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ABSTRACT
The demo paper deals with preparation of ontological bench-
marks as ontology sets selected from ontology repositories.
We distinguish between two types of ontology sets according
to coverage of ontology metrics values: a homogeneous set
contains ontologies with very similar values of selected on-
tology metrics, while a heterogeneous set contains ontologies
with different values of such metrics. Homogeneous sets can
be built straightforwardly upon specification of the required
metrics values by the user when interacting with reposito-
ries. However, building heterogeneous ontology sets is not
covered in the current functionality of ontology repositories.
We propose to employ search techniques leveraging on on-
tology similarity in this process. In similarity-based search
one can obtain either homogeneous or heterogeneous sets,
by varying the selection parameters. Further, we investi-
gate whether Formal Concept Analysis could help generate
sufficiently large homogeneous sets.

1. INTRODUCTION AND MOTIVATION
There are more and more ontologies on the semantic web

along with new tools for their management and exploita-
tion. New tools obviously need testing their functionality
on ontology sets allowing to balance between 1) presence of
specific features crucial for a particular functionality, and,
2) sufficient coverage of different cases the tool might en-
counter. With respect to the former, for instance, ontology
repair tools [7, 4] can only be assessed on models with non-
trivial concept expressions. In this case ontologies, in the
respective ontological benchmark, are rather homogeneous.
With respect to the latter, for instance, thoroughly testing
ontology visualization techniques [5] demands diverse ontol-
ogy aspects such as taxonomies of different depth, instances
or various types of axioms. In this case ontologies, in the
respective ontological benchmark, are rather heterogeneous.
Homogeneous sets can be built straightforwardly upon spec-
ification of the required metrics values by the user when
interacting with repositories. However, building heteroge-
neous ontology sets is not covered in the current functional-
ity of ontology repositories.

We extend our previous work on ontological benchmark
construction [14], relying on the Online Ontology Set Picker
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(OOSP)1 tool, by adding support of similarity-based ontol-
ogy search and by studying the potential of Formal Concept
Analysis (FCA) for identifying interesting ontology sets. Sec-
tion 2 presents the basic functionality of OOSP. Section 3
introduces ontology search based on similarity computation
as an extension to OOSP. Section 4 presents the initial in-
vestigation of ontological benchmark construction based on
FCA. Related work is presented in Section 5, and Section 6
wraps up the paper with conclusions and future work.

2. OVERVIEW OF OOSP
OOSP allows to select, from ontology repositories, a set of

ontologies satisfying a user-defined sets of metrics [14]; sup-
porting creation of homogeneous sets. It allows ontological
tool designers to rapidly build custom benchmarks for test-
ing different features of their tools. The web front-end allows
to select ontologies by specifying a broad range of metrics
and delivers benchmarks along with their statistics of met-
rics, including a graph view. Currently it includes the follow-
ing snapshots from various repositories: the BioPortal2 Feb.
2015 snapshot contains 317 ontologies, the Linked Open Vo-
cabulary (LOV)3 Feb. 2015 snaphot contains 461 ontologies,
the LOV Jan. 2016 snapshot contains 509 ontologies, the
NanJing Vocabulary Repository4 (NJVR) Jan. 2016 snap-
shot contains 1403 ontologies, the NJVR merged Jan. 2016
snapshot contains 225 ontologies, and the OntoFarm5 Jan.
2016 snapshot contains 16 ontologies.

3. SIMILARITY COMPUTATION IN OOSP
Ontology similarity can be employed for exploring an on-

tology collection via cluster analysis. We inspected the LOV
Feb. 2016 snapshot using hierarchical clustering with Ward’s
minimum variance method using the R language.6 We sepa-
rately analyzed ontology clusters according to entity-based,
axiom-based and class-expression-based ontology metrics,
and usually could single out several apparent clusters. There
were also some outliers, typically corresponding to very large
ontologies. Although the clusters could be interesting per se,
it appears more practical to let the user explicitly select the

1http://owl.vse.cz:8080/OOSP/; the webpage also links to
commented screencasts describing both the general function-
ality and the new features described in this paper.
2http://bioportal.bioontology.org/
3http://lov.okfn.org/dataset/lov/
4http://ws.nju.edu.cn/njvr/
5http://owl.vse.cz:8080/ontofarm/
6https://www.r-project.org/



ontology metrics upon which the similarity computation is
to be carried out, as well as the similarity threshold. We
support this in the following scenario.

Similarity-Based Ontology Search Scenario.
While the construction of homogeneous ontology sets is

supported by the OOSP core, in order to construct hetero-
geneous sets we need to apply similarity-based search as a
new functionality.7 There is a three-step workflow.

