
Semantic Stream Processing for IoT Devices in the Food
Safety Domain ∗

Milan Markovic
Computing Science

University of Aberdeen
Aberdeen, AB24 5UA

milan.markovic@abdn.ac.uk

Peter Edwards
Computing Science

University of Aberdeen
Aberdeen, AB24 5UA

p.edwards@abdn.ac.uk

ABSTRACT
The Hazard Analysis and Critical Control Point (HACCP)
approach is widely used to develop food safety procedures
in restaurants and other food related businesses. IoT de-
vices could be deployed in this context to automate moni-
toring of critical control points (such as the maximum stor-
age temperature of raw meat). However, such sensor infras-
tructures will result in the generation of significant amounts
of data as well as associated meta-data describing the con-
text for these readings. In this paper, we demonstrate how
streams of semantically annotated sensor data can be auto-
matically transformed into concise records describing signif-
icant events required to check compliance of business oper-
ations against HACCP-based food safety rules.

Keywords
Internet of Things, Provenance, Semantic Web, Food Safety

1. INTRODUCTION
To implement a HACCP food safety management sys-

tem a business first has to identify the steps involved in
its food handling processes (e.g. cold storage, cooking) and
any health hazards associated with these steps. Further-
more, they have to identify critical control points associated
with these hazards, and appropriate constraints for the food
handling processes (e.g. the maximum permitted tempera-
ture for a food item in cold storage); these then have to be
regularly monitored. IoT devices can be utilised to provide
real-time monitoring of a range of critical control points,
in order to support HACCP-based compliance checks [2].
However, continuous monitoring of this kind inevitably re-
sults in scalability issues - due to the significant volume of
real-time sensor data. One approach to address such issues
is on-the-fly detection of significant events, which are then
stored in a suitably abstracted form. For example, events
marking the start and the end of a food item in the cold stor-
age phase would be sufficient to determine compliance with
respect to the relevant HACCP constraint (in this case, the

∗The research described here was funded by an award made
by the RCUK Digital Economy IT as a Utility Network+
(EP/K003569/1) and the UK Food Standards Agency. We
would like to thank Niels Christensen for his contributions
to development of the ISI framework.

c© 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

requirement that chilled food should be stored below 5◦C).
Descriptions of such events can then be stored instead of the
raw sensor data, potentially resulting in significant overhead
savings.

In our previous work [4], we introduced an approach for
semantic modelling of the provenance of food items in the
context of HACCP-based workflows. For example, for a food
preparation workflow that includes a series of steps (stor-
age, preparation, cooking) and any associated HACCP con-
straints (such as the minimum core temperature of cooked
meat), a provenance record would include descriptions of en-
tities (food items) and activities which used and produced
such entities (e.g. a cooking activity used a raw burger entity
and produced a cooked burger entity). Furthermore, activ-
ities and entities can be linked to the abstract descriptions
defined in the corresponding workflow plan (i.e. a cook-
ing activity is defined by a cooking step). In our approach,
we also provided mechanisms to record if a particular con-
straint was satisfied in the context of a single execution of
the planned step. For example, to record that an entity
representing a cooked burger was produced by an activity
defined by a cooking step and that this entity satisfied the
minimum core temperature constraint associated with prod-
ucts of this step.

In this paper, we describe a semantic stream-based data
processing framework for automated compliance checking.
The framework can be adapted to various stages of a food
supply chain and integrate diverse sources of sensor data
to infer HACCP-based food safety compliance records via
continuous stream querying and rule-based reasoning. To
demonstrate its utility, we present results for an evalua-
tion conducted with sensor data collected from a commercial
kitchen environment. We conclude this paper with discus-
sions of benefits and limitations in using provenance abstrac-
tions for food safety sensor data.

