
Enforcing scalable authorization on SPARQL queries

Jörg Unbehauen
University of Leipzig

Augustusplatz 10
04109 Leipzig, Germany

unbehauen@informatik.
uni-leipzig.de

Marvin Frommhold
eccenca GmbH
Hainstrasse 8

04109 Leipzig, Germany
marvin.frommhold

@eccenca.com

Michael Martin
University of Leipzig

Augustusplatz 10
04109 Leipzig, Germany

unbehauen@informatik.
uni-leipzig.de

ABSTRACT
With the adoption of the Linked Data Paradigm in the en-
terprise context effective measures for securing sensitive data
are in higher demand than ever before. Exemplary, integrat-
ing enterprise systems containing millions of assets and fine
granular access control rules with large public background
knowledge graphs leads to both a high number of triples and
a high number of access control axioms, which traditional
methods struggle to process. Therefore, we introduce novel
approaches for enforcing access control on SPARQL queries
and evaluate their implementation using an extension of the
Berlin SPARQL Benchmark.

1. INTRODUCTION
When deploying Linked Data technologies in enterprise

contexts diverse information management systems are to
be integrated, for example by extracting, transforming and
loading their data into triple stores. Each source system
may have a separate access control scheme put into place,
which has then to be carried over to the RDF represen-
tation. For an example of low access control complexity
consider data sets representing company background knowl-
edge which originate from extracted thesauri or wikis and are
typically available to large groups of users. For the complex
case, consider a document management system holding 500k
documents, each with individual access control rules. The
extraction of meta data would yield about 15 million triples
and directly assigning 100 users each to one half of the doc-
uments results in 25m document-to-user relations which, ex-
pressed as triples, would surpass the protected data in size.
Typically, these access control rules are role based, which
allows for better scaling with high user counts as access on
protected resources is abstracted and granted via interme-
diate groups containing users with similar access privileges.
Further, more restrictions may not only be direct user-to-
document or user-to-group associations, but in fact depend
on multiple attributes, such as authentication method (e.g.
biometric or password), physical location or time-of-day.

In this paper we describe our graph-based access control
approach that binds access control expressions to the con-
text of RDF triples. Our hypothesis is, by storing a repre-
sentation of the access conditions in the same store as the
protected data we can rewrite SPARQL queries such that
even in the face of complex authorization models both cor-

c© 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

rectness and fast query execution is preserved. Additionally
such an approach is vendor independent and can be used on
standard SPARQL endpoints. To put our hypothesis to the
test we implemented three different querying modes over the
data, which are:

FROM The set of accessible graphs is conveyed in the
FROM clause of a SPARQL query. Hence the set of acces-
sible graphs is injected with each query into the protected
end point. This allows us to counter-check our hypothe-
sis, as here the access conditions are stored outside of the
protected triple store. We also use this scenario for a com-
parison with the related approach shi3ld [5] as it uses the
same mechanism.

QUAD-MAT The set of accessible graphs is computed
once upon session initialization and stored inside the end-
point. All incoming queries are rewritten such that, addi-
tionally to the stated filters, URIs at the graph position of
a quad must also exist in the previously stored set. QUAD-
MAT therefore describes SPARQL quad based rewriting on
a materialized set of accessible graphs.

QUAD-SUB Similarly to QUAD-MAT, URIs at the graph
position are filtered. In contrast to QUAD-MAT, the set of
accessible graphs is not precomputed, but determined using
a subquery. QUAD-SUB therefore stands for SPARQL quad
based rewriting using subqueries.

As a reference, we also discuss Virtuoso RDF Security1

(VOS-RDF-Sec), Open Source version, as an example for
a deep integration of security mechanisms into a triple store.

From a birds eye we can identify three important elements
of the approach. First, the ontology which models the con-
ditions a user and its session has to meet for accessing pro-
tected graphs (section 2.1). Second, a SPARQL query which
yields the set of accessible graphs for a user, as described in
section 2.2. Third, a SPARQL rewriting mode, which uti-
lizes both model and query to actually enforce authorization
by rewriting incoming SPARQL queries.

