
JSMF: a flexible JavaScript Modelling
Framework

Jean-Sébastien Sottet and Nicolas Biri

Luxembourg Institute of Science and Technology,
5 avenue des Hauts Fourneaux, Esch/Alzette, Luxembourg

{jean-sebastien.sottet,nicolas.biri}@list.lu

Abstract. Model-Driven Engineering (MDE) technologies are more and
more used outside the software engineering field such as the typical cases
of code generation and formal validation and verification. In fact, MDE
is applied to many different modelling situations such as regulation, law
compliance, data analytics, etc. In these domains, we often face incom-
plete and/or evolving requirements, which implies the need for specific
modelling facilities. In particular, we must be able to relax standard
metamodel definition in order to express uncertainty and unforeseen
modelling constructs.
However metamodels are important for dealing with computer-based ma-
nipulation of models: from the flexible models a (new) metamodel should
emerge. It will freeze the modelling language features that permit: model
transformation, comparison, evolution, etc.
In this article we propose a framework called JSMF, based on JavaScript.
It allows for defining a flexible metamodel, to freely define models and
provide controls for checking the level of conformance. We also show
how to use JSMF for the incremental definition of a frozen metamodel,
starting from a flexible one.

Keywords: Flexible modelling, Conformance relaxation, Natural mod-
elling

1 Introduction

Model-Driven Engineering (MDE) is increasingly applied to modelling cases
where the traditional approach of building models that conform to a precise
and pre-defined metamodel is not sufficient (e.g., enterprise modelling). Indeed,
models are built by domain experts that are not using traditional modelling
tools. Surveys regarding enterprise models [8] show that domains experts are
more eager to use home-grown and semi-structured languages than using a tra-
ditional modelling language, defined by a strict metamodel. These modelling
situations (e.g., an enterprise architect trying to build organizational view of the
enterprise) often require a more flexible modelling tool support [9]. Many reasons
could explain this need for freedom: exploration of a new domain, unclear bor-
der of model purpose, imprecise/incomplete knowledge about the system under
study, etc.

If a flexible modelling environment (i.e., not enforcing strict conformance)
allows for better handling of models for specific situations, it lacks the MDE key
capabilities, e.g., model transformation, computation, comparison, etc. In order
to allow computer based manipulations of such models, the flexible (meta)model
should be progressively frozen [5] ensuring the modelling continuum [12]. Once
frozen, the metamodel becomes a rigid metamodel as opposed to a flexible meta-
model.

Many approaches exist for bridging sketching tools/free modelling and the
MDE approach trying to reconcile inconsistencies between flexible models and
their underlying metamodel. In this article we will not investigate the alignment
of drawing tools elements and metamodel concepts nor try to infer types for
model elements. We rather propose a framework that allows for 1/ defining
level of flexibility regarding the conformance relation, 2/ consequently being
able to define models that not strictly conform to a metamodel (e.g.: by adding
properties), 3/ making new metamodel emerging for raw elements.

We will first introduce the JSMF framework as a general overview focusing on
its flexibility feature. In a second time, we depict our vision of model flexibility
based on (meta)models features. Finally, we propose a reconciliation mechanism
for the conformance relation.

2 JavaScript Modelling Framework - JSMF

The JavaScript Modelling Framework (JSMF) has been designed for providing
a flexible modelling environment that could support the requirements of natural
modelling [12]. It is a JavaScript-embedded Domain Specific Language (DSL)
inspired by the Eclipse Modelling Framework (EMF) in its basic functions but
that relies on JavaScript dynamic typing and on a relative independence between
a metamodel and a model. JSMF also comes with a set of tools (not detailed
in this article) to manipulate and compute properties about models: JSTL for
model-to-model transformation, model checking and querying facilities.

Notion of model and metamodel. In JSMF, the notion of model is seen as a
container: it contains model elements which can be shared amongst models.
A model can contain metamodel or model elements independently. An explicit
reference to a (meta)model (i.e., reference model) can be added to a model but
is not mandatory.

Model elements. JSMF actually differs from existing EMF translation/adapta-
tion in JavaScript like, for instance, EMFJSON 1 or a lightweight EMF imple-
mentation in JavaScript JSMF 2: it does not copy the instantiation mechanism
of EMF/Java using the JavaScript prototype. On the contrary a model element
conforms to a metamodel element only using instantiation mechanism. But it
does not prevent from adding any properties (i.e., like any standard JavaScript

1 see: https://github.com/emfjson/emfjson-jackson
2 see: https://github.com/dslmeinte/jsmf

object). Rules for setting (and getting) attributes and references are dynamically
created at object creation but can be adapted afterwards. Moreover the meta-
model and model can evolve independently, the model is just keeping a reference
to the metamodel that has been used for its creation (which can be inconsistent).

