
Lightweight IO Virtualization On MPU Enabled
Microcontrollers

Francesco Paci
University of Bologna

Bologna, Italy
f.paci@unibo.it

Davide Brunelli
University of Trento

Trento, Italy
davide.brunelli@unitn.it

Luca Benini
University of Bologna

Bologna, Italy
ETHZ

Zürich, Switzerland
luca.benini@unibo.it

luca.benini@iis.ee.ethz.ch

ABSTRACT
In the era of the Internet of Things (IoT), millions of de-
vices and embedded platforms based on low-cost and lim-
ited resources microcontroller units (MCUs) will be used in
continuous operation. Even if over-the-air firmware update
is today a common feature, many applications might require
not to reboot or to support hardware resource sharing. In
such a context stop, update and reboot the platform is un-
practical and dynamic loading of new user code is required.
This in turn requires mechanisms to protect the MCU hard-
ware resources and the continuously executing system tasks
from uncontrolled perturbation caused by new user code be-
ing dynamically loaded. In this paper, we present a frame-
work which provides a lightweight virtualization of the IO
and platform peripherals and permits the dynamic loading
of new user code. The aim of this work is to support critical
isolation features typical of virtualization-ready CPUs on
low-cost low-power microcontrollers with no MMU (Mem-
ory Management Unit), IOMMU or dedicated instruction
extensions. Our approach only leverages the Memory Pro-
tection Unit (MPU), which is generally available in all ARM
Cortex-M3 and Cortex-M4 microcontrollers. Experimental
evaluations demonstrate not only the feasibility, but also a
satisfactory level of performance of the proposed framework
in terms of memory requirements and overhead.

Keywords
Virtualization, MPU, Microcontrollers, Dynamic Linking

1. INTRODUCTION
Many IoT applications envision the deployment of large

numbers of microcontroller-based smart sensor nodes in hard-
to-reach locations [1, 2]. This not only means that they
are supposed to operate unattended, without direct main-
tenance, and likely with the same battery for many years;
but also that the software could be updated (if necessary)
only remotely; and in many scenarios it is expected that
bug fixes, functional improvements, reconfiguration will be
necessary over the time. Clearly the old fashion style for
reprogramming embedded systems based on stopping the
device, updating the firmware and restart, become unfeasi-
ble when millions of low cost devices are spread all over and
are expected to be updated with new functionality many
times over their life span.

In addition, IoT devices are expected to provide more and

EWiLi’16, October 6th, 2016, Pittsburgh, USA.
Copyright retained by the authors.

more services on the same hardware. The possibility to have
multiple “application tasks” running on the same hardware,
possibly coming from different developers, introduces the
challenge of protecting the resources from misuses and to
guarantee adequate computing bandwidth to all the tasks
or to prevent over-allocation of resources that would lead to
collective starvation.

In such a scenario, well-known virtualization technologies
already used in computing servers, gateways and other high-
end computing systems become fundamental also in low-end
and ultra-low cost programmable end-nodes for IoT. First,
the virtualization of the hardware resources becomes nec-
essary to execute securely multi-function software and dif-
ferent applications with well-controlled interference. Then,
the capability to remotely download new parts of code, to
link dynamically the binary and to execute runtime within
the main application, avoids on-site maintenance or periodic
down-time and reboot.

These two requirements highlight the importance of IO
virtualization and dynamic linking on low-cost, low-power
microcontrollers. However, if this technology is well known
and available in operating systems for high-end embedded
systems (e.g. Linux on ARM Cortex-A microprocessors),
providing mechanisms for dynamic linking in low-resource
microcontroller based embedded platforms, such as ARM
Cortex-M class, is still a challenge, and only few and limited
solutions have been proposed so far.