2. MODEL AND QUERYING CONCEPTS
This section describes how we model authorizations and

how we query the authorization model in the different query
modes. We assume that all triples reside in named graphs
and form g-boxes2. An additional named graph contains au-
thorization metadata on the other g-boxes. This authoriza-
tion metadata is modelled and queried using the concepts
subsequently described in this chapter.

1
http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html

2
https://www.w3.org/2011/rdf-wg/wiki/Containers of Triples

http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html
https://www.w3.org/2011/rdf-wg/wiki/Containers_of_Triples

By enforcing authorization with query rewriting we expose
a SPARQL endpoint. For this SPARQL endpoint the default
graph is the union of all graphs accessible by the user, as
defined the authorization metadata.

2.1 Authorization Modelling
The authorization ontology was designed with the goals

of allowing multi-attribute access conditions and a compact
layout for fast querying. We reviewed existing ontologies, as
discussed in section 4, and modeled the user session along
the ideas of the shi3ld [5] AccessEvaluationContext. How-
ever, determining which access conditions apply to a user
session fundamentally differs from shi3ld, where the access
conditions are serialized as SPARQL ASK queries in the on-
tology. Each access condition requires the execution of its
SPARQL ASK query. This prevents query execution as a
subquery and in scenarios with high counts of access condi-
tions can pose a significant overhead at the start of a user
session.

We therefore designed an ontology that allows us to val-
idate access conditions in a single query, which we demon-
strate later in section 2.2. The concepts relevant for the au-
thorization are illustrated in Figure 1. The main concepts
of our vocabulary are :Session to declare the attributes of
a user session and :AccessCondition to define required at-
tributes for access on named :Graphs, where each :Graph

identifies a g-box. A :Group is associated to a :User via
the :Session indirection to model that the :Group- :User

relation is valid at the time of :Session creation. The sub-
properties of :requiresProp pointing to a certain :Access-

Condition define conjunctively all properties a :Session has
to fulfill in order to make the :AccessCondition apply. In
a similar fashion, properties of a :Session are modeled as
subproperties of :hasProp.

1 @prefix ex: <http :// example.org/auth/data/> .
2 <> a :AccessCondition ;
3 :requiresAuthMethod <http :// dbpedia.org/resource/

OAuth2 >;
4 :requiresGroup ex:GroupUsers ;
5 :readGraph ex:PersonsGraph .
6 <> a :Session ;
7 :openedBy ex:UserA ;
8 :hasAuthMethod <http :// dbpedia.org/resource/OAuth2 >;
9 :hasGroup ex:GroupUsers .

Listing 1: User authentication model example

The example shown in listing 1 models an access condition
which grants read access to the named graph ex:PersonsGraph

for all users which are (line 3) authenticated via OAuth2 and
(line 4) member of the group ex:GroupUsers. The example
in listing 1 also lists a :Session (line 6) of ex:UserA (line 7)
that is authenticated by OAuth2 and the association with
the group ex:GroupUsers.

An intuitive evaluation of this example suggests that ex:UserA
is allowed to read the data of ex:PersonsGraph.

2.2 Accessible Graph Determination
The user authorization named graph contains all defined

access conditions and user sessions. Consequently the au-
thorization named graph will be queried to determine the
sets of named graphs G on which the user of a session has
read access. Listing 2 shows the SPARQL query which de-
termines G. The query consists of two subqueries, one which
counts the number of all access conditions and the number
of attributes fulfilled by the user session (listing 2 line 2-9)

and another which counts the number of required attributes
for each condition (listing 2 line 11-14). The superproperties
(:hasProp and :requiresProp) are key to this approach, as
they allow the definition of arbitrary conditions a session has
to fulfill. By counting the number of conditions defined as
subproperties between the ?session and the :AccessCon-

dition ?cond and checking for equality with the number of
defined conditions of the :AccessCondition (listing 2 line
15), authorizations on ?graphs are determined.

