
Adding Semantics to Model-Driven Software Development:
A Practical Experience Report

Andreas Nareike
University of Leipzig

Augustusplatz 10
04109 Leipzig

nareike@informatik.uni-
leipzig.de

Jörg Unbehauen
University of Leipzig

Augustusplatz 10
04109 Leipzig

unbehauen@informatik.uni-
leipzig.de

Johannes Schmidt
University of Leipzig

Augustusplatz 10
04109 Leipzig

jschmidt@informatik.uni-
leipzig.de

ABSTRACT
Model-driven software development tools and methods al-
low fast bootstrapping of software applications and can im-
prove their quality. Using a domain model and adhering to
a framework specific set of conventions leverages the gener-
ation of objects and services in both frontend and backend
and an accompanying database schema. However, rapid ap-
plication development frameworks like JHipster or Spring
Roo lack a deep integration of semantic technologies which
allow exploration and analytics beyond the operations de-
fined as services. A post-deployment integration of semantic
technologies into an existing application can be cumbersome,
as knowledge about the domain model can get lost and addi-
tional components require deployment. We therefore enrich
UML domain models in order to generate database map-
pings and additional ontologies for exposing both the con-
ceptual model and instance data as RDF. Ultimately, this
allows using the expressive power of SPARQL for analytic
queries while still using established development frameworks
for implementing enterprise applications.

1. INTRODUCTION
Modern model-driven software development frameworks,

like JHipster1 and Spring Roo2, can generate fully functional
enterprise applications including the persistence and service
layer as well as the user frontend. The generation process is
controlled by a domain model described as e.g. an UML
model or a domain-specific language. Those frameworks
support a wide range of persistence implementations like re-
lational, document-driven or graph-oriented databases. But,
to our knowledge, none of those frameworks support seman-
tic web data formats like RDF.

To motivate software developers to use semantic web tech-
nologies, semantic web endpoints for enterprise applications
can be generated. Existing relational data can be converted
into RDF using a mapping approach like the RDB to RDF
Mapping Language (R2RML3). These mappings can be di-
rectly derived from the domain model. As a result, devel-
opers can benefit from the flexibility and power of SPARQL

1https://jhipster.github.io/
2http://projects.spring.io/spring-roo/
3https://www.w3.org/TR/r2rml/

c© 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

queries and can use reasoners and semantic rules for data
analytics.

In this paper, we provide a brief overview of a software
generator framework, that supports model-driven genera-
tion of web-based enterprise applications as well as a map-
ping component to provide a SPARQL endpoint to the data.
In order to facilitate the process of generating a mapping,
we augment UML classes to reuse the encoded knowledge.
This hybrid application design allows us to both use mature
enterprise application frameworks for creating user friendly
and scalable applications and integrate an extensible Linked
Data based life cycle.

2. MOTIVATING EXAMPLE
To illustrate our approach, a simplified use case is chosen

from the field of power plant operation. The UML classes in
Figure 1 represent top-level concepts for power plant oper-
ation. The class PowerPlant represents the master data of
an existing plant. Documents like manuals, reports and bills
can be assigned to different plants. The type of a Document
is described as a DocumentKind.

Figure 1: An annotated UML diagram

Every UML class in our example represents a hierarchy
modelled by a self-relation. A power plant is divided into
systems or equipment units. The different document kinds
constitute a classification hierarchy. For example, data sheets
and technical reports both contain technical information
whereas project control documents address management in-
formation4.

Since we are using UML for conceptual modelling, we have
to deal with the underspecified semantics of this language.
There have been some proposals to provide sound semantics
for conceptual models build in UML. Those are largely the-
oretical (e.g. [5], [9]) or propose a customised UML dialect
which is tied to a certain modelling style and/or limited tool
support (e.g. [8], [7]). One frequent problem is multi-level
modelling which occurs, when a resource can act as both an

4See document kinds according to the IEC 61355 standard.



instance of a class and also as a class (often called ‘power-
types’, e.g. [9], chapter 17.2 or ‘clabjects’, e.g. [1])

In our example in Figure 1, the class DocumentKind has
a different meaning compared to the other classes. A doc-
ument kind describes a taxonomy of typifications. So, each
instance of this UML class represents a class from an onto-
logical point of view. To distinguish the semantic of an UML
class, an UML profile has been developed, that bundles a
set of custom UML stereotypes. For example, the Hierar-
chy stereotype marks taxonomies. Other stereotypes can be
used to control the RDF representation of UML properties
and classes.