2. CASE STUDY
To test our approach we deployed sensors in a commercial

kitchen to continuously monitor the temperature of indi-
vidual meat items during storage, preparation and cooking.
Two kinds of sensor were used: plastic wireless tags1 mea-
sured the surface temperature and were attached to outer
packaging of raw meat, continuously updating the temper-
ature readings every 30s; a wireless meat probe2 measured
the core temperature of cooked meat with a sampling rate

1http://mytaglist.com/specs.html
2http://www.filesthrutheair.com/product/EL-WiFi-TC-
Thermocouple-Sensor

of 10s. Temperature readings produced by these sensors
were annotated using the Semantic Sensor Ontology (SSN)3.
The SSN ontology provides a rich vocabulary for describing
sensor platforms, sensor deployments, capabilities of sensors
and observations they produce. This ontology is the de facto
standard for semantic modelling of sensor data and informa-
tion about sensors and their deployment configurations. In
our system, the sensor data included references to the iden-
tity of individual sensing device(s), individual observation
values, features of interest (such as a particular meat item
observed by a sensing device), and properties that were ob-
served (surface temperature, core temperature).

5 °C
A

B
time

te
m

pe
ra

tu
re

C 75 °C

HACCP threshold
(max chilled food

temp.)

HACCP threshold
(min. cooked food

temp.)

meat probe readings

wireless tag readings

Figure 1: Temperature reading thresholds used to
determine provenance events.

Figure 1 illustrates three relevant events that can be iden-
tified from sensor data in the context of our HACCP work-
flow, namely a meat item entering the cold storage stage
(event A), a meat item entering the preparation stage (event
B), and a meat item being cooked (event C).

To describe these events we used the FS-PROV4 ontology
[4], which extends a suite of ontologies including PROV-O5,
P-PLAN6 and SC-PROV7. The ontology models HACCP-
based workflow plans as a series of fs-prov:Step(s) associated
with fs-prov:Resource(s) that represent inputs and outputs
of these steps (e.g. food items). An fs-prov: HACCPCon-
straint can be associated with a resource in order to deter-
mine a threshold value for some property of the resource (e.g.
the maximum surface temperature allowed for a meat item
in cold storage). Compliance records can then be created
by linking events and items that actually occurred during
a business operation to a workflow plan. For example, we
can record that an entity representing chilled meat which
satisfied the HACCP surface temperature constraint (below
5◦C) existed between 13:00 and 14:00 on 01 Jan 2016.

Using the HACCP thresholds and sensor temperature read-
ings, we can infer provenance compliance records by creating
corresponding descriptions of meat item states and linking
them to the workflow plan. For example, if sensor obser-
vations reporting the surface temperature drop below the
HACCP threshold for cold storage, we can use an inference
rule in the form of a SPARQL INSERT query (Appendix,
Query 2) to create a description of a meat item entering the
chilled state. The timestamp of a sensor reading that deter-
mines the state change (e.g. the first observed temperature
below the HACCP threshold) will be associated with the
description of this new state. Provenance abstractions thus

3http://purl.oclc.org/NET/ssnx/ssn
4http://w3id.org/abdn/foodsafety/fs-prov
5http://www.w3.org/TR/prov-o/
6http://vocab.linkeddata.es/p-plan/
7https://w3id.org/abdn/socialcomp/sc-prov

preserve the exact time of the state change, as reported by
the sensor readings. This is in contrast, for example, with
an approach for abstracting IoT data that utilises the Sym-
bolic Aggregate Approximation (SAX) method [3]. In the
SAX algorithm, following a split of time series sensor data
into equal segments, the sensor readings in each segment are
averaged. While this approach could potentially abstract
sensor data into segments representing different food item
states, the exact time when a HACCP threshold was ex-
ceeded would not be accurately recorded.

The rule listed in Appendix, Query 2 also captures events
when items in a preparation state are returned back into cold
storage. The rule infers appropriate triples to denote that
the entity describing the meat item in the preparation state
is no longer valid, and thus requires access to previously
inferred provenance triples describing that state.

In our sensor deployment, we recorded temperature read-
ings associated with 12 meat items over periods ranging from
2 to 2.5 hours. In a real-life deployment, recording and pro-
cessing all sensor data would require significant resources.
Therefore, we decided to test a stream-based approach where
semantically annotated data are represented as time-ordered
streams of sensor updates. Inference rules are then used to
generate on-the-fly compliance records using the FS-PROV
vocabulary.

3. IOT STREAM INSPECTOR

C-SPARQL
Framework

Stream Data
Parser

 Query Parser

C-SPARQL
Queries

SPARQL INSERT
Queries

Ontology
Parser

Model Manager

Storage ManagerDomain
Knowledge

Figure 2: The IoT Stream Inspector architecture.