1 SELECT distinct ?graph {{
2 SELECT ?cond (COUNT(?attr) as ?joinCount)
3 WHERE {
4 ?has rdfs:subPropertyOf :hasProp .
5 ?req rdfs:subPropertyOf :requiresProp .
6 ?session :openedBy ex:UserA .
7 ?session ?has ?joinatt .
8 ?cond ?req ?joinatt .}
9 GROUP BY ?cond

10 }{
11 SELECT ?cond (COUNT(?attr) as ?attrCount) {
12 ?req rdfs:subPropertyOf :requiresProp .
13 ?cond ?req ?attr . }
14 GROUP BY ?cond}
15 FILTER (? joinCount = ?attrCount)
16 ?cond :readGraph ?graph .}

Listing 2: Query to determine readable graphs

2.3 Querying Modes
The querying mode determines how queries and the data

of the triple store are modified for enforcing authorization.
In this chapter we informally and briefly introduce the SPARQL
rewriting methods using the terminology of [1].

The access control enforcement consists of two subsequent
steps: first, the initialization (init) and second the querying
operation. As part of the init process the backend is prepar-
ing session information, such as the authentication method
and the groups of the user from an enterprise directory ser-
vice. This session information is translated into triples using
the vocabulary presented in section 2.1. We now describe
the authorization flow enforced by the backend component
when an authenticated user sends a SPARQL query to a
protected endpoint.

FROM In this mode the access condition definitions and
the session information are merged into an in-memory model
in the authorization component. In the init step this model
is queried to determine the set of accessible graphs G. Each
incoming SPARQL query is hence analysed for the set of
URIs in FROM F and FROM NAMED FN operators in
both query and query parameters. As we defined the default
graph to be the union of all graphs a user is authorized to
access we therefore set F ′ = G. In case the FROM clauses
were used, we filter both the FROM and FROM NAMED
clause, such that F ′ = G ∩ F and FN ′ = G ∩ FN .

QUAD-MAT Upon session creation, the list of accessi-
ble graphs is determined as in the FROM mode. An RDF
representation of this list is then written into an additional
named graph of the endpoint which is to be protected. Af-
terwards, for each triple pattern an EXISTS filter is added
which ensures that the triple pattern is contained in an ac-
cessible graph by querying the materialized graph list as we
show in listing 3.

1 ... FILTER EXISTS {
2 GRAPH ?g { ?s a foaf:Person . } # original triple

pattern
3 GRAPH <QuadMatGraph > {
4 <UserA > :canRead ?g . }

Figure 1: The authorization ontology with its major concepts.

5 FILTER (?g IN (LIST_OF_FROM_GRAPHS)) } ...

Listing 3: QUAD-MAT using EXISTS filter

QUAD-SUB During the initialization step, the session
information of the user is written into the named graph con-
taining the authorization metadata. Query rewriting is per-
formed as shown in QUAD-MAT by adding an EXISTS filter
for each triple pattern. The pattern consists of a quad pat-
tern, a filter for the graph node of the quad and a subquery
like in listing 2. Listing 4 illustrates an example of such an
EXISTS filter.

1 ... FILTER EXISTS {
2 GRAPH ?g { ?s a foaf:Person . } # original triple

pattern
3 SELECT DISTINCT ?g {
4 # joins user session with ACs
5 # to determine accessible graphs
6 FILTER (?g IN (LIST_OF_FROM_GRAPHS)) }} ...

Listing 4: QUAD-SUB EXISTS filter

VOS-RDF-Sec In this authorization scheme, the autho-
rization component configures authorization facilities pro-
vided by the triple store. Like in mode QUAD-MAT, the
list of accessible graphs is determined, translated into spe-
cific graph security statements and written to the Virtuoso
instance. An incoming query is therefore conveyed unaltered
to the SPARQL endpoint, the database connection is set to
the requesting user to ensure correct query evaluation.

3. EVALUATION
For our evaluation we modified the Named Graph genera-

tion mechanism of the Berlin SPARQL Benchmark (BSBM)
[3] to simulate three usage scenarios instead of one. BSBM
simulates an e-commerce scenario, where Products, their Re-
views and Offers and other related resources are browsed
via a set of SPARQL queries. In the following we sketch our
modifications to BSBM, the technical setup and summarize
and interpret the results.

