
A Visual Language for OWL Lite Editing
Jonas Rebstadt, Luisa Brinkschulte, Arkadij Enders, Robert Mertens

Dept. of Computer Science
HSW University of Applied Sciences

Hameln, Germany
{jonas.rebstadt|luisa.brinkschulte|arkadij.enders|mertens}@hsw-hameln.de

ABSTRACT
While ontologies are a powerful means for knowledge representa-
tion, they are not as wide spread as one would think. A major
reason for this fact is the lack of an intuitive visual editor. The
visual language presented in this poster tackles part of this prob-
lem in that is was developed for a visual editor that allows on-line
consistency checking of visual editing steps, i.e. preventing to
describe instance configurations that are not allowed by the corre-
sponding class descriptions. The visual language is closely linked
to the editor's data model and covers all elements of OWL lite. It
is comprised of twelve elements in total, two node elements and
ten link types. The language has been implemented in a prototype
version of the editor and used to visualize a number of publicly
available OWL lite ontologies.

CCS Concepts

• Information systems~Web Ontology Language (OWL)
• Information systems~Ontologies • Information systems~Data
structures • Human-centered computing~Visualization
• Computing methodologies~Ontology engineering
• Computing methodologies~Knowledge representation and rea-
soning • Software and its engineering~Visual languages

Keywords
Ontology; Visualization; OWL Lite; Knowledge Representation

1. INTRODUCTION
Ontologies are used as a human-understandable and editable
means for knowledge representation. The advantages of ontolo-
gies range from re-use and exchange of knowledge between peo-
ple to automatic reasoning and search support.

More and more users are interested in ontologies because of the
increasing importance of electronic data exchange between insti-
tutions. Not only experts of knowledge representation but also a
high number of non-experts dealing with ontologies use them as a
means to exchange, edit and structure knowledge.

Aside from the typical fields of artificial intelligence (AI), data-
bases and web-technologies, there are also numerous other fields
from science and industry which get in contact with ontologies.
To support groups which are less familiar with ontologies, visual-
ization plays an important role.

Current editors for the visualization of ontologies are character-
ized by their comprehensive presentation of all functions and
therefore hard to read for non-experts. To make ontologies usea-
ble and editable for non-experts it is even more important to de-

scribe the complex functions on a higher level of abstraction.

The solution to this is an intuitive and interactive visualization
tool which abstracts the variety of language elements in the back-
ground of OWL from the actual application. With these goals we
explored the possibility to use mind map like visualization as base
for a visual editor that allows users to create and work with ontol-
ogies in a simplified and intuitive way [1]. One necessary step for
such a tool is a well-specified visual language for user-oriented
representation of ontologies.

2. Related Work
Protégé [2] is the best-known and most comprehensive ontology
editor and was developed at Stanford University. Other widely
used ontology editors are SWOOP by Mindswap, OntoStudio by
ontoprise GmbH, Apollo by Knowledge Media Institute and
TopBraid Composer by TopQuadrant [2, 3].

OWLGrED is a visual authoring tool for OWL using a mix of
UML and textual syntax [4]. It allows visualizing ontology frag-
ments in order to edit large ontologies. The tool does not provide
edit-time consistency checking however it comes with zooming
functionality. The OWLViz1 plugin for Protégé [5] contributes
ontology visualization but neither graphical editing nor visualiza-
tion of properties [6]. A complete consistency check only happens
after explicitly running a reasoning engine. Zooming is possible,
and some elements (classes but no connections) can be hidden in
the visualization. OntoGraf2 is a standard graph visualization
plugin of Protégé [7]. It is limited to visualize ontologies, hence it
does not allow to edit them. Therefore, it does not come with edit
time consistency checking. It does however, offers zoom capabili-
ties. OntoGraf is capable of filtering notes and connections.