To simplify processing of semantic sensor data streams
generated by IoT devices we have developed a framework
called IoT Stream Inspector8 (ISI). The framework is writ-
ten in Java and builds on Jena9 and the C-SPARQL frame-
work10. ISI enables automatic creation of new data struc-
tures (e.g. provenance abstractions) based on streams of
linked data. The framework could be deployed directly as
part of a sensing device or as part of a smart stream data
gateway within a larger IoT ecosystem.

Figure 2 illustrates the main components of the ISI frame-
work. It integrates the C-SPARQL framework, which utilises
the C-SPARQL extension of SPARQL to construct contin-
uous queries on streams of linked data [1]. The C-SPARQL
framework integrates relational stream processing framework
ESPER11 and SPARQL engine to associate timestamps with
individual triples, which are transformed into so-called quadru-
ples. By extending SPARQL with the concepts stream and
window, continuous SPARQL queries can be used to retrieve

8https://github.com/m-markovic/IoT-Stream-Inspector/
9https://jena.apache.org/

10https://github.com/streamreasoning/CSPARQL-engine
11http://www.espertech.com/esper/

triples within some time range (i.e. a window) from a spe-
cific quadruple sequence. The C-SPARQL framework pro-
vides methods to query only the most recent windows (e.g.
a window spanning the last 20s). However, to enable com-
parisons of current and previously detected food item states
(e.g. to compare the current state to the one detected 40s
ago) ISI extends the framework with caching capabilities to
enable previous results of individual C-SPARQL queries to
be stored. ISI generates a single linked data stream, which is
populated using an extensible generic method (Stream Data
Loader) and managed by the C-SPARQL framework.

Every time any sensor reading is received, Stream Data
Parser pushes the content of JENA’s Ont model contain-
ing semantically annotated sensor data onto the linked data
stream. This stream is then queried by a series of contin-
uous user-defined C-SPARQL queries loaded from text files
by the Query Parser. To detect a single food item, ISI re-
quires a C-SPARQL query that will retrieve the latest sensor
observations (i.e. within some window) that correspond to
this item from the linked data stream. Such queries need
to be defined by a user for each observed food item and are
stored in an individual txt file in a predefined system direc-
tory. An example C-SPARQL query to retrieve sensor data
for a particular item is shown in Appendix, Query 1.

When the framework is initialised (i.e. a cold start),
no previous inferences exist. This makes design of infer-
ence rules which rely on previously inferred states difficult.
Therefore, for each C-SPARQL query, the framework allows
the user to define two types of inference rules; the first type
is executed during the cold start, while the second is exe-
cuted after some initial inferences have been created (e.g.
a record of a meat item in its chilled state). C-SPARQL
queries produce continuous results (e.g. observations for the
last 20s) which Model Manager loads into a fresh instance of
a JENA Ont model and merges with the user-defined static
domain knowledge loaded by the Ontology Parser (e.g. a
description of a specific HACCP workflow plan). If some in-
ferences already exist, the latest interfered triples are added
into the model. The user-defined SPARQL INSERT queries
(inference rules) are then executed on this model. This pro-
cess repeats with every new set of triples returned by the
continuous stream query. Storage of the inferred triples is
handled by the extensible Storage Manager methods.

4. EVALUATION
We based our evaluation efforts upon analysis of the data

collected during our experiments, and the overall perfor-
mance of our prototype food safety monitoring system based
on the ISI framework. To enable evaluations based on av-
erage values observed over multiple system executions, we
extended the ISI framework with a simulator module12. The
simulator was used to reconstruct semantic (SSN) data streams
from sensor observations13 captured during the aforemen-
tioned sensor deployment in a commercial kitchen.