First, the user provides either the URI of an online ontol-
ogy or a storage code of an ontology stored in OOSP.

Second, s/he obtains an ontology metrics overview for the
given ontology; while for an online ontology they are com-
puted on the fly, for ontologies stored in OOSP they are
merely retrieved. S/he may select an ontology pool restrict-
ing the scope of ontologies to be considered. Next, s/he
selects the ontology metrics to be considered for similar-
ity computation out of six ontology metrics groups: en-
tity metrics (4) including the number of entities; axiom
metrics (25) including the number of different axiom types
(e.g., subsumption or equivalence); class expression type
metrics (11) including expression types used for construction
of anonymous classes (e.g., existential quantification); tax-
onomy metrics (10) describing the taxonomy (e.g., the num-
ber of top classes, leaf classes, branching degree or maximum
taxonomy depth); annotation metrics (6) including counts
of selected annotation types (e.g., labels or comments) and
of different languages involved in label annotations; finally,
detail metrics (13) including some newly designed metrics
related to domain/range (e.g., the number of anonymous
classes as domain definition). In all the user can select any
combination of ontology metrics out of the 69 metrics avail-
able in OOSP.As further parameters s/he can specify the
maximum number of ontologies on output, the minimum
and/or maximum of the similarity threshold, and the pref-
erence of the upper or lower end of this interval.

Third, the user obtains the ontology set meeting the pro-
vided restrictions, including a downloadable table with all
metrics values for all selected ontologies.

Implementation.
Ontology metrics are computed using our own implemen-

tation in Java or the OWL-API library.8 For similarity com-
putation we use the R language. Based on ontology metrics
computed for the given ontology and the selected ontology
pool, an n×m data matrix is generated, where n corresponds
to the number of ontologies in the selected ontology pool
plus one ontology given by the user and m to the number of
selected ontology metrics. On input data we first apply the
scale function in R (centering and scaling the attributes of a
numeric matrix). Next, we compute the euclidean distance
between the given ontology and all ontologies from selected
ontology pool in a pair-wise manner, where the two vectors
v1, v2 represent ontologies O1 and O2 with values of the
computed ontology metrics:

d(v1, v2) =

√√√√ m∑
j=1

(v1j − v2j)2 | d(v1, v2) ∈ [0,∞]. (1)

7Under ’Go to Ontology Search Based on Similarity’.
8http://owlapi.sourceforge.net/

We then transform the computed distance function to sim-
ilarity using the following formula:

s(v1, v2) =
1

1 + d(v1, v2)
| s(v1, v2) ∈ [0, 1]. (2)

Finally, the ontologies are selected according to the simi-
larity search parameters, i.e. the maximum number of sim-
ilar ontologies, the similarity interval and its preferred end.

4. FCA IN ONTOLOGICAL BENCHMARK
CONSTRUCTION

Formal Concept Analysis.
Formal Concept Analysis (FCA), introduced by Ganter

and Wille [3], enables to extract groups of similar objects
from a set of objects O, where the objects are described by
a set of attributes T . The starting point for the FCA method
is a data structure called formal context, consisting of the
sets T , O and I; I is a binary relation such that I ⊆ O× T .
(A,B) is a formal concept, or concept in short, of the formal
context (O, T, I) iff A ⊆ O and B ⊆ T . A is the extent
and B is the intent of the formal concept (A,B). A formal
context can be transformed into a mathematical structure
called concept lattice. A complete concept lattice contains
all formal concepts of (O, T, I) with the order (A1, B1) ≤
(A2, B2)⇔ A1 ⊆ A2.9

For constructing concept lattices we use Lattice Construc-
tor, (LeCo) which is one of the modules of the Coron plat-
form.10 LeCo is theoretically grounded in the work of Szath-
mary et al. [11]. On input it takes the frequent closed item-
sets (FCIs); O corresponds to an itemset. The support of an
itemset X, denoted as supp(X), is the number of items in
this itemset, supp(x) = |X|. Further, an itemset is frequent
if its support is not lower than a given minimum support.
Next, an itemset is closed if it has no proper superset with
the same support with regard to the order defined above.
FCIs are reduced representations for all possible frequent
itemsets and they are also used for non-redundant bases of
valid association rules [6]. Since we are not interested in
the complete concept lattice,11 we only generate an iceberg
lattice, also called the intent lattice of a context [3].