The use of intuitive notations and easily understandable notation
symbols, colors and node shapes are covered by GrOWL [8] and
the Protégé plugins SOVA3 and VOWL4 [9, 10]. GrOWL and
SOVA are rather designed for users with expertise in description
logic and related symbols. VOWL provides graph visualizations
to represent ontologies for users less familiar with ontologies and
is therefore most closely related to our developed visual language.
Contrary to VOWL, the developed visual language focuses on
combining class- and individual views. Furthermore it provides
user-friendly support by intuitive operations and element connec-
tions. While VOWL uses the same visual element for all proper-
ties and one can only distinguish the type of the property by read-

1 http://protegewiki.stanford.edu/wiki/OWLViz
2 http://protegewiki.stanford.edu/wiki/OntoGraf
3 http://protegewiki.stanford.edu/wiki/SOVA
4 http://protegewiki.stanford.edu/wiki/VOWL

© 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

ing the label [10], we developed visual elements for each proper-
ty. In addition to the objective of making ontologies understanda-
ble, we are actively working towards making ontologies editable
in the course of the visual representation.

3. Visual Representation-Language for OWL
Lite Elements
3.1 Language Elements
Creating a new ontology isn’t easy, especially if the raw owl
language is used, but yields a high formalization and semantic
expressiveness which can be used by the computer. However,
mind maps are common, easy to use and intuitive. Hence, we tried
to combine the strengths of both worlds to create ontologies easier
and keep the owl data structure. The following table shows the
view elements, which are used in our prototype editor to build an
ontology with their use in the OWL light language.

Table 1. Language Elements

C
la

ss
	

	

A round rectangle represents a defined
owl:class of the ontology. The name of
the class can't exceed four lines on the
visual screen, but three dots at the end
indicate that the actual name is longer,
even though a class name should be
short and precise. Furthermore the
background and text color can be
changed by the user. 	

In
di

vi
du

al
	

	

The owl:individual is also represented as
a round rectangle. Since the shape is
exactly like the shape of a class, a color
code must be used to distinguish an
individual from a class. 	

Is
A
	

	

The ClassAssertion is represented by the
isA connection. It can be used to con-
nect classes by a directed connection or
individuals with classes to determine
their class. 	

A
re

Sa
m

e	

	

To determine the equality of two indi-
viduals or classes the AreSame connec-
tion is used.	

H
as

V
al

ue
	

	

The owl:DatatypeProperty is represent-
ed by the HasValue connection.
However, to set HasValues on an indi-
vidual it is necessary to define them first
at the class level. On creating a HasVal-
ue an owl or rdf datatype is chosen.
Afterwards it is possible to add a value
to an individual.	

H
as

R
el

at
io

n	

	

Owl:ObjectProperty is covered by the
element HasRelation. By defining a
relation between two classes, the indi-
viduals of these classes are able to have
the defined relations as optional connec-
tions.
After defining HasRelations, the user is
able to choose which of the HasRela-
tions exist between two individuals.	

Name	 View element	 Description	

Fu
nc

tio
na

l	

	

An owl:FunctionalProperty is represent-
ed by an element of type Functional.
Thus, users can define a Functional
between two classes to connect certain
individuals. An individual is only al-
lowed to have one Functional per defini-
tion. ‘[…] a given individual Vintage
can only be associated with a single year
using the hasVintageYear property’5	

T
ra

ns
iti

ve
	

	

Owl:Transitive can be created by using
the Transitive element. This element
connects a class with itself to create a
transitive relation. Afterwards two
indiciduals of the same class can be
connected by the Transitice tool.	

Sy
m

m
et

ri
c	

	

The Symmetric tool is directed to both
sides. Therefore the relation is bidirec-
tional to indicate the relation works both
directions.
It represents owl:Symmetric in the
ontology.	

A
re

D
iff

er
en

t	
	

AreDifferent covers the OWL property
owl:DifferentFrom. It can be used
between two individuals to determine
that they are different from each other. It
is possible to upgrade AreDifferent to an
AllDifferent by using the AllDifferent
tool and selecting an AreDifferent
connection.	