The extended ISI framework was run on a virtual server
instance with Intel(R) Xeon(R) CPU 2.40GHz and 2GB
memory. To evaluate how the framework operates under
different workloads, ISI was tested in three settings with
inputs from 2, 4, and 7 sensors where one of the sensors
was always the meat probe (i.e. to enable inference of a

12https://github.com/m-markovic/FoodSafety
13https://github.com/m-markovic/FoodSafety-Data

cooked state). The domain knowledge loaded by the frame-
work represented a HACCP workflow plan including three
steps (storage, preparation and cooking) and corresponding
constraints. During the sensor deployment, one sensor gen-
erated between 600 - 1000 raw observations depending on
the reliability of the sensor and length of the collection pe-
riod. Replaying data for all sensors in a single system setting
(i.e. 2, 4, or 7 sensors) constituted a single run. For each
system setting we performed 5 warm up runs, followed by 10
real (measured) runs. Times required to execute inference
queries and the number of triples/quadruples were averaged
and recorded for each system setting.

Provenance queries such as the one shown in Appendix,
Query 3 were used to validate the provenance abstractions,
by comparing them with a manual record of the actual events
observed by a researcher during the sensor deployment. This
was to confirm that the inference rules were able to iden-
tify all changes in the meat item state as they actually oc-
curred during the sensor deployment. Timestamps associ-
ated with events in the provenance record deviated by up to
one minute from the actual (observed) timings; this was a
consequence of the reaction time of the sensors in registering
temperature increases (e.g. when an item was removed from
a fridge). Figure 3 illustrates the impact of abstracting the

1 16 256 4096 65536

2

4

7
N
um

be
r	o

f	S
en
so
rs Number	 of	Provenance	

Triples

Number	 of	Quadruples

Number	 of	Readings

Figure 3: A log scale comparison of the number of
raw sensor readings, quadruples (i.e. SSN annota-
tions on the stream), and provenance triples.

sensor observations from our trial dataset using FS-PROV
provenance descriptions. The results include descriptions
of changing item states and a three-step HACCP workflow
plan (422 triples). The very large number of quadruples was
caused by the richness of SSN descriptions required to de-
scribe a single sensor reading and the default triples present
in each instance of a JENA Ont model that were pushed
onto the stream with each new sensor reading. In three
tested ISI configurations containing 2,4, and 7 sensors, 95%
of provenance inferences for one meat item were performed
within 32ms, with mode values depending on the number
of deployed sensors and ranging between 12.8ms – 13.8ms;
median values were between 13.4ms – 15.8ms.

5. DISCUSSION
Our results demonstrate that provenance abstractions can

be used to represent concise food safety compliance records
and that these can be generated automatically from seman-
tic stream data using simple SPARQL inference rules. How-
ever, it is important to acknowledge the trade-offs between
storage of abstracted and original sensor observations. For
example, our approach would not support audit of the ex-
act temperatures recorded at specific times, as this would
be part of the original data. Original observations may
also contain additional context such as information about

sensor calibration and accuracy which influenced the sensor
data quality. Capturing such information within provenance
records might be possible; however, this was out of scope for
the work presented here.

In future work, we plan to evaluate the ISI platform in var-
ious settings including public transport and domestic (smart
home) environments. For these deployments we will explore
use of single board resource-constrained devices as IoT gate-
ways to support abstraction and obfuscation of the sensor
data.

6. REFERENCES
[1] Barbieri, D. F., Braga, D., Ceri, S., Valle, D. E.,

and Grossniklaus, M. Querying rdf streams with
c-sparql. SIGMOD Rec. 39, 1 (2010).

[2] Hiroshi, H., Shimura, T., and Fukui, T. Sensor
network for haccp food safety management. In
Proceedings of IET International Conference on
Communication Technology and Application (ICCTA
2011) (2011), pp. 662–666.

[3] Kolozali, S., Bermudez-Edo, M., Puschmann, D.,
Ganz, F., and Barnaghi, P. A knowledge-based
approach for real-time iot data stream annotation and
processing. In Proceedings of 2014 IEEE International
Conference on Internet of Things (iThings), and Green
Computing and Communications (GreenCom) (2014),
pp. 215–222.

[4] Markovic, M., Edwards, P., Kollingbaum, M.,
and Rowe, A. Modelling provenance of sensor data for
food safety compliance checking. In Proceedings of the
6th International Provenance & Annotation Workshop
- IPAW (Virginia, June 2016), vol. 9672, Springer,
pp. 134–145.