The dynamic linking proposed in this work executes on
the FreeRTOS [3] operating system and it is based on the
framework presented in [4] which addressed the capability to
download new functions remotely. The main contributions
of this paper are:

• a Lightweight Virtualization layer which separates the
user space from the kernel space, therefore now all
the physical peripherals are virtualized. Such a vir-
tualization is a protection towards system tamper and
ready to be extended to protect possible conflicts on
the hardware assignments;

• our solution is integrated with FreeRTOS and exploits
standard communication API provided by the operat-
ing system. Thus, it can be easily ported also on other
microcontrollers.

• we provide the capability to have the dynamic linking
of new user code, managing its life cycle as well as
its orderly shutdown in case of attempted violations of
protected memory regions;

The paper is organized as follows. Section 2 gives an
overview of works related to our contribution, Section 3 de-
scribes in depth the framework architecture and provides all
technical details of this solution, Section 4 details our per-



formance and memory footprint, while Section 5 concludes
the paper.

2. RELATED WORKS
Virtualization support for embedded systems based on

high-end CPUs, such as the ARM Cortex-A series, has been
extensively explored in the academic literature and has reached
industrial maturity [5]. This class of devices exploits the
hardware acceleration extensions to provide hardware ab-
straction and protection to critical resources. Recent Cortex-
A CPUs feature native virtualization support like MMU and
IOMMU address translation, interrupt virtualization, Trust-
Zones [6, 7], etc. Cortex-M MCUs do not come with any of
those hardware extensions. Furthermore, available memory
and computational resources are much more limited. Our
work and the related works surveyed below deal with Cortex-
M3 and Cortex-M4 class of devices, where virtualization is
not a mature technology and several compromises with re-
spect to full hardware-supported virtualization have to be
made.

Abstract Virtual Machines and Interpreters
One of the most common approaches for virtualization

on MCUs is based on interpreter-based virtual machines,
which have been originally conceived with the main purpose
of creating high-level easy-to-use languages and run-times at
a higher abstraction level than the traditional C language.
Python [8, 9], Java [10, 11], Javascript [12], Lua [13] are all
lightweight multi-paradigm scripting languages employed in
Virtual Machines for embedded systems. Their main bene-
fit is the cross-platform support. They are interpreted by a
native virtual machine loaded on the microcontroller, thus
they introduce high overhead in term of latency of access to
the resources in comparison to virtualization layers written
in native code, but they are designed for easy software ap-
plication develoment and to meet the increasing demand of
fast run time customization, without the need of complex or
dedicated compiling toolchains. Such a kind of virtualiza-
tion, usually, is focused on improving portability, extensibil-
ity, ease-of-use in development and protection but lacks of
performance, multiple user level accesses and low-level hard-
ware control. Only the exposed high level resources can be
leveraged by the user.

Bogliolo et al. [14] presented Virtual Sense, a sensor node
which executes java-compatible virtual machine called Dar-
jeeling VM [11] on top of Contiki OS [15]. This work is
close to ours in the emphasis on supporting resource allo-
cation and protection for multiple independent user tasks
on the MCU. However this solution, besides the overhead
introduced by the interpreter, is oriented to share only net-
work stack between Darjeeling VM tasks, while our work is
general to all peripherals.

Just In Time/Ahead of Time Compilation
A well-explored approach to reduce the run-time overhead
of VM interpeters is Just in Time or Ahead of Time Compi-
lation. Micropython [8] developers, for example, introduced
in their platform the concept of decorator to emit ARM
native opcode and to use native C types, but not all na-
tive C types are supported and the implementation of this
optimization is platform dependent. A solution can be to
extend with C wrapped functions called from python, but
there are drawbacks: marshaling and unmarshaling of data
is very expensive in terms of computational resources and
with this solution the programmer loses the low level ab-
straction. In comparison, using our solution, the developer
implements C functions which will be executed in user level
tasks. In general these approaches require a higher memory
footprint to host the just-in-time or ahead-of-time compile

process and do not achieve the performance of native code
execution. Furthermore, they are difficult to use in contexts
where real-time constraints cannot tolerate the jitter intro-
duced by on-line compilation.