Using FCA for Ontology Collection Exploration.
In our case objects (items) in an itemset are ontologies

and attributes correspond to ontology metrics. In our ex-
ploration we employed six groups of ontology metrics avail-
able in OOSP [14], see Section 3. Our motivation of using
FCA for exploration of ontology collections is to consider
its utility for ontological benchmark construction. We sup-
pose that it would enable the user to discover an ontology
set rich in many different characteristics and large enough
at the same time. In practice, the user could come up with
a certain ontology metric (and possibly its value), and the
FCA-based service could provide different options of ontol-
ogy sets differing in size and characteristics. In terms of
FCA it means that we focus on concepts with “large” intent
as well as “large” extent.

9For a more precise description we refer to [3].
10http://coron.loria.fr/
11Generating a complete concept lattice for large data is also
computationally demanding.



In our exploratory workflow we employ a four-step pre-
processing phase, for which we use the R language:

1. Exporting ontologies satisfying the selected numeric
and categorical metrics,12 from the chosen pool.

2. Discretizing the numerical metrics into at most n in-
tervals of equal frequency.

3. Generating binary attributes from categorical and dis-
cretized numerical values, ignoring those having zero
or one unique value for the original metric.

4. Creating a binary table for ontologies × attributes.

Based on this binary table LeCo generates the iceberg
concept lattice according to the given minimal support.

Preliminary Insights.
For the three major collections, LOV (2016 snapshot),

BioPortal and Nanjing, we applied different settings for the
pre-processing step and for the iceberg concept lattice13 gen-
eration. We briefly discuss selected results.
LOV. The setting with at most 10 attributes per discretized
metrics in combination with minimal support by 50 ontolo-
gies yielded 319 attributes in the binary table and generated
a rather flat (3-level) lattice.14 The level number reflects
both the position of the concept in the lattice and the num-
ber of attributes occurring in the concept intent.

To obtain a richer lattice we decreased the max number
of attributes per metric to 5, leading to 167 attributes and
a five-level lattice. An example from level three is {labels
[7,20), range class [2,7), object property range [2,7)} (51),
i.e. a concept with 51 ontologies having a rather small value
for the three respective metrics: number of labels, named
classes in range and defined range for object properties. The
lattice is however typically dominated by attributes corre-
sponding to higher occurrences of respective metrics, such
as an example from level four: {labels [104, 16878], range
class[26, 2329], axiom [802, 44101], object property range
[27,2329]} (55). We see that there are the same metrics but
with highest occurrence values, plus a reference to the high
number of axioms. While the high number of labels might be
surprising, the correlation of the other three metrics seems
obvious. The two examples indicate that typical concepts
from the lattice refer to mutually dependent metrics. It also
shows there are more often concepts with a higher occur-
rences of respective metrics. This can be explained by the
fact that attributes with high occurrence go together, but
also, to a certain extent, by the equal-frequency discretiza-
tion of numerical metrics. Since most ontology metrics for
LOV exhibit a lognormal distribution, discretization using
equal width would lead to domination of the lattice by lower-
interval values of metrics; in contrast, in the case of equal
frequency the long tail includes a large range of values for a
given metric, which increases the chance that more ontolo-
gies occur together in the long tails of multiple metrics.

In order to explore even more complex lattices, we de-
creased the min support to 30. This generated a lattice

12Using the MySQL database underlying OOSP.
13Only ‘lattice’ notion from now on, for brevity.
14The lattices, in textual form, are at http://owl.vse.cz:8080/
SEMANTiCS-2016/.

with ten levels. An example from level ten, having 30 on-
tologies in its extent, is: {classes[46,2864], object proper-
ties [36,2529], leaf classes [36,2123], annotation assertion
[411, 34491], labels [104, 16878], range class [26,2329], ax-
iom count [802,44101], logical axioms [210,22834], object
property domain [23,1892], object property range [27,2329]}
(30). This concept, again, refers to high values of metrics:
compared to the previous ones, it also refers to the number
of classes, annotations, etc.
BioPortal. We used a setup close to that above: max 5
binary attributes per metric, and min support 30. The gen-
erated lattice had eight levels, and the concepts were dom-
inated by attributes corresponding to high metric values,
which is more-or-less typical for the BioPortal ontologies,
e.g., {classes [3425,505039], leaf classes [2483,504358], sub-
ClassOf [3991,638199], labels [2220,505053], axiom [30090,
8202428]} (36), i.e. besides the structural attributes (classes,
leaf classes, subClassOf and axioms) there is again a high
number of labels in these 36 BioPortal ontologies.
NanJing. We used a setup with max 5 binary attributes
per metric and min support 130, because of the higher num-
ber of ontologies (1403). The lattice had eight levels, and
the concepts had similar intents as in the case of LOV. This
can be explained by the fact that NanJing contains a similar
kind of ontologies as LOV and they even shares 212 of them
(computed using a method based on similarity of ontology
signatures suggested by Matentzoglu et al. [8]). A con-
cept from level eight of the lattice is: {classes [35,1717], ob-
ject properties [18,305], leaf classes [27,1421], domain class
[16,275], range class [12,266], classes more than once in do-
main or range [6,71], object property domain [12,268], object
property range [12,266]} (130), i.e. there are 130 ontologies
from NanJing having those eight attributes. Besides those
on classes and object properties, there is one referring to the
“classes more than once in domain or range” metric, which
measures the average usage of the same class across different
domain or range axioms. Further, there is “domain class”,
referring to named classes appearing in domain axioms.