APPENDIX

REGISTER QUERY meatItem11 AS

SELECT distinct ?s ?p ?o
FROM STREAM
<http :// foodsafety/ssn > [RANGE 20s TUMBLING]
WHERE {
{?s ssn:featureOfInterest <example.org/meatItem11 >.
?s ?p ?o.}
Union
{?o ssn:featureOfInterest <example.org/meatItem11 >.
?s ?p ?o.}
Union
{?obs ssn:featureOfInterest <example.org/meatItem11 >.
?obs ssn:observationResult ?s.
?s ?p ?o.}
Union
{?obs ssn:featureOfInterest <example.org/meatItem11 >.
?obs ssn:observationResult ?res.
?res ssn:hasValue ?s.
?s ?p ?o.}
Union
{?obs ssn:featureOfInterest <example.org/meatItem11 >.
?obs ssn:observationResult ?out.
?out ssn:isProducedBy ?s.
?s ?p ?o.}}

Query 1: A C-SPARQL query to retrieve sensor
readings corresponding to a single meat item.

INSERT {
?activityId a fs:WorkflowActivity.
?evalContextId a sc-prov:EvaluationContext.
?new a fs:WorkflowEntity.
?new prov:wasGeneratedBy ?activityId.
?new prov:generatedAtTime ?firstHighObsTime.
?new prov:specializationOf ?foi.
?old prov:invalidatedAtTime ?firstHighObsTime.
?evalContextId fs:entity ?new.
?evalContextId sc-prov:hadCondition fs-ex:HACCPChilled.
?evalContextId sc-prov:hadResult ?resultId.
?resultId prov:hasValue "true".
fs-ex:cooling fs:instantiatedByActivity ?activityId.
fs-ex:chilledMeat fs:instantiatedByEntity ?new.
}
WHERE {
?old a fs:WorkflowEntity.
?old prov:generatedAtTime ?lastoldTime.
?old prov:specializationOf ?foi.
fs-ex:meatOutOfStorage fs:instantiatedByEntity ?old.
{
Select (MAX(? timeStored) as ?lastoldTimeComp) ?foi
WHERE {
?entity prov:generatedAtTime ?timeStored.
?entity prov:specializationOf ?foi.
?thisSensor ssn:observes fs-ex:meatSurfaceTemp.
?obsRes ssn:isProducedBy ?thisSensor.
?obs ssn:observationResult ?obsRes.
?obs ssn:featureOfInterest ?foi}
Group by ?foi }
{
SELECT *
WHERE {
?obs ssn:observationSamplingTime ?firstHighObsTime.
{
SELECT (MIN(? obsTime) as ?TimeCheck)
WHERE {
?obs ssn:observationResult ?sensorOutput.
?obs ssn:observationSamplingTime ?obsTime.
?sensorOutput ssn:isProducedBy ?sensor.
?sensorOutput ssn:hasValue ?obsValue.
?obsValue sk:hasQuantityValue ?followedReading.
?sensor ssn:observes fs-ex:meatSurfaceTemp.
FILTER (? followedReading < 5)
}}}}

FILTER (BOUND(?obs)&&? firstHighObsTime =? TimeCheck
&&? lastoldTime =? lastoldTimeComp)

BIND (UUID() as ?activityId)
BIND (UUID() as ?evalContextId)
BIND (UUID() as ?new)
BIND (UUID() as ?resultId)}

Query 2: A rule to infer the chilled state of an item.

SELECT ?item ?cookedAt

WHERE {
?storageStep a fs-ex:Cooking.
?result a fs:WorkflowEntity.
?result prov:specializationOf ?item.
?result prov:generatedAtTime ?cookedAt.

?resultResource fs:isResultOf ?storageStep.
?resultResource fs:instantiatedByEntity ?result.

?evalContext fs:entity ?result.
?evalContext sc-prov:hadCondition fs-ex:HACCPCooked.
?evalContext sc-prov:hadResult ?evalResult.
?evalResult a fs:WorkflowEntity.
?evalResult prov:hasValue "true".

VALUES (?item) {(<http :// example.org/meatItem1 >) } }

Query 3: A provenance query to check if a food item
has been cooked in compliance with the correspond-
ing HACCP constraint.