To annotate meta-data in our example, three UML pro-
files are included: (a) an entity description profile that de-
fines architectural settings and persistence properties, (b) a
web description profile that defines general UI settings, and
(c) an ontology profile that defines semantic designations of
UML classes as well as general ontology alignments.

3. RELATED WORK
Bringing together model-driven application design and se-

mantic web technologies has been the goal of previous works.
In general, we can categorise these works by examining what
the primary model is and into what model it is translated.
Object-to-RDF Approaches like Jenabeans5 annotate ob-

ject oriented classes for persisting objects into triple
stores.

RDF-to-Object The opposite approach is to start with an
ontology in either RDFS or OWL in order to generate
Java classes. An example of such a generator is Jas-
tor6.

UML-to-OWL There are a number of approaches that
convert UML models to OWL, see for instance [6], [12],
[4] or [2].

There are multiple Semantic Web frameworks and soft-
ware libraries that allow a low level access to triple stores,
e.g. Apache Jena7 or rdf4j8. Usually at least some abstrac-
tion is provided to help leveraging the semantics defined by
RDFS and OWL. Today, enterprise application frameworks
or rapid application frameworks do not integrate such li-
braries.

There have been attempts close this gap. Empire RDF9

implements the Java Persistence API (JPA) and could be
used as a drop in replacement for JPA implementations.
Additionally, the aforementioned Object-to-RDF and RDF-
to-Object mapper could be used for persistence in rapid ap-
plication development frameworks.

However, most of those approaches are not well main-
tained and we could not find evidence of major adaption in
either open-source communities or enterprise contexts.

We therefore conclude, that by offering an optional, drive-
by semantification, we can reach out to developers who want
to stick to their familiar tools and data models but also want
to enrich their application for deeper data analysis.

5https://code.google.com/archive/p/jenabean/
6http://jastor.sourceforge.net/
7http://jena.apache.org
8http://rdf4j.org/
9https://github.com/mhgrove/Empire

4. APPROACH
In Figure 2 the generation approach is depicted including

the generated artifacts. To illustrate the dependencies be-
tween the different elements, three interactions are shown as
arrows and will be introduced in this section.

First, the generator is divided into cartridges, that address
different functional requirements. The application cartridge
bundles templates and functions to generate a Java based
backend and a JavaScript fontend. The r2rml cartridge is
responsible for the data mapping generation whereas the an-
alytics cartridge addresses the ontology generation. Second,
we have the application operation, in which the generated
application is utilised. Third, the analytics extraction de-
scribes how we extract and enrich RDF data from the ap-
plication.

4.1 Generation Process
In the generation process step, first, as depicted in Fig-

ure 2 (1.1) the generator reads the serialised UML domain
model we previously introduced in Section 2. The software
generator is implemented with the help of the Eclipse Xpand
framework10 and conducts model to text transformations de-
fined as templates. The generator cartridges have different
resulting artifacts, e.g. text files, code skeletons or even
executable source code. In Figure 2 the results of the gen-
erator process are enumerated from 1.2 to 1.5 including the
responsible cartridges:
1.2 Backend The domain classes are generated based on

the meta-data modelled with the entity description
profile. Instances of these classes are exposed via REST
web services for basic listing, viewing and editing oper-
ations. Further, user-specific projections and a custom
search API are included. The backend application is
built using the Spring Boot 11 framework.
For persistence, JPA is employed and schema creation
as well as database population is delegated to the cor-
responding JPA implementation. A further benefit of
JPA is the support for heterogeneous data models. Re-
lational, graph and document database support can be
provided by selecting an appropriate JPA implemen-
tation.

1.3 Frontend For the frontend, JavaScript modules and
associated HTML snippets are generated. Using the
AngularJS12 framework, these elements are connected
to the backend services and provide a rich user inter-
face.

1.4 OWL ontology Using the annotations expressed with
the ontology profile, a rich OWL ontology comprised
out of OWL classes, data and object properties is gen-
erated. This ontology contains the axioms, that cannot
easily be expressed in R2RML.

1.5 R2RML Mapping To provide an RDF data endpoint,
an R2RML mapping is created, which maps the database
used by the application backend into (virtual) RDF.
This mapping connects the instance data of the database
to the OWL ontology. We use an OWL ontology to
enrich the RDF of the R2RML mapping, as not all
information present in the UML model can be carried
over into the database and R2RML mapping.