3.1 Benchmark and Scenario
Generating a benchmark data set is involves two steps.

First, the protected dataset is generated and its data dis-
tributed among graphs according to the following scenarios:

BSBM Named Graph: In this scenario, which is part
of the BSBM suite, all data is distributed in graphs with an
average size of roughly 11,000 triples. The benchmark ob-
jects are associated with graphs based on a meta-properties
of the data and consequently grouped together in moder-
ately sized graphs.

Background Graph: In this scenario, a large graph to-
gether with high number of smaller graphs is generated.

This scenario reflects scenarios where knowledge from re-
stricted resources is used in conjunction with a public back-
ground knowledge graph. This scenarios is implemented by
storing each Product resource in a separated separate graph
and all the rest of the data in a background graph.

Resource Graph:Each benchmark resource is contained
in a separate graph. Due to the BSBM data structure, the
number of distinct subjects is equal to the number of graphs.
We simulate with this distribution an extraction of a docu-
ment management system, with each document having sep-
arate access conditions.

In a second step is the creation of users, groups and au-
thorizations. For all scenarios and scale factors we generate
20 users in 10 groups and 10% of the users are admin users,
which have read permission on all graphs.

The modifications to BSBM are available on github3.

3.2 Implementation
We implemented all of the approaches with the help of

the eccenca Linked Data Suite (eLDS)4. The suite consists
of several components, of which the backend component can
act as a proxy for SPARQL endpoints and forms the base for
integrating all three querying modes. In case of the VOS-
RDF-Sec mode we provide an implementation based on the
RDF Graphs Security feature of the Virtuoso Open Source
Server. For the other three modes, any SPARQL 1.1 com-
pliant endpoint is supported.

3.3 Setup
We ran our benchmark on an Intel Xeon E3-1220 server

with 8 GB of RAM, 128 GB SSD and all components (bench-
mark, auth component and triple store) running locally.
Virtuoso 7.1 open source, was configured to use 3 GB of
RAM and was used as the data store in all evaluations per-
formed. As a reference point we further include a BSBM run
without any authorization enforcement. In case of QUAD-
MAT, QUAD-SUB and FROM, the benchmark was exe-
cuted against the auth component. In case of VOS-RDF-Sec
and the run without authorization the benchmark tested the
Virtuoso server directly, bypassing the performance over-
head imposed by the additional component.

3.4 Discussion
For the sake of conciseness we only present a summariza-

tion of the benchmark results in table 1.
QUAD-MAT and QUAD-SUB performance QUAD-MAT

performs in the lower graph count scenarios considerably
faster than QUAD-SUB by a ratio of 3.8 (table 1). In these
scenarios the dynamic access control determination domi-

3
https://github.com/tomatophantastico/bsbm

4
http://www.eccenca.com/de/produkte/linked-data-suite.html

https://github.com/tomatophantastico/bsbm
http://www.eccenca.com/de/produkte/linked-data-suite.html

nates the query cost. With higher graph counts this advan-
tage diminishes and both techniques exhibit nearly the same
performance. While slower than VOS-RDF-Sec, QUAD-
MAT/SUB is able to execute all scenarios and is in all cases
faster than FROM rewriting.

FROM Scaling the number of graphs and consequently
of access conditions we observe that Virtuoso cannot process
the high number of FROM clauses in the Background and
Resource Graph scenario and does not yield results in these
scenarios. Consequently, in table 1 these are marked as n/a.
Exemplary, for a user who is able to view all graphs in the 10
million triples Resource Graph scenario we can extrapolate
the query size to approx. 40 MB.

Virtuoso-RDF-Security performance VOS-RDF-Sec out-
performs all other authorization approaches and only for the
high number of graphs in the Resource Graph scenario with
10 million triples the gap between QUAD-MAT/SUB and
VOS-RDF-Sec almost closes. Further, with a growing num-
ber of user-to-graph relations, loading times becomes longer.
In the 10 million triples Resource Graph scenario the sequen-
tial load time was 201 minutes for the graph user relations,
compared to 81 seconds for loading the actual data set. We
want to stress here that this does not apply to the role-based
access control of the commercial version of Virtuoso.