In JSMF, a metamodel can be defined using different syntaxes as shown in
Listing 1. The classical syntax is inspired by the EMF API. In the example,
a Family is a new instance of class Class. This Family class has an attribute
lastname of type String - here we use the basic type of JavaScript. One can
also use jsmf.String (as shown below as a type element). In JSMF, types are
simply functions that returns true if the given value in a model (i.e., during
instantiation) is valid for this type. When we provide String, it’s implicitly
translated in the jsmf.String function that returns true for any string. The
Family class has also a relation named members that related it to a class Person
with a cardinality (0..*) as defined by JSMF.Cardinality.any.

The compact syntax is largely inspired by the one used in JavaScript for
defining raw objects. Here, we present a class Person that has no super-type
(empty array of types []) and has two attributes firstname and age of respec-
tive type String and jsmf.Positive.

// Compact (JavaScript Object) Notation

const Person = Class.newInstance(’Person ’, [],

{ firstname: String , age: jsmf.Positive })

// Classical Syntax - EMF like -

const Family = Class.newInstance(’Family ’)

Family.addAttribute(’lastname ’, String)

Family.addReference(’members ’, Person , jsmf.Cardinality.Some)

Listing 1. Definition of Person and Family in JSMF using two possible syntaxes

As a basic feature of JSMF we allow to define relationships that target any
class of any type, see Listing 2. This is equivalent to referencing the EMF EOb-
ject Class. This is a first form of flexibility: it means that any class can be
targeted by such relation (i.e., target type of this reference is not discerned). For
example, the previous Family declaration would be the following if we want to
accept any class instance as a member of a family:

const Family = Class.newInstance(’Family ’)

Family.addAttribute(’lastname ’, String)

Family.addReference(’members ’, jsmf.JSMFAny ,

jsmf.Cardinality.Some)

Listing 2. Definition of annotation

As a summary, the features and the conceptual structure of the JSMF (meta)modelling
environment is defined in the Figure 1. In JSMF a class can inherit from multi-
ple classes, combining all the properties together. However, if a model element
is overridden into multiple inherited classes (e.g., the same attributes defined
many times), only the last class is taken as the only definition 3.

3 alike first versions (e.g., 2.3) of Python programming language.

Alike many object inspired modelling frameworks, a JSMF Class has many
attributes and references. Attributes are classically defined (name, type and
mandatory attributes). References are partially classically defined: reference
point at a TargetElement. Target elements can be a precise class or any JSMF
element: JSMFAny.

One specificity of JSMF is that we can define an associated class which
could quality the reference/relation, i.e., providing additional information such as
weight, probability, etc. Through references one can directly define a relationship:
proposing an opposite reference and an opposite cardinality. Cardinalities are
defined as follow by predefined set of min/max: [0,1], [1,1], [0,*], [1..*].

Fig. 1. JSMF Conceptual Model

For building modelling elements that conform to metamodel elements two
notations also exists: a classical object (EMF-like) construction (create object
first, then set attributes) or the compact JavaScript one.

// Expanded notation & new

const john = new Person ()

john.firstname = ’John’

john.age = 46

// Compact notation & newInstance

const kennedy = Family.newInstance ({name: ’Kennedy ’,

members: [john]})

Listing 3. Definition of annotation

3 Flexibility

As presented in the previous section, JSMF looks like a classical framework that
takes benefits from JavaScript dynamic typing. In this section we show how

JSMF could that offers more flexibility than traditional approaches. In order to
build a flexible modelling support, several rules needed to be relaxed as well.
Relaxing the conformance relation allow models to be adapted to various situ-
ations. For instance, for adapting (meta)model to the domain being discovered
or to overcome language limitation regarding a peculiar purpose.

3.1 Defining Flexible (Meta)Models

Within JSMF, relaxing the conformance can apply to an entire model or just to
some elements. As a result we allow each (meta)model element to be configured
separately. A metamodel which has some flexible modelling elements can be
referred to as a proto-metamodel. Like proto-languages [12], proto-metamodel
defines a “partial and flexible structure” that a model could conform to. Some
elements may not be defined, used differently amongst domain engineers and
more importantly the language and models can still evolve.