10https://eclipse.org/modeling/m2t/?project=xpand
11http://projects.spring.io/spring-boot/
12https://angularjs.org/



.xmi

generator

application
cartridge

analytics 
cartridgedatabase

r2rml 
cartridge

frontend backend
owl

JPA

Jena

sparql
map

Meta
Model

3.1

1.1

2.2

1.3

3.2

2.3

2.1

1.21.2 1.4 1.5

Figure 2: System overview with the main interactions: (1.1 - 1.5) addresses the generation process and its
artifacts, (2.1 - 2.3) the operation of the generated application and (3.1, 3.2) how the database is extracted
and enriched.

4.2 Application Operation
The typical operation and data flow of the generated ap-

plication in case of a read operation is depicted in Figure 2,
2.1 - 2.3. Instance data previously stored in the database is
accessed via JPA (2.1) and read into the backend applica-
tion (2.2). The AngularJS UI modules accesses the REST
services (2.3) provided by the application backend.

4.3 Analytics Extraction
The extraction for analytics involves two separate steps:

first, a mapping into RDF and second, loading and accessing
the integrated dataset.

4.3.1 RDB-to-RDF Mapping
The semantic data flow starts with RDB-to-RDF con-

verter reading the R2RML mappings (see Figure 2, 1.4) pre-
viously generated and accessing the database (see Figure 2,
3.1). The result of this mapping is a (virtual) RDF graph
that can be exposed as both dump or SPARQL endpoint.

For converting relational databases into RDF, multiple
implementations have surfaced, such as D2R [3], ontop 13

[10] or SparqlMap [11]. We tested these implementations
for fitness in our use case using the following requirements:

1. Compliance with R2RML, providing a standardised
mapping mechanism and consequently preventing a
lock in.

2. SPARQL and RDF dump facilities, for accessing the
data either as virtual or materialised RDF graph.

3. Pure Java implementation, as the backend is already
a Java application, the necessary runtime is present.

All three candidates support both SPARQL and RDF ex-
traction and are all written in Java, but as D2R does not
fully support R2RML, we ruled it out. We selected Spar-
qlMap over ontop as SparqlMap offers support for NoSQL
databases via Apache MetaModel14 and therefore implies
less restrictions on selecting a JPA conforming backend.

13http://ontop.inf.unibz.it/
14http://metamodel.apache.org/

While ontop offers reasoning support, we can perform rea-
soning enabled querying over an in-memory model, as the
expected model size is expected to fit well into main memory.

4.3.2 Analytics Integration
The materialised mapping created using the R2RML map-

pings is enriched with the OWL ontology initially generated
and loaded into an Apache Jena in-memory model (see Fig-
ure 2, 3.2). This model allows plugging reasoners which
allow making use of the richer OWL constructs generated
from the UML domain model.

5. GENERATED EXAMPLE
To complete our use case example, the most important

generator artifacts are described according to the domain
model presented in Figure 1. For every UML class, Java
beans and services are generated as well as a web frontend
including input forms according to their UML properties.
The resulting web application is fully functional and users
can create and modify data.

For validation and analytics, an ontology is generated by
combining concepts derived from the UML model with in-
stance data provided at runtime by the application user.
UML associations between them are represented by OWL
object properties.

Instance data corresponding to the UML classes Power-
Plant and Document are mapped to typed RDF instances.
However, the instances of the UML class DocumentKind will
be mapped to a set of OWL classes that constitute a hier-
archy. Consequently, the UML association hasKind will be
mapped to the rdf:type property.

For the example model in Figure 1, this yields the follow-
ing RDF (some triples have been omitted for brevity):



:Document a owl:Class .

:DocumentKind a owl:Class .

:PowerPlant a owl:Class .

:refersTo a owl:ObjectProperty ;

rdfs:domain :Document ;

rdfs:range :PowerPlant .

Listing 1: RDF Turtle snippet15

The details of the mapping, i.e. which RDF resources
are used for the UML classes and associations, are con-
trolled by an UML stereotype. Therefore, it is also pos-
sible to reference external ontologies. Cardinality restric-
tions on the association will be mapped to according OWL
restrictions. Properties can be further specified (e.g. as
owl:transitiveProperty by annotating the UML associa-
tion accordingly.