Based on our preliminary experimentation we can con-
clude that a reasonable setup for discovering interesting con-
cepts via FCA might be a minimal support around 10% and
an application of equal frequency discretization method to
a maximum number of five intervals. This assumption is to
be verified by a further study.

5. RELATED WORK
Several advanced ontology similarity measures have been

discussed in the literature. For example Wu et al. [13] sug-
gest a new learning algorithm for ontology similarity measur-
ing in a high-dimensional space based on regularization and
first-order representation. In our approach the Euclidean
distance seems sufficient with respect to our dimensional
space size (up to a few hundred of binary attributes). On-
tology similarity is also applied in various areas, e.g., in on-
tology matching, as described by Euzenat and Valtchev [2].

Although there are many different repositories provid-
ing access to their ontologies, to the best of our knowledge
there is no other approach that would directly apply on-
tology similarity computation as means of ontology access
and ontological benchmark construction. The most related
work has been presented by Allocca et al. [1], who intro-
duced an approach for finding equivalent ontologies in the
Watson engine. For each ontology a canonical form was



computed and indexed, and these canonical forms could be
compared. Equivalence detection is however a different task
than similarity computation. Generally the Watson search
engine15 allows to search ontologies using keywords. It is
possible to specify keyword-based entity search scope, e.g.,
in labels of properties. Via its Java API, Watson also pro-
vides a SPARQL endpoint along with some precomputed
metrics: concept coverage, DL expressivity, representation
language (e.g., RDFS), numbers of classes, properties, in-
dividuals and statements. BioPortal provides a term-based
search for classes and properties in ontologies, where one can
further restrict the ontology category (e.g., anatomy). Bio-
Portal RESTful services offer several count-based metrics
per ontology, e.g., the number of classes or properties. LOV
also provides a RESTful service for term-based search over
ontologies or terms, and a SPARQL endpoint. Although
some repositories present values of metrics, these are not
searchable. Other ontology repositories solely provide col-
lections of ontologies without rich metadata (e.g., the Oxford
Ontology Library, Protege Ontology Library, or Ontohub).

Rouane-Hacene et al. [10] used FCA for designing com-
pact concept lattices transforming to ontology design pat-
terns. This approach further applies Relational Concept
Analysis adding relational attributes to classical binary at-
tributes in FCA. Zhao [15] investigates using FCA for ontol-
ogy building, mapping and visualization. Moreover, he also
points out that semantic web techniques can be used for
FCA applications. However, these approaches mainly ana-
lyze individual entities of ontologies we focus on ontologies
as wholes, in the concept extent.

6. CONCLUSIONS AND FUTURE WORK
While similarity-based ontology search can contribute to

the construction of either homogeneous or heterogeneous on-
tological benchmarks, FCA may rather help with recommen-
dation of ontology metric value combinations shared by a
number of ontologies. In OOSP we newly provide support
for similarity-based ontology search. Regarding the appli-
cability of FCA for ontological benchmark construction, we
performed a preliminary investigation in terms of a priori on-
tology collection analysis. In all, FCA could provide impor-
tant insights into potential ontology sets sharing attributes
corresponding to values of ontology metrics. Although we
experienced that attributes in concept intents are usually
dependent on each other, this information could be poten-
tially useful for construction of benchmarks of sufficient size
also being richly described by different characteristics.

Since both cluster and FCA analyses enable us to catego-
rize ontologies, it could also be interesting to compare them,
considering that FCA applies discretization while clustering
does not.16 Further, since it is always difficult to select
proper metrics for reasonable clustering, we could employ
FCA in order to discover ontology metrics that are signifi-
cantly related to each other. These metrics serve as input
for cluster analysis, and more meaningful comparison of the
clusters with concepts from FCA could be done. Finally, we
plan to consider other discretization methods than equal-
frequency and equal-width in the future, possibly accounting

15http://watson.kmi.open.ac.uk/
16While Rice and Siff did a general comparison about this
[9], we plan to compare the methods specifically on ontology
collections.

for the specific character of ontology collections on input.
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