Native Implementations
Native virtualization is the closest to hardware and extremely
desirable for resource and performance-limited devices. This
technique usually relies on the use of MPU that is the only
hardware unit available for security in low-end systems.
Bhatti et al. [3] presented a complete operating system de-
signed for WSN (Wireless Sensor Network) and optimized
to simultaneous execution of threads which can be loaded
dynamically. Their work relies on Mantis OS, a custom op-
erating system. They target Atmel and their solution is
highly customized, thus is not general, while our work relies
on FreeRTOS therefore it is highly extensible and portable
to other platforms. Moreover they do not explicitly address
security and protection.

To the best of our knowledge we find only one very recent
work that addresses the problem in a broad and general
sense, similarly to our solution. Andersen et al. [16] pre-
sented an embedded platform that relies on TinyOS. They
use a mixed paradigm that permits to have Lua VM but the
computational intensive part of code can be written in native
C. To address security they use a task receiving event based
system calls, to separate kernel to user space tasks. Our
work differentiates from the latter by permitting to have
both system call support and Event based peripheral vir-
tualization. Moreover Andersen et al. do not provide any
information on the performance of the event based system
call paradigm.

3. SOFTWARE ARCHITECTURE
In this section we present all the software layers in our

runtime system, focusing on software protection. Figure 1
shows the layer stacking from three viewpoints, first from
a hardware point of view, then from address space access,
divided in IO and Flash/RAM. We divided core hardware
from peripherals in two different stacks to underline that the
OS can expose system calls to access to the core hardware
resources, while the Virtual IO Layer is designed to access
to the peripherals. The last stack shows that the access to
memories is direct for privileged tasks, while the access from
user mode tasks is strictly regulated by MPU. Two different
kinds of tasks are defined: privileged tasks and user mode
tasks, which will be discussed in next section.

Another important layer depicted in Figure 1 is FreeR-
TOS [17], a well known Real Time Operating System for a
broad range of Embedded Systems from 8 to 32bit, includ-
ing low power and ultra-low power MCUs. We implemented
our framework on an STM32F4 based platform, and even
if some details in the following description are related to
this specific microcontroller, our framework can be easily
extended to be platform independent.

In Sections 3.1 and 3.2 we focus on the first and third
stack, namely on exploiting the MPU and providing Safety
Extensions, while in Section 3.4 we discuss the second stack.

3.1 Real Time OS
The main reason for using FreeRTOS is its versatility:

many MCUs are supported and the code is maintained and
upgraded often by Real Time Engineers Ltd. Moreover it is
modular and there are some extensions available (e.g. MPU
extension), which can be added to the core release. The
open source nature makes possible to extend it. It has more-
over a small memory footprint and sources consist of a small
number of files. The scheduler supports real-time operation,



Figure 1: Hardware, IO and Memories layers.

both time-triggered by a configurable system tick and with
support for priorities with preemption.

3.2 FreeRTOS Additions
To strengthen the security of the system, the FreeRTOS

MPU module has been integrated to enable the usage of
the Memory Protection Unit implemented on the microcon-
troller and to activate the two levels of privileges for the
tasks execution. However, the original module is an ex-
perimental release, because of some limitations that we ad-
dressed in our work:

1. It does not have a proper way to access system re-
sources. It provides only one system call. This system
call raises the privileges of the caller from user mode to
privileged, executes the call and then sets the privileges
back to user space. This behavior has sufficient protec-
tion in an environment where a single developer wants
to keep separation between tasks, i.e. the case where
a single company develops all the firmware. While in
the case we want to give to a third-party user the ca-
pability to develop his own code, the knowledge of the
existence of this backdoor is really dangerous for pro-
tection.

2. The exploitation of the MPU is static. The protection
sections of the MPU are not reconfigurable at run-time
by privileged tasks.