We have identified some important properties for setting the flexibility level.

Attributes optionals/mandatory: By default in JSMF, attributes are op-
tional but they can be set as mandatory thanks to an option in the attribute
definition.

Attributes types: The types can be checked or not, same applies to type-
imposed constraints (e.g., a Number between 0 and 20).

References cardinalities: The cardinality can be checked or not. Not check-
ing the cardinalities means setting a 0..* cardinality.

References targeted type: As shown before, targeted types can be loosely
defined using JSMFAny. There is a slight difference between using JSMFAny
and not checking type. For the latter the declared type can be a hint.

References opposite: The opposite relation can be checked or not (including
the opposite cardinality).

The level of flexibility can change all along the life-cycle of a metamodel.

3.2 Flexibility management in JSMF

JSMF provides facilities to define the flexibility of the models class by class and
even at the attributes and references level. By default, a JSMF (meta)model
comes with the following flexibility rules:

– Attributes types are checked when we assign a value to an attribute slot. If
the attribute is mandatory, JSMF check that the value is undefined. Assign-
ing an invalid value to an attribute slot will raise an exception.

– Reference targeted types are checked. An error is raised when an attempt is
made to assign the wrong type to a reference.

– References cardinalities are not dynamically checked.
– Additional-attributes and references can be defined on an existing object.

JSMF allows a fine management of the two first items of the list above
(attribute types and mandatory checking, and reference type checking). We can
either modify the definition of the flexibility of an attribute or reference at its
declaration or later on for a whole class. Here, in Listing 4 we revisit the example
of Listing 1 but we replace the Family class by a definition with a flexible
reference members and we set the whole Person class as flexible.

// Set the whole Person class as Flexible

Person.setFlexible(true)

// And thus is a (stupid but) valid instance declaration

const john = Person.newInstance ({ firstname: 42, age: ’John’})

// errorCallback define the flexible behaviour of members

const Family = Class.newInstance(’Family ’, [],

{ lastname: {type: String , mandatory: true}},

{ members: { target: Person

, errorCallback: jsmf.onError.silent }})

const smith = Family.newInstance(’Smith’)

// We can assign something else than a Person to members

smith.members = [smith]

Listing 4. Flexibility declaration example

As written in Listing 4, the flexibility of a whole class can be set thanks
to the setFlexible method. For a single attribute or reference, one can use
errorCallback during the declaration to define the behaviour of JSMF when a
type error is encountered. Several default methods are provided to handle these
type errors. Here, we use onError.silent, which discards the type error and
performs the assignment. More advanced methods can be defined, allowing for
example to correct some errors before the assignment.

3.3 Checking conformance

Whilst model flexibility can be desirable in an exploration phase, it may not fit
with all production purposes. We need tools to assess how a model differs from
its metamodel and then to reconcile them. JSMF provides a checking tool that
will check basic construction rules (attributes and references types, cardinali-
ties, extra attributes or references) as well as metamodel-specific constraints (a
la OCL). The checker returns a JavaScript object containing all the constraints
violations of a model. These violations are grouped by constraint type and come
with a detailed context that allows precise identification of the issue location
in the model. In Figure 5, we use the flexible Person and Family to provide a
first sketch of a model instance with some differences its reference model (meta-
model).

const DomesticPet = jsmf.Class.newInstance(’DomesticPet ’, [],

{ name: String , race: String })

Person.setFlexible(true)

const FamilyModel = new Model(’FamilyModel ’, {},

[Family , Person])

const kennedy = Family.newInstance ({name: ’Kennedy ’})

const john = new Person ({ firstname: ’John’,

birthdate: new Date(’1917 -05 -29’)})

const jackie = Person.newInstance ({ firstname: ’Jacqueline ’,

nickname: ’Jackie ’, birthdate: new Date(’1929 -07 -28’)})

const charlie = DomesticPet.newInstance ({name:’Charlie ’,

race: ’Welsh Terrier ’})

kennedy.members = [john , jackie , charlie]

const Families = new Model(’Families ’, FamilyModel ,

[kennedy , jackie , john , charlie])

Listing 5. Flexible metamodel and model instance

If we check the Families model (typing Families.check()), we obtain as a
result a JavaScript object that gather all the errors, grouped by error type. The
conformance check of the example of Listing 5 catches the following error:

– The family object Kennedy has a field lastname which is mandatory but
undefined.

