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Abstract. After a maturing period of over a decade, Model-Driven En-
gineering (Mde) starts to extend to novel areas that include safety-
critical or embedded, but also cyberphysical systems. These domains
explicitly manipulate time. This paper proposes three dimensions to anal-
yse how Mde frameworks integrate time: which transformation paradigm
is used, how time is represented inside it, and which characteristics of
time are considered. Without claiming for exhaustivity, we validate our
approach by analysis several contributions from the literature, thus of-
fering an overview of the current practice in Real-Time Mde.

1 Introduction

After a maturing period of over a decade, Model-Driven Engineering (Mde) has
gained enough maturity to extend to novel areas that include safety-critical or
embedded, but also cyber-physical systems. These domains make an explicit use
of time, forcing language and Mde frameworks to progressively integrate time
features to allow the specification of durations, deadlines, delays, etc. Simply
borrowing low-level constructs from General-Purpose Programming Languages
(Gpls) is not an option any more: this introduces a gap between the high-
level concepts captured by models, and the low-level constructs available for
expressing time-related computations that become difficult to properly align.
Time is not directly accessible to computer: integrating it into Mde frameworks
requires to think about which aspects need to be explicitly represented and which
could safely be forgotten.

However, one time model could not possibly satisfy all possible needs in Mde.
As a first attempt to properly classify Real-Time Mde approaches, this paper
proposes a preliminary classification of some of the relevant dimensions, and
confronts it against a panel of selected contributions from the literature, thus
offering an overview of the current theoretical foundations and practice in the do-
main. Section 2 explains the classification criteria, and Sections 3 and 4 overview
literature contributions based on Meta-Programmed (Mpt) and Graph-Based
Transformation (Gbt) Languages respectively. Section 5 concludes with a sum-
mary table relating the analysed contributions to the classification criteria.



Fig. 1. Left: Three criteria for literature classification: Transformation Language (Tl),
Time and Representation. Right: Details for second criterium: characteristics of Time
in Computer Science (adapted from [16]).

2 Model Transformation, Time and Time Representation

This Section explores background material for Model Transformations and Time
characteristics and representation to build an analysis grid for classifying the
literature contributions (cf. Figure 1, Left).

2.1 Model Transformation: Paradigms and Units

Model Transformation (Mt) can be roughly categorised according to their un-
derlying paradigm: operational or meta-programmed transformations (Mpt),
adapting constructions from imperative Gpls to model-specific constructions;
and declarative, relying on rewriting techniques specifying graph-based trans-
formations (Gbt) (as a first approximation, see [1] for details). Two elements
compose any Tl: transformation units that bring basic computational bricks ex-
pressing a meaningful, well-defined model alteration; and scheduling mechanisms
orchestrate these units in a more or less explicit fashion. For Mpts, statements
constitute the units that are modularly organised into operations, and scheduled
implicitly through the statement- and operation call-control flow defined by the
Tl. Rewriting rules are the basic units for Gbts, and are typically organised in
layers, or prioritised; different scheduling mechanisms are possible, ranging from
predefined to explicit scheduling Dsls. Time information can appear directly
attached to the model, integrated into the transformation units, or as part of
the scheduling mechanism.

2.2 Time: Characteristics and Representation

Classical distinctions for real-time systems, such as the difference between hard,
soft and even firm real-time (indicating how often and critical deadlines might
be missed), or the distinction between physical and logical time, are not dis-
criminating enough: many systems fall in one or the other depending on the
considered viewpoint. This Section attempts to provide a clearer description of
the many dimensions of time, by retaining those aspects from Furia, Mandrioli,



Morzenti and Rossi’ contribution [16] that seems interesting for providing precise
classification criteria.

2.2.1 Characteristics When abstracted for being represented within com-
puters, time is interpreted over a specific domain, and manipulated through a
language that possesses specific features: all these characteristics determine how
one can reason on a real-time system. The Feature Diagram on the right of
Figure 1 summarises these characteristics.