A
llD

iff
er

en
t	

	

To use owl:AllDifferent it is possible to
create an AllDifferent object. This
object looks almost like AreDifferent,
however it is selectable. The user is
allowed to add or remove connections
between AllDifferent and individuals.
Also it is possible to downgrade an
AllDifferent to an AreDifferent by
connecting only two individuals to the
object. 	

In
te

rs
ec

tio
n	

	

The key symbol shows if a class repre-
sents an intersection. Thus, the symbol
can only be used between classes. By
defining an intersection class the key is
shown next to the isA edge and within
the intersection class. 	 The idea of the
key symbol is that the connections can
not be removed as the class is described
by the incoming connections.	

a

Not every owl light tag is mentioned in the above table, therefore
table 2 shows every tag of OWL light and the visual elements.
The X indicates which tag is used in which of the view elements.

Next to the visualized elements there are relevant owl/rdf(s)-
elements that are only shown in the sidebar, as shown in the ma-
trix below. An own visualization of these elements is in most
cases not expedient as it would rather decrease the clarity and the
intuitive handling. Based on these elements constructs like re-
strictions could be added in the sidebar, furthermore elements like
this are influencing the creation and extension of ontologies but
they are not visualized on their own.

5 https://www.w3.org/TR/owl-guide/

Name	 View element	 Description	

Table 2: Mapping of OWL Lite tags to visual elements6’7

 Visual Element

OWL Lite Tag

C
la

ss

In
di

vi
du

al

is
A

A
re

Sa
m

e

H
as

V
al

ue

H
as

R
el

at
io

n

Fu
nc

tio
na

l

Tr
an

si
tiv

e

Sy
m

m
et

ric

A
re

D
iff

er
en

t

A
llD

iff
er

en
t

In
te

rs
ec

tio
n

Si
de

B
ar

Rdf:Property X X X X X X X
Rdfs:Class X
Rdfs:domain X X X X X X X X
Rdfs:isDefinedBy X
Rdfs:label X X X X X X X X X X X X X
Rdfs:range X X X X X X X X
Rdfs:subClassOf X
Rdfs:subPropertyOf X
Owl:AllDifferent X
Owl:AllValuesFrom X
Owl:cardinality X
Owl:class X
Owl:DatatypeProperty X
Owl:DifferentFrom X
Owl:distinctMembers X
Owl:EquivalentClass X
Owl:EquivalentProperty X
Owl:FunctionalProperty X
Owl:intersectionOf X
Owl:inverseFunctionalProperty X
Owl:inverseOf X
Owl:maxCardinality X
Owl:minCardinality X
Owl:nothing
Owl:ObjectProperty X
Owl:onProperty X X X X X X X X
Owl:Ontology X
Owl:OntologyProperty X
Owl:Restriction X
Owl:SameAs X
Owl:SomeValuesFrom X
Owl:SymmetricProperty X
Owl:Thing X
Owl:TransitiveProperty X

6 The Tags Rdfs:comment, Rdfs:seeAlso, Owl:AnnotaionProperty, Owl:backwardCompatibleWith, Owl:deprecatedClass,

Owl:deprecatedProperty, Owl:imports, Owl:incompatibleWith, Owl:priorVersion and Owl:VersionInfo are visualized in the SideBar.
7 An example of the visualization can be found at

https://www.researchgate.net/publication/306065998_A_Visual_Language_for_OWL_Lite_Editing

Next to the elements influencing the processing of ontologies
other elements such as VersionOf provide additional relevant
meta information.

3.2 Grammar
To allow a use as language for knowledge representation, the
elements presented in the previous chapter are embedded in a
grammar. The grammar is differed in the possible link types. It
defines for every link type the possible elements that could be
used before and after the considered link type. The grammar
shown in the table below is limited to the visualized elements and
presented according the EBNF. The realization of the other ele-
ments (for e.g. the restriction) is described in the following chap-
ter.