– The Kennedy Family also has a member that is not a Person, Charlie.
– Several elements ave additional attributes: Jacqueline has a birthdate and a

nickname, and John has a birthdate.

To give an insight of the object representation, Listing 6 provides an excerpt
of the conformance check object. Note that this is a raw output of a JavaScript
object, not intended to be used as-is for human comprehension. The excerpt
shows the reference type violation entries. It is composed of a unique error. The
error is defined as a heterogeneous list, where the first element is the model
element that contains the error (the Kennedy family), the second element is
the reference name that contains the error (members) and the third element is
the wrongly typed element (the dog Charlie). The advantage of the output as
a JavaScript object is that we have a direct access to the model elements that
do not conform to the reference model. Thus we can access and modify them
directly.

{ // ...

referencesTypeRule:

[[{ lastname: undefined , members: [Object], name: ’

Kennedy ’ },

’members ’,

{ name: ’Charlie ’, race: ’Welsh Terrier ’ }]],

// ...}

Listing 6. An excerpt of check result

4 Metamodel and Model reconciliation

The Metamodel and Model reconciliation involves applying different modifica-
tions to the model and to the proto-metamodel to obtain, ideally, a model and
a metamodel such that the first conforms to the latter. As an embedded DSL
language, and thanks to its flexibility, JSMF can take advantage of JavaScript
expressiveness to tweak both the model and the metamodel quite easily. A clas-
sical reconciliation session consists in applying modifications to the model and
metamodels and observing the conformance errors of the resulting (meta)models.

A subtlety is that, as explained in Section 2, evolution of a metamodel element
is not immediately replicated on elements that conform to it. We provide two
functions, refreshElement and refreshModel to respectively resynchronize an
element or a whole model with an up-to-date metamodel.

Based on the example in Listing 5 we illustrate the two major reconciliation
approaches: modification of the model elements to conform to the metamodel
and the converse.

Applying change directly to the model. Let’s decide that lastname is the correct
attribute name for a family name. Thus, we must change the kennedy object ac-
cordingly, which can be done in two JavaScript instructions: kennedy.lastname
= kennedy.name; delete kennedy.name. Here, the metamodel is unchanged,
we have just fixed a model element.

Applying change directly to the metamodel. Changes to the metamodel can be
performed manually or through heuristics functions. Manually, we can for exam-
ple add a nickname attribute to the Person class quite easily and then we just
have to refresh the model elements, as follows:

Person.addAttribute(’nickname’, String)

jsmf.refreshModel(Families)

Discovering metamodel structure from a model. Changes can also come from
the models used here as an archetypal example. Note that we are not addressing
the discovery of a full metamodel from a flexible model, but rather refine some
parts (i.e. class) of a flexible metamodel. One can decide that a model element
is an archetypal representation of a class, thus updating the metamodel accord-
ingly. The properties of the object (note that this also works for non-JSMF
objects) are examined (as key-value pairs) and the attribute types inferred from
the current data, notably using JavaScript’s typeof. For references, we make
the assumption that they target only JSMF elements. For instance, the Jackie
Kennedy instance can help in building or updating the Person class by invoking
the archetypalDiscovery function. The Person gets 3 attributes, here adapted
from log trace:

attributes:

{ firstname:[Function: isString], //...

nickname:[Function: isString], //...

birthdate:[Function: isDate], //... }

5 Related work

In [4] the authors introduce the requirements for a flexible metamodelling en-
vironment. They classified the different usage and nature of metamodels to be
used in either flexible or rigid modelling scenarios. Models can be defined inde-
pendently from a metamodel (metamodel is then built from the model).

In the first extreme of flexibility, metamodels are not pre-defined and are in-
ferred from models. The approaches of [2, 11] also support this type of scenario.
In a same idea, [13] works on partially rigid metamodels. It involves inference
only for the flexible part taking benefits from rigid parts. We did not go deep into
inference mechanisms used to create metamodel [6] from example models. How-
ever, it should be implemented as an additional module in the JSMF framework.
Moreover, most of these approaches [13, 11] come with graphical editor allowing
users to draw any shape and then assign structure and semantic to them. This
last point is beyond of the scope of the article.

The concept of Muddle [7] offers the same capabilities as JSMF. It allows for
the definition of models that follow a “partial” structure defined by a metamodel
that can be translated into a EMF (meta)model. In this work, we opt for a direct
handling of both flexible and rigid models into our framework.