Domain The semantic domain for time consists of a mathematical, numerical
set whose intrinsic properties influences the way time can be manipulated by
modellers through their language, and the scope of properties they can express.
A dense set like the rational Q or real R numbers allows to find (time) points
between any arbitrary pair of points: these sets are perfect for representing “real-
life” processes or phenomena in biology, chemistry, physics, etc. On the contrary,
a discrete set like the integers (N or Z), allows to specify clock ticks, representing
abstractions from the real phenomenon. By using sampling techniques, a dense
set can be discretised. A hybrid domain makes use of both discrete and contin-
uous time (for different parts in the system). Note that in [16] also appears the
notion of boundedness: this mostly influences the verification process; besides,
none of the overviewed contributions explicitly mentions boundaries.

Language Modellers manipulate the time domain only through their modelling
language: it possess a structure, exposes a determinism model, and allows the
specification of a range of properties following a specific type.

Structure The states defined by a timed language can be classified into two categories:
linear formalisms arrange their states into a sequence, implying that state evolution
is uniquely determined by the previous state; while branching languages organise
states as trees where several possible future states may exist concurrently.

Determinism A deterministic reactive system can be seen as a system that provides a
unique response to an external stimulus in a given state. In several cases however,
non-determinism is a powerful abstraction for hiding implementation details, or
possible choices on the future states have no obvious reasons (e.g., at design time, it
is not relevant to force one task over another), or when the environment (that may
produce these inputs) is unsufficiently known (e.g., the chain reaction of a power
plant). Stochastic systems bring another precision by associating a probability
distribution for specifying undeterministic choices.

Property Type Some languages allow purely qualitative constraints, by specifying
the relative ordering of some relevant events (e.g., car breaks should activate only
after pedal is pushed), without specifying which time actually separate both events;
whereas quantitative constraints enable a more precise specification (e.g., breaks
should activate before 50 ms after pedal push).

Features From a time perspective, it is often practical to specify a system through
its components. The language’s features are the mechanisms available for speci-
fying synchronicity and communication between these components.



Synchronicity The synchronicity determines how different subsystems, or modules,
are paced regarding their relative execution: synchronous systems impose changes
in modules to occur at the same time, or at times rigidly related; while asyn-
chronous systems allow independent progress for each module.

Communication For asynchronous systems (although this theoretically also applies
to synchronous ones), a form of communication is needed between modules. Two
classical ways are usually used: message passing, where communication is achieved
by exchanging messages through communication channels; or resource sharing,
where communication relies on a common resource, usually memory, used to pass
information.

Several contributions, especially those targeting heterogeneous systems, actu-
ally mix these features together to obtain richer specification, at the expense of
complicating the coordination between system modules or languages.

2.2.2 Representation Independently of the time characteristics, what really
matters for the modeller is how time is accessible i.e. which Mde elements time
information is attached to. We reuse the proposal of [10] as a generalised way of
representing time information for all Mde framework (i.e. beyond Gbt only).

Time as Data (TaD) , where time information resides inside the model itself, e.g.
by integrating clock counters or timers as attributes within specific classes.

Time as Control (TaC) where time information is integrated at the level of trans-
formations, either by integrating it explicitly in the Tl, or by extending existing
Tls with specific constructions.

Time as Embedding (TaE) where time is not explicitly integrated at the modelling
level, but rather implicitly present in an external, third-party language: the Tl
only offers an implicit represention of time, that only becomes explicit when the
whole specification, model(s) + transformation(s), are translated into that external
language.

Conceptually however, nothing prevents to mix these representation styles in
various ways: indeed, many contributions borrows from two or even three of
them. This classification nevertheless provides a good hint on the level of control
each contribution offers to modellers, and the following sections classifies the
selected contributions by their most prominent approach.