3. The task termination is not correctly handled. When a
user mode task raises an MPU trap the exception ends
the system execution. Hence it would be extremely
easy to create denial of service attacks.

In next sub-sections we describe our proposed solutions to
these limitations.

3.2.1 MPU Extension
As already stated, this module permits to grant different

access privileges on a task-by-task basis. For each task the
MPU settings are stored in the task descriptor, called Task
Control Block (TCB) in FreeRTOS. When a task is created,
it can be started with one out of two levels of privileges:

1. Privileged Tasks (similar to Linux Kernel Mode exe-
cution). The task executes with permission granted to
access all system resources, memories and peripherals.

2. User mode Tasks (similar to Linux Kernel User Mode,
also called unprivileged tasks). The task is executed
in more restrictive environment and has access only to
a limited subset of memory and IO addresses.

STM32 Cortex-M4 has eight configurable MPU regions.
When activated the protection policy is white-list based: to
access to a specific position in the address space, the task
should have a grant on one MPU region. The privileges on
an MPU region can be: NONE, READONLY AND READ-
WRITE. In FreeRTOS these MPU regions are configured as

follows:

Region 0 FLASH protection
Protects whole FLASH providing read-only privi-
leges to both privileged and user mode tasks.

Region 1 OS FLASH protection
Protects from accesses by user mode tasks to the
OS code in FLASH

Region 2 OS RAM access
Provides permission to privileged task to access the
OS structures stored in RAM

Region 3 Peripheral access
Used to enable or disable the access to peripherals.

Region 4 Task Stack access
Used to give access to tasks own stack.

Region 5-7 Not used
These three regions are not used by FreeRTOS MPU
module, thus they are open to developer purposes.

In Table 1, we show a list of MPU configurations used in
our solution. As the reader can notice, there is no access to
peripherals granted to user mode tasks. This access can be
only allowed through the IO Virtualization Architecture.

One of the main constraints of the FreeRTOS MPU mod-
ule is that it permits to configure the last regions (from 5
to 7) at compile time only. Thus, we implemented a specific
software module to reconfigure these regions at run-time for
each task. This is done for the following reasons:

1. Access to Virtual IO Layer (deeply explained in Sub-
section 3.4) can be restricted by an MPU Region and
must be asked by a task. This makes the Virtual IO
Layer aware about the number of tasks that are using
it.

2. Moreover access to heap or other memory regions can
be granted at run-time. This is open to several future
applications.

3.2.2 Safety Extensions
As previously stated, the single system call paradigm is

not safe. The raise privilege system call has been removed
and replaced by more specific system calls for required cases.
For example to grant access to FreeRTOS Queues and Di-
rect Task Notification, the following list of system calls are
added:

• MPU xTaskGenericNotify: Direct task notification No-
tify function

• MPU QueueReceive: Receive a message on a queue
• MPU xGetCurrentTaskHandle: Get the current task

handle
• IO Layer REGISTER: Registration to Virtual IO Layer



Table 1: Default MPU region setting in FreeRTOS
Privileged Perm. User Mode Perm. Region Desc.
READ ONLY READ ONLY all Flash Protection

READ ONLY NONE OS Code Segment
in FLASH

READ WRITE NONE OS RAM Protection
READ WRITE NONE Peripherals
READ WRITE READ WRITE Task Stack
NOT USED NOT USED User configurable
NOT USED NOT USED User configurable
NOT USED NOT USED User configurable

3.2.3 Graceful Task Termination - Killer Task
FreeRTOS does not provide task termination. Thus, when

an unprivileged task tries to access a memory address with-
out permission a trap is generated from the MPU and the
OS ends its execution in an endless loop. This is not accept-
able if we want to keep all other tasks and OS in execution.
The desired behavior is that the task causing the trap, is
aborted while the system continues its execution. Thus a
memory trap handler and a specific task, called Killer Task,
have been created to manage the termination of the task
that raised the trap. The Killer Task is a privileged task
created at boot time and it is in sleep state, when the MCU
is in normal usage. When a trap occurs the task is activated.
The Killer Task gets the task handles of the task that gen-
erated the trap and removes it from the scheduler execution
queue. Then it resumes the scheduler execution and goes
back into sleep, waiting for the next trap.