A posteriori typing [3] offers to separate the instantiation mechanism from
typing/classifying. JSMF does not directly support this process but embed tools
to support similar situations: relying on metamodel and model reconciliation
mechanisms (see Section 4).

Finally, the approach of [10] is close to the current capabilities of JSMF. In
JSMF setting a specific level of error is equivalent to relaxing the conformance
(i.e., the model element partially conforms to its metamodel element).

6 Conclusion

We have presented JSMF4, a flexible modelling framework which allows to de-
fine both relaxed and rigid conformance. JSMF, as we have shown in this article,
comes with the possibility to check the conformance (dynamically and statically)
comparing the models and metamodels and reconciling them together in both di-
rections: i.e., by enforcing conformance (Metamodel→ Model) or by discovering
structure from an example (Model→ Metamodel). With JSMF any part of any
modelling element (its attributes and references) can be made flexible by dis-
abling (i.e., silencing) the -dynamic- type checking used when assigning values.
However, flexibility without control would not be useful. In order to retain ben-
efits from MDE tools (e.g., model transformations) we need to get back to rigid
modelling elements. We have designed a static checker that helps in identifying
issues and supporting a progressive translation to a classical MDE approach.
As such, JSMF can be seen as a prototyping environment before applying more
traditional/industrial MDE solutions. The flexibility of JSMF is ideal during the
exploration of a new domain, problematic, etc.

4 see https://js-mf.github.io/ for implementation and more components.

Future work will focus on investigating inference (e.g., type inference) for
ambiguous modelling elements or from any data source. Notably we aim at
supporting natural modelling sessions [1] relying on natural interaction (e.g.,
tangible objects, shapes, etc.).

References

1. Bjeković, M., Sottet, J., Favre, J., Proper, H.A.: A framework for natural enterprise
modelling. In: Proceeding of the 15th IEEE Conference on Business Informatics
(2013)

2. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific modeling languages
from end-user demonstration. In: Proceedings of the 4th International Workshop
on Modeling in Software Engineering. pp. 22–28. IEEE Press (2012)

3. De Lara, J., Guerra, E., Cuadrado, J.S.: A-posteriori typing for model-driven engi-
neering. In: Model Driven Engineering Languages and Systems (MODELS), 2015
ACM/IEEE 18th International Conference on. pp. 156–165. IEEE (2015)

4. Gabrysiak, G., Giese, H., Lüders, A., Seibel, A.: How can metamodels be used
flexibly. In: Proceedings of ICSE 2011 workshop on flexible modeling tools, Waikik-
i/Honolulu. vol. 22 (2011)

5. Hoppenbrouwers, S.: Freezing Language; Conceptualisation processes in ICT sup-
ported organisations. Ph.D. thesis, University of Nijmegen, The Netherlands (2003)

6. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: Mars: A metamodel recovery system
using grammar inference. Information and Software Technology pp. 948–968 (2008)

7. Kolovos, D.S., Matragkas, N.D., Rodŕıguez, H.H., Paige, R.F.: Programmatic mud-
dle management. In: XM@ MoDELS. pp. 2–10 (2013)

8. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What Industry Needs
from Architectural Languages: A Survey. IEEE Trans. Software Eng. (2013)

9. Ossher, H., Bellamy, R., Amid, D., Anaby-Tavor, A., Callery, M., Desmond, M.,
Vries, J.d., Fisher, A., Frauenhofer, T., Krasikov, S., Simmonds, I., Swart, C.:
Business Insight Toolkit: Flexible Pre-requirements Modeling. In: ICSE Compan-
ion. pp. 423–424. IEEE (2009)

10. Salay, R., Chechik, M.: Supporting agility in mde through modeling language re-
laxation. In: XM@ MoDELS. pp. 20–27 (2013)

11. Sánchez-Cuadrado, J., De Lara, J., Guerra, E.: Bottom-up meta-modelling: An
interactive approach. In: International Conference on Model Driven Engineering
Languages and Systems. pp. 3–19. Springer (2012)

12. Zarwin, Z., Bjeković, M., Favre, J.M., Sottet, J.S., Proper, H.: Natural modelling.
Journal of Object Technology 13(3), 1–36 (2014)

13. Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D.S., Paige, R.F.: Type inference
in flexible model-driven engineering. In: European Conference on Modelling Foun-
dations and Applications. pp. 75–91. Springer (2015)

