related to medical interventions. 

None of the presented approaches can answer competency ques-

tions such as “Which treatment situation could be a potential risk 

situation?”, “Which properties or KPIs are responsible for an actual 

risk situation?” and “Which risk situation belongs to which treat-

ment phase?”. The aim of RIO and OntoRiDe is to solve this issue. 

5 CONCLUSION AND FUTURE WORK 

We elaborated an ontological foundation of the notion of risk, 

upon which we developed a risk identification ontology (RIO). With 

help of RIO perioperative risks can be specified, whereas OntoRiDe 

can be used to identify risks in a current treatment situation. This 

allows the recognition of risk situations and supports the avoidance 

of possible adverse situations. Furthermore, we conceptualized an 

agent system which is currently implemented. This agent system 

gathers during the whole perioperative treatment process risk-rele-

vant data from various sources and provides it for the risk identifi-

cation resp. the risk analysis in a centralized fashion. The results of 

such an analysis are transmitted to the medical personnel in form of 

context sensitive hints and alerts. 

We are currently working on the specification of risks. About 20 

risks relating to cochlear implantation have already been specified, 

and on this basis the functionality of RIO, RIOGen and OntoRiDe 

successfully tested. 

Future work includes the conception of mathematical evaluation 

methods and algorithms for the assignment of a risk to the current 

process status and determination of the probability of occurrence. 

The agent system will include risk communication features. In par-

ticular, a Risk Analysis Unit for risk assessment (based on probabil-

ity and severity) and Cockpit component should be developed. 

These components implement a role-based visualization of risk in-

formation and of context-sensitive hints for the medical experts. In 

the further development, this visualization should also be displayed 

role-based on mobile devices. Furthermore, it is intended to expand 

and to optimize the application of this agent system to other use 

cases. 
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