Scenario
QUAD-
MAT

QUAD-
SUB

FROM VOS-
RDF-SEC

BSBM Graph 2844 6401 10836 149

Background Graph 1764 6706 n/a 170

Resource Graph 2471 2844 n/a 1905

No Auth n/a n/a n/a 104

Table 1: Total benchmark runtime in seconds for
500 runs on the 10 million triples data set.

4. RELATED WORK
A starting point for related work is the overview about

core access control models and features for RDF in [6]. Cat-
egorized as enterprise access control schemes are Mandatory
Access Control (MAC), Discretionary Access Control (DAC)
and Role Based Access Control (RBAC) which was initally
introduced by [8]. Classifying our approach using this cat-
egorization model, we can highlight that we support MAC,
DAC and RBAC. While mandated policies and user infor-
mation are being received from a central authority (MAC,
DAC) such as LDAP, the presented ontology (fig. 1) can be
used to represent role concepts (RBAC) using the more ab-
stract concepts Session in combination with the integrated
superproperties.

An even more complex survey can be found in [7], which
categorizes and analyses comprehensively the current land-
scape of well known approaches on enforcing access control
on semantic data. A further approach is presented in [4],
which can be sketched as a security architecture for enabling
access control of ontologies. The authors re-use standard
semantic web infrastructure with the goal of developing a
security proxy that is able to rewrite SPARQL queries in or-
der to observe defined access control policies. An approach
likewise building on standard Semantic Web technologies is
shi3ld [5], which was already discussed in section 2.1. With
regards to the query rewriting technique, [2] proposes query
rewriting in a similar fashion as we do, albeit using access

control on triples and using SeRQL. Further worth noting is
that both Openlink Virtuoso and Complexible Stardogfea-
ture RBAC in their closed source products.

5. CONCLUSIONS
We introduced a minimalistic ontology which allows mod-

elling of context and dynamic access conditions while ex-
hibiting a compact querying footprint. Further, we describe
two novel ways of rewriting queries, such that the access con-
ditions are enforced, and created a freely available testbed
for benchmarking graph based authorization schemes. Using
this benchmark we demonstrate that our rewriting approach
can effectively complement existing methods of query rewrit-
ing. We also demonstrate that the gap in performance com-
pared to triple store integrated access control mechanism is,
depending on the use case, tolerable. As both of our quad
based query rewriting approaches only rely on SPARQL 1.1
we see them as an alternative, where stores with built-in
access control methods cannot be deployed.

6. ACKNOWLEDGMENTS
This work was partly supported by grants from the Ger-

man Federal Ministry of Education and Research (BMBF)
for the LEDS Project under grant agreement No 03WKCG11C
and the European Union’s Horizon 2020 research and in-
novation programme for the SlideWiki Project under grant
agreement No 688095.

7. REFERENCES
[1] SPARQL 1.1 Query Language. Technical report, W3C,

2013.

[2] F. Abel, J. L. De Coi, N. Henze, A. W. Koesling,
D. Krause, and D. Olmedilla. Enabling advanced and
context-dependent access control in rdf stores. In
ISWC, 2007.

[3] C. Bizer and A. Schultz. The Berlin SPARQL
Benchmark. IJSWIS, 5, 2009.

[4] W. Chen and H. Stuckenschmidt. A Model-driven
Approach to enable Access Control for Ontologies.
Wirtschaftsinformatik Proceedings, 2009.

[5] L. Costabello, S. Villata, and F. Gandon.
Context-Aware Access Control for RDF Graph Stores.
In ECAI, 2012.

[6] S. Kirrane, N. Lopes, A. Mileo, and S. Decker. Protect
Your RDF Data! In JIST. 2012.

[7] S. Kirrane, A. Mileo, and S. Decker. Access Control
and the Resource Description Framework: A Survey.
Semantic Web Journal, 2016 (to appear).

[8] R. S. Sandhu and P. Samarati. Access control: principle
and practice. IEEE Communications Magazine, 32(9),
1994.

	Introduction
	Model and Querying Concepts
	Authorization Modelling
	Accessible Graph Determination
	Querying Modes

	Evaluation
	Benchmark and Scenario
	Implementation
	Setup
	Discussion

	Related Work
	Conclusions
	Acknowledgments
	References