The relational data will be transformed by an R2RML
mapping which produces additional triples. A point of spe-
cial interest is that the different hierarchies do not share the
same semantics. The power plant hierarchy is built using a
part-whole-relationship, whereas the document kind hierar-
chy is best represented by a usual subclass hierarchy. The
second case must be treated differently since the instances of
this UML class must be mapped to OWL classes. Whereas
for power plants, the property rdf:type is used, the prop-
erty rdfs:subClassOf will be used instead. For our use case
example, these triples are produced (some are omitted for
brevity):

:Technical_report rdfs:subClassOf :DocumentKind .

:Inspection_report rdfs:subClassOf

:Technical_report .

Listing 2: RDF Turtle mapped with R2RML

Even without any reasoning with respect to the seman-
tics of RDFS/OWL, this provides the benefit of running
SPARQL queries on the data. By using established top-level
ontologies, the semantics can further be clarified. For more
extensive analytics, we have tested augmenting the resulting
ontology with rule sets.

6. CONCLUSION
Today, many enterprise applications do not benefit from

the power of semantic web tools and frameworks. In the
area of model-driven software development, semantification
of (existing) applications can be achieved by using an OWL
cartridge as well as mapping techniques for RDF data.

The semantics of UML classes can differ. It is hard to
distinguish whether an instance of a UML class is an in-
stance from an ontological view. Using an ontology profile,
it is possible to annotate the intended semantic of an UML
class. Based on these information, a formal ontology can be
generated that is used to define relation data mappings into
RDF.

15For all Turtle examples, we omit this prefix declaration:

@prefix : <http://example.org> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

With our approach, the development of classical enter-
prise application is supported as well as semantic web appli-
cations. In a first practical use case, we used the semantic
web endpoint to analyse complex relations between strongly
interlinked data in the application area of sustainable energy
power plants.

7. ACKNOWLEDGMENTS
This work was partly supported by the following grants

from the German Federal Ministry of Education and Re-
search (BMBF) for the LEDS Project under grant agreement
No 03WKCG11C as well as the CVtec research project as
grant 01IS14016C.

8. REFERENCES
[1] C. Atkinson and T. Kühne. In defence of deep

modelling. Information and Software Technology,
64:36–51, Aug. 2015.

[2] A. Belghiat and M. Bourahla. From UML class
diagrams to OWL ontologies: a Graph transformation
based Approach. International Journal of Computer
Applications, 41(3):41–46, 2012.

[3] C. Bizer and R. Cyganiak. D2r server-publishing
relational databases on the semantic web. In Poster at
the 5th International Semantic Web Conference,
volume 175, 2006.

[4] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler.
Visual modeling of OWL DL ontologies using UML. In
The Semantic Web–ISWC 2004, pages 198–213.
Springer, 2004.

[5] M. Clavel and M. Egea. An Algebraic Semantics for
UML+ OCL Class Diagrams. Universidad
Complutense de Madrid, Spain, 2006.

[6] D. Gasevic, D. Djuric, V. Devedzic, and
V. Damjanovi. Converting UML to OWL ontologies.
In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters,
pages 488–489. ACM, 2004.

[7] G. Guizzardi, A. P. das Graças, and R. S. Guizzardi.
Design patterns and inductive modeling rules to
support the construction of ontologically well-founded
conceptual models in OntoUML. In International
Conference on Advanced Information Systems
Engineering, pages 402–413. Springer, 2011.

[8] G. Guizzardi, G. Wagner, N. Guarino, and M. van
Sinderen. An ontologically well-founded profile for
UML conceptual models. In Advanced Information
Systems Engineering, pages 112–126. Springer, 2004.

[9] A. Olivé. Conceptual Modeling of Information
Systems. Springer, Berlin ; New York, 2007 edition
edition, Aug. 2007.

[10] M. Rodrıguez-Muro, J. Hardi, and D. Calvanese.
Quest: efficient sparql-to-sql for rdf and owl. In ISWC,
2012.

[11] J. Unbehauen and M. Martin. Executing sparql queries
over mapped document stores with sparqlmap-m. In
Proceedings of the 12th International Conference on
Semantic Systems, pages 485–490, 2016.

[12] J. Zedlitz, J. Jörke, and N. Luttenberger. From UML
to OWL 2. In Knowledge Technology, pages 154–163.
Springer, 2012.