3.3 Software Protection
In a software protection perspective, the MPU enables

the OS to keep the control on the user mode tasks. Thus,
with the MPU all user mode tasks cannot tamper the whole
system. On the other hand, if we want to enable a third
party software developer to access only a small subset of
peripherals, a fine grain control on address space must be
implemented. Usually in a MCU all peripherals addresses
are grouped from a starting to an ending address. However,
if we want to provide fine grain access to a subset of them,
three free MPU regions are really limiting. Moreover there
are other two limitations: one is that the minimum area for
an MPU regions is usually 32 Bytes (i.e. on STM32f4) that
is usually larger than the register pool of a peripheral. The
other is that register set of several peripherals consists of
both control registers, and reading/writing ports, at subse-
quent memory positions. Thus it is not possible to grant the
access to a read-only register and denying the permission to
a contiguous configuration register.

3.4 IO Virtualization Architecture
The Virtual IO Layer architecture consists of two main

parts: (1) a task called Virtual IO Task that invokes the
callbacks to access to IO and to peripherals through the
hardware abstraction layer (HAL); (2) a library named Vir-
tual IO Library that contains the front-end calls forwarded
transparently to the Virtual IO Task and the back-end calls
invoked by the Virtual IO Task to access the HAL Library.
The Virtual IO Task is a FreeRTOS task that handles all
the IO calls from the user mode tasks to the peripherals. As
shown in Figure 2: this task acts as a task-in-the-middle that
receives all calls from user mode tasks that attempt to ac-
cess to the peripherals, checks the permissions and forwards
the requests through the HAL library.

3.4.1 Virtual IO Library

Figure 2: IO Virtualization High Level Architecture

The library consists of two subsets: a front-end functions
subset and the relative back-end functions subset.

When a user mode task wants to access peripherals, it
needs to subscribe to the Virtual IO Layer, using one spe-
cial front-end function. Registration is required for two pur-
poses:

1. The user mode task must have read only access to
the Virtual IO task handle. This is needed to use the
OS event notifications to notify the Virtual IO task.
Therefore, one of the MPU regions of the task must
be run-time configured to read-only access to Virtual
IO task handler.

2. User mode tasks are not authorized to use interrupt
handlers, because interrupt handler code is executed
in privileged mode. We used a queue system to com-
municate from interrupt handlers to user mode tasks.
Hence the registration routine creates a new queue and
saves the queue handler in a structure. This will be
used afterwards if the task will request access to one
peripheral in interrupt mode.

The registration is done through a system call that was
previously mentioned in subsection 3.2.2, hidden by a front-
end call. The system call is needed to configure an MPU
region described in the former purpose. The registration
procedure works as follows: (1) The user mode task in-
vokes the IO Layer init() routine, which through (2) the
IO Layer REGISTER system call (3) sets an MPU region
of the caller task to access to Virtual IO Task descriptor
in read-only mode. This is needed to send Notifications.
Then the framework create and initializes a System Queue
(4) for using the DMA (the procedure is described in Back
End Subset subsection). Before returning, if the procedure
was successful, the task is added to the list of Virtual IO
subscribed tasks.

Front End Subset

The Front End subset is intended to be called from the
user mode tasks. These calls have the same signature of the
original HAL library calls, beside the function name, which
is extended with a prefix to make the programmer aware that



is using the Virtual IO Layer and, obviously, to avoid a name
space conflict. Thus for each HAL library function that we
want to expose to the third party developer a function must
be written. Each function declares a structure that contains:

1. The user-mode task task handler.
2. A pointer to