3 Metaprogrammed Transformation Languages

In Uml, several diagrams already possess the capability to express time, but
at various abstraction levels and in different flavours that are hard to reconcile
(cf. Douglass’ book for a broad introduction of how time can be handled in the
various Uml diagrams [14]). Two diagrams attracted the most attention: State
Machines (or Statecharts) and Activity Diagrams. In parallel, a recent trend
tends to separate the domain concepts, as captured by classical Mde artefacts,
from the actual model of computation (MoC): this avoids overloading the model
with details pertaining only to the computation; and allows to reason more
precisely on the time features.



UML-Based Approaches Because of the many existing variants for State-
charts (von der Beeck mentions 21 variants in [42]), researchers focused on pro-
viding a clean semantics of a specific variant [24,43,9], while others contributed
with a unified semantic framework integrating several variants ([3,29,26] among
others) for reconciling model execution and verification. In parallel, several ex-
tensions were explored to overcome existing limitations and addressing variation
points: Liu et al. proposed a way to integrate explicit communication [25], ex-
tending the Uml time mechanism that prescribes time values to be solely at-
tached to events; Shankar and Asa integrated time features in a way independent
from the underlying diagrams used for model specification [37].

Activity Diagrams serve as a theoretical modelling basis in the Foundational
Subset for Executable UML (fUml) [30]. Again, a number of work aimed at
clarifying fUml’s semantics [23,34]. fUml has been integrated into Mof to op-
erate as a fully-fledged Tl, resulting in the xMof framework [28], served as a
semantics specification for Uml Profiles in [41], and was leveraged for specify-
ing real-time systems based on fUml concurrency, synchronicity and scheduling
model [4].

The Marte Profile [31] explicitly integrates a multiform notion of time. It
can be physical, i.e., continuous or discrete; or logical, i.e. specified through
events and clocks whose precise relationships are constrained by means of op-
erators defined in the Ccsl (Clock Constraint Specification) Language. No as-
sumption is made a priori about the clocks’ relative progression or pace. Ccsl’s
semantics is difficult to apprehend, but many contributions targeted a full se-
mantics definition in denotational and operational styles [2,45,12,44]). Ccsl has
its own simulation tool, TimeSquare [13], which was used by Boulanger, Dogui et
al. in [7] to define semantic adaptations between different models of computation.

HybridUml [5] is an Uml Profile aiming at easing the description of hybrid
systems (i.e. systems mixing both discrete and continuous time): it defines new
data types for handling both discrete and continuous time domains, and allows
to describe systems through agents whose behaviour is specified with hybrid
automata that communicate through shared variables.

Separating the MoC from the Model Formal System Design (ForSyDe) (cf.
[35,36], and the website https://forsyde.ict.kth.se/) proposes a method-
ology for modelling and designing heterogeneous embedded and cyberphysical
systems. ForSyDe focuses on semantic-preserving refinement into executable,
low-level implementations obtained from high-level models. The refinement pro-
ceeds through controlled transformations, either by refining the design, i.e. the
system architecture, by introducing further details; or by preserving the model
semantics, by integrating computational details. The methodology enforces de-
terminism in order to perform the proofs guiding the transformation process.
The MoC allows either synchronous or asynchronous behaviour. ForSyDe was
combined with Uml in [21] through the CoMeta methodology [22] to ensure
that the intended behaviour of a system is preserved, whatever tool is used to
simulate it.

https://forsyde.ict.kth.se/


ModHel’X (cf. [18,19] and the website http://wwwdi.supelec.fr/software/
ModHelX) and GeMoC ([8], cf. the website for further information: http://

gemoc.org/) are the more advanced frameworks for executing heterogeneous
models based on different Models of Computation (MoC). A ModHel’X speci-
fication consists of blocks, each with its own MoC, that communicate through
well-specified interafaces called pins. The interaction between blocks is handled
at the level of interface through adaptors: data is translated back and forth from
the outside into the block’s computation in a user-defined way. Time constraints
imposed by each block propagate through the hierarchical blocks organisation,
and may be synchronised through interaction patterns.

