
Applying UI patterns for modeling dialogs 

Mathias Kühn and Peter Forbrig 

University of Rostock 

Department of computer science 

Albert-Einstein-Str. 22 

18051 Rostock, Germany 

{mathias.kuehn, peter.forbrig}@uni-rostock.de 

Abstract. Software designs for use on interactive devices can be specified with 

models. Model-based languages allow layout specifications of UIs on different 

levels of abstraction. Specifications of dialogs can for instance be made with 

statecharts. Languages that allow specifications based on statecharts need to be 

adapted for use together with UI layout models. UI patterns can be applied to 

user interface layout and behavior designs. Corresponding specifications based 

on UI models can be created and changed with editors for use with platform-

specific interpreters afterwards. The paper focusses the effects of UI pattern ap-

plication on model-based specifications. 

Keywords: user interface modeling, dialog models, user interface patterns 

1 Introduction 

User interface (UI) models as platform-independent as well as dependent specifica-

tions of interactive software surfaces can be used for runtime interpretations based on 

operations of model-driven engineering. According to the Cameleon Reference 

Framework (1), these operations are context-dependent transformations that result in 

final user interface models for platform-specific use. Beside structures, also UI behav-

ior needs to be specified that refers dialog models (7) directly. UI patterns (8,9) can be 

applied for specifying models that describe how parts of the UI are presented to the 

user. As result, models can be created as well as changed just by applying patterns 

(2). In the end, manipulated specifications can instantly be used by interpreters that 

consider models at runtime. Users directly can see the effects under their platform. 

However, UI patterns can reduce the effort for designing models. The following sec-

tions focus on models for user interface layout and behavior together with UI pattern 

application. A survey example gives an overview on how to apply the proposed ap-

proach. The effects of UI patterns at design- and run-time are shown on specifications 

together with generated UI instances. 



2 Related work 

Models for user interfaces can be specified on different levels of abstraction. Lan-

guages like UsiXML (5) and MARIA (6) allow abstract and concrete UI specifica-

tions. According to the Cameleon Reference Framework (1), task models, abstract-, 

concrete-, and final-UI models can be transformed into each other. The transformation 

types are abstractions (concrete to abstract models), reifications (abstract to concrete 

models), and translations (models into other contexts). However, the framework al-

lows generating UIs depending on various contexts of use, which are specifications of 

users, platforms, and environments. 

Behavior of software can be specified with statecharts (3). Languages like SCXML 

(4) and XMI (10) allow specifications that consider states, what could be settings of 

UIs, and transitions, what could be UI events triggered by users. Regarding the 

Cameleon Reference Framework, statechart specifications also need to be considered 

on different levels of abstraction. This results in platform-specific abstractions and 

reifications of events. Statecharts explicitly do not consider the creation of objects. 

Following this, mentioned languages need to be extended by specific transitions for 

creating UIs at runtime (7). 

Considering dialogs, designers for instance are interested in specifying how users 

can navigate within the UI. Tidwell (8) and van Welie (9) identified UI patterns for 

navigation. Some of them are stepwise, hub-and-spoke, pyramid, fully-connected, and 

multi-level. UI dialogs that are specified with statecharts can be manipulated with 

transitions and states depending on certain patterns. These automatically can be added 

to and removed from the statechart. 

 
Fig. 1. Visualization of navigation structures for the UI patterns 

a) hub-and-spoke, b) stepwise, and c) pyramid 

Fig. 1 shows a visualization of some UI patterns for navigation. Ellipses represent 

user interfaces that can be displayed at runtime. Lines between them represent paths 

that users can navigate through. Of course, lines also can be directed, but it depends 

on the context of UI pattern application. However, lines are related to transitions of 

corresponding dialog specifications. 

UI layouts also can be manipulated depending on patterns. For instance, interactors 

for navigation automatically can be added to specifications. However, design patterns 

(2) in general are proven solutions for common design problems. Also UI patterns 

help in finding solutions for UI design problems, what can be related to layout- and 

dialog-structures, respectively. 



3 UI patterns for dialog modeling 

Patterns for user interfaces help not only to find well established solutions for re-

curring UI design problems but also to manipulate existing solutions for implement-

ing changed requirements. For instance, UI patterns for navigation could be used for 

generating dialog specifications. According to this, changing applied patterns would 

result in adapting generated specifications. However, UI pattern applications consider 

needs not only of designers but also of users. For instance, UI patterns for layout can 

make UIs clearer and more usable in the end. 

The following example gives an overview on how to apply UI patterns for dialog 

specifications of interactive software systems. The example is a survey on using vehi-

cles in everyday life. Participants are asked about personal information (e.g. gender, 

age) and their preferred vehicles for going to school or to work (e.g. bicycle, car, 

bus/train). For this reason, an interactive form is prepared that can be used as ques-

tionnaire of the survey application. Participants are guided through the questionnaire 

and can answer questions step by step. Layout and dialog specifications are needed 

for interactive forms that can be generated on various devices afterwards. 

 
Fig. 2. Layout specification in UsiXML together with some generated UIs 

Fig. 2 shows the first part of the layout specification of questionnaires as interac-

tive forms. These are specified as concrete UI model in UsiXML. Beside the specifi-

cation are some generated user interfaces. It is assumed that tool support is available 

that allows designing forms in UsiXML. After designing UI layouts, designers can 

apply UI patterns for navigation. For example, applying the UI pattern hub-and-spoke 

would result in generating a distinct UI that is some kind of overview. This overview 

holds links to the generated UIs. Additionally, all specified UIs would also be added 

with links for navigating to the overview UI. However, another example would be to 

apply the UI pattern stepwise instead of hub-and-spoke. The following figure shows 

instances of the applied pattern. 



 
Fig. 3. Layout/dialog specifications in UsiXML/SCXML together with some generated UIs 

Fig. 3 shows the first part of the layout specification of Fig. 2 after applying the UI 

pattern stepwise. A button next0 is added for navigating to the next UI. Additional-

ly, the dialog specification is generated that is based on SCXML. Added buttons al-

low navigating between the questionnaire forms. Transitions consider events triggered 

by added buttons. Participants interactively can go through the questionnaire forms by 

using the Back and Next buttons. However, changing the navigation structure can be 

made by applying other patterns. 

4 Summary and outlook 

User interface patterns can be used for designing specifications based on UI mod-

els for layout and behavior. The example of a survey on vehicle usage showed how to 

apply patterns for generating dialogs. Pattern application generates transitions within 

statechart specifications that are used as dialog of the user interface. Also the UI lay-

out can be manipulated according to the related pattern. The proposed approach uses 

the model-based languages UsiXML, which can be used for layout specifications of 

UIs, and SCXML, which can be used for statechart-based specifications. The example 

showed how to apply the UI pattern stepwise within specifications based on the ap-

proach. 

Future work need to be done on giving tool support for UI pattern application. For 

instance, designers can create forms with a common UI designer tool and apply dif-

ferent patterns just by selecting them from a list. Specifications are generated and 

manipulated accordingly and can instantly be used with platform-specific interpreters 

on user-related devices. However, model-based languages benefit generating UIs 

depending on a specific context, what is a goal of corresponding applications. 



References 

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J.: A 

unifying reference framework for multi-target user interfaces. In: Interacting with comput-

ers, vol. 15, pp. 289-308 (2003) 

2. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns. Elements of Reusa-

ble Object-Oriented Software, 1st ed. Prentice Hall (1994) 

3. Harel, D.: A Visual Formalism for Complex Systems. In: Science of Computer Program-

ming 8, vol. 3, pp. 231-274 (1987) 

4. Kistner, G., and Nuernberger, C.: Developing User Interfaces using SCXML Statecharts. 

In: Proceedings of EICS 14 Workshop, pp. 5-11 (2014) 

5. Limbourg, Q., and Vanderdonckt, J.: UsiXML: A User Interface Description Language 

Supporting Multiple Levels of Independence. In: Proceedings of ICWE 2004 Workshop, 

pp. 339-352 (2004) 

6. Paternò, F., Santoro, C., and Spano, L. D.: MARIA: A universal, declarative, multiple ab-

straction-level language for service-oriented applications in ubiquitous environments. In: 

Transactions on Computer-Human Interaction, vol. 16, 4 (2009) 

7. Schlungbaum, E., and Elwert, T.: Dialogue graphs: a formal and visual specification tech-

nique for dialogue modelling. In: BCS-FACS, pp. 13 (1996) 

8. Tidwell, J.: Designing Interfaces, 2nd ed. O’Reilly Media (2010) 

9. van Welie, M.: Interaction Design Pattern Library. http://www.welie.com/patterns/ 

10. XML Metadata Interchange (XMI): http:// www.omg.org/spec/XMI/ 

http://www.welie.com/patterns/