Connection Tupel (EBNF)

Intersection Class, {Class}, ‘Intersection’, Class, {Class}

Are Same (Class, ‘AreSame’, Class) | (Individual,
‘AreSame’, Individual)

Are different (Class, ‘AreDifferent’, Class) | (Individual,
‘AreDifferent’, Individual)

All different (Class, {Class}, ‘AllDifferent’, Class,
{Class}) | (Individual, {Individual}, ‘AllDif-
ferent’, Individual, {Individual})

IsA (Individual | Class),‘IsA‘, Class

Has value (Class, ‘HasValue’, <String>) | (Individual,
‘HasValue’, <String>)

Has relation (Class, ‘HasRelation’, Class) | (Individual,
‘HasRelation’, Individual)

Functional (Class, ‘Functional’, Class) | (Individual,
‘Functional’, Individual)

Transitive (Class, ‘Transitive’, Class (*The same
one*)) | (Individual, ‘Transitive’, Individual)

Symmetric (Class, ‘Symmetric’, Class) | (Individual,
‘Symmetric’, Individual)

The above rules are identical to OWL and simply adapted to the
visual language. For the Transitive connection on the class level,
we have added the constraint that only elements of the same class
can be connected as transitivity requires the same kind of relation.
If users created two Transitive connections with the same name
between three classes, the connections would still be two different
connections, albeit of the same name.

3.3 Context based Constraints
As mentioned in chapter two there are elements influencing the
creation and extension of ontologies not only in a direct but rather
more in a context based way. Most important in this context is the
correlation between classes and the respective individuals. The
definitions and the link elements given for classes are not only

influencing the handling of this specific class. Rather they are
determining how individuals of the defined class could be used
and which link elements could be connected to them.

4. Conclusion and future work
The developed visual language allows users who are less familiar
with knowledge representation and description logic to work with
ontologies as a means to visualize, organize and edit knowledge in
complex domains. It is successfully implementing all OWL Lite
elements. However, the intuitive usage needs to be further vali-
dated in a user study in the future.

We’re currently developing the already elaborated prototype in
which a large part of the semantic, i.e. online consistency check-
ing has already been implemented.

5. REFERENCES
[1] L. Brinkschulte, A. Enders, J. Rebstadt and R. Mertens,

“Aspect-Oriented Mind Mapping and Its Potential for Ontol-
ogy Editing”, EEE Tenth International Conference on Se-
mantic Computing (ICSC), pages 194 – 201, 2016.

[2] E. Alatrish, „Comparison of Some Ontology Editors“ Man-
agement Information Systems, Vol. 8, Nr. 2, pp. 18-24, 2013.

[3] V. Kashyap, C. Bussler and M. Matthew, The Semantic
Web: Semantics for Data and Services on the Web, Springer,
2008.

[4] R. Liepins, K. Cerans und A. Sprogi, „Visualizing and Edit-
ing Ontology Fragments with OWLGrEd,“ in I-SEMANTICS
2012, 2012, pp. 22-25.

[5] H. Knublauch, R. Fergerson, N. Noy and M. Musen, „ The
Protégé OWL Plugin: An Open Development Environment
for Semantic Web Applications,“ in Third International Se-
mantic Web Conference, Hiroshima, 2004.

[6] D. Bold, „Kompakte und ganzheitliche Visualisierung von
Ontologien,“ MSc Thesis, Stuttgart University, 2013.

[7] A. Jurcik, „Development of Visualization Plug-in for Proté-
gé,“ MSc Thesis, Brno University, 2010.

[8] S. Krivov, F. Villa, R. Williams, X. Wu. On visualization of
OWL ontologies. In Semantic Web, pages 205-221. Spring-
er, 2007.

[9] S. Lohmann, S. Negru, D. Bold, „The ProtégéVOWL Plugin:
Ontology Visualization for Everyone“, in „The Semantic
Web: ESWC 2014 Satellite Events“, pages 395-400. Spring-
er, 2014.

[10] S. Lohmann, S. Negru, F. Haag and T. Ertl, „VOWL 2: User-
Oriented Visualization of Ontologies“, in “Knowledge Engi-
neering and Knowledge Management: 19th International
Conference, EKAW 2014, Linköping, Sweden, November
24-28, 2014”, pages 266-281. Springer, 2014.