GeMoC is more flexible, because many dedicated Dsls allow to fine-tune
each aspects of the overall infrastructure: the interaction between the MoC and
the internal computation aimed at modifying the model’s structure; but also the
coordination between heterogeneous models obeying different MoC. However,
from an abstract viewpoint, the time model relies on Ccsl to specify clock
relationships, and on events (corresponding to specific clock ticks) triggering
internal model changes. GeMoC is difficult to classify, due to the expressive
power of the many Dsls composing its core. By using Ccsl, the time domain is
clearly heterogeneous, but only qualitative properties can be expressed. Since the
communication is also explicitly modelled, both synchronous and asynchronous
features can be used, through any of the communication features available.

4 Graph-Based Transformation Languages

Fundamentally, Gbt shares with Petri Nets the same algebraic foundations [27]:
this provided a good starting point for integrating time into various Gbt for-
malisms, including the possibility to define stochastic transformations. Rewrit-
ing logics over algebraic specifications, although similar to Petri Nets, is another
distinct source for specifying time within Gbt.

Petri Nets-based Approaches Gyapay, Varro and Heckel [17] followed an
existing approach for Environment-Relationship High-Level Petri Nets to inte-
grate time into double pushout typed Gbt: they introduce dedicated attributes
attached to graph vertices to keep track of time elapse; these attributes are
updated along the transformation whenever rules are applied. This approach
is designed as a quantitative time proposal naturally bound to Gbt: it allows
to overcome the existing limitations for modelling time, while fully reusing ex-
isting tools and technologies for Gbt, assuming graphs are modelled from the
beginning with time attributes.

Stochastic Gbts were explored by Heckel and his colleagues in [20]: tran-
sitions of a Petri Net-like formalism are triggered according to a probability
distribution instead of a discrete boolean guard, introducing delays in Gbt rules
execution. This approach was later enriched with localised events that are or-
dered through a graph hierarchy, allowing to specify probabilistic dependencies
among events residing at different levels. Both contributions target stochastic
simulation, although some analysis based on Prism remains possible.

De Lara and Vangheluwe [11] enrich Gbt prioritised rules with time inter-
vals to model imprecise clocks and timeouts, allowing to delay rules execution
to a future time specified by the interval. Rules then represent time elapse of

http://wwwdi.supelec.fr/software/ModHelX
http://wwwdi.supelec.fr/software/ModHelX
http://gemoc.org/
http://gemoc.org/


domain-specific actions attached to rules. Again, simulation and analysis are
possible through a mapping into Petri Nets, with the results translated back to
the original domain-specific concepts.

Rewriting Logics Maude is the common external Gpl for Rewriting Logics,
thus allowing simulation, reachability analysis and model-checking. Boronat and
Ölveczky [6] extended the Moment Framework with Real-Time capabilities by
adding timers, clocks and timed values (corresponding to a rated basic clock) to
Mof-compliant models. To avoid cluttering Mof-conformant models with time
features, they use a kind of “dependency injection”, so that model elements con-
cerned with time are referenced by the classes embedding the time information.
This approach is a hybrid between TaE/TaD: time information inside the model
still has to be explicitly managed by transformations.

The e-Motions framework [33,32] is a visual framework for the modelling,
animation and analysis of Real-Time Domain-Specific Languages that provides
a large variety of time constructs attached to rules (and therefore, considered
as TaC). These constructs define domain-specific actions: rules can be ongoing,
meaning that they are constantly updating the model; or atomic with a duration
and a period. Such a rich Tl requires a careful translation into Maude: atomic
rules are translated into two rules, one when a match is found and the other
for triggering the model changes; and ongoing rules are managed with low-level
primitives in Real-Time Maude.

Other Approaches For the purpose of animating Dsls in (quantitative) real-
time even when the model at hand presents several concurrent changes, Strobl
and Minas propose another approach based on a Dsl aiming at facilitating the
specification of animations [38], whose semantics is specified as Gbt. For ob-
taining a reactive system, time information is attached to states, and transitions
are triggered by different kinds of events: internal events represent time elapse,
making the global time progress; and external events represent user interaction.
Events are organised in a queue: the next internal event is computed between all
possible events in the graph, while taking into account possible external events
that must have priority.

MechatronicUml [15] is a tool suite designed for the modelling and formal
analysis of cyber-physical systems using time-dependent dynamic structures that
need to be reconfigured architecturally at runtime. Their modelling approach
relies on components, whose internal behaviour is specified as real-time stat-
echarts, and on patterns that specify how components communicate without
breaking their internal logics. Gbt rules specify how the components and their
communication ports and channels constituting the overall system architecture,
are reconfigured in response to stimuli. The clocks defined in statecharts are
accessible to the Gbt rules to guard an execution, add, remove or reset clock
instances dynamically. By translating the statecharts and the Gbt rules as a
Uppaal specification, they are able to perform model-checking.

AtomPm [40] is a web-based Mde framework relying on a mapping into
Devs [39]: the transformation designer manipulate time directly, but the frame-
work offers concurrency primitives through a dedicated visual language, forcing
the designer to handle classical concurrency issues by himself.



Contribution Domain Language Features Representation

M
p
t

Statecharts D B/D A/MP TaC

Activity Diags./fUml D B/D A/MP TaC

Marte / Ccsl H B/D H/? TaD+TaC

HybridUml H B/D A/RS TaD+TaC
ForSyDe H B/D A/RS TaC

ModHel’X H B/D H/MP TaC

GeMoC H B/D H/? TaC

G
b
t

High-Level Petri Nets D B/D A/RS TaC

Stochastic Approaches H B/D A/MP TaC

De Lara & Vangheluwe D B/D A/RS TaC

De Lara, Guerra et al. H B/D A/MP TaC+TaE

Strobl & Minas D B/D A/RS TaD

Gyapay et al. D B/D A/RS TaD

Moment2 D B/D A/RS TaC

e-Motions D B/D A/RS TaC

MechatronicUml H B/D A/MP TaC

AtoMpm D B/D A/RS TaE

Table 1. Classification of the overviewed contributions. The letters in each column
refers to the leafs of the Feature Diagrams in Figure 1(D and D stand for deterministic
and undeterministic) and the Representation mode explained in Section 2.2.2.

5 Conclusion
Real-Time Mde is a recent application of Mde techniques and know-hows to
new application domains such as embedded, safety-critical and cyber-physical
systems for which time is a crucial components. We proposed in this paper a
preliminary classification based on three criteria: the transformation language’s
paradigm (either Mpt or Gbt); the components characterising the time infor-
mation available for the modeller; and the way time is represented in the Mde
framework. We then overviewed several literature contributions: without aiming
at full exhaustivity, the surveyed approaches are in our opinion representative
enough for depicting the general picture of the current practice and the recent
theoretical developments. Table 1 summarises the results by classifying each
(group of) contributions according to our criteria.

We plan to pursue this effort in three directions. First, we plan to collect
more contributions than what was possible with this paper’s space restriction.
Second, we wish to refine our criteria, in particular the Representation: this
granularity is not enough to capture adequately the many variations encountered
in approaches that handle coordination between models expressed with different
MoCs, since this task is complex and happens at different levels. Third, we aim
at studying the V&V capabilities of these contributions: functional as well as
temporal correctness are crucial features for real-time applications.
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1. M. Amrani, L. Lúcio, G. Selim, B. Combemale, J. Dingel, H. Vangheluwe, Y. Le
Traon, and J Cordy. Formal Verification Techniques for Model Transformations:
A Tridimensional Classification. JoT, 2014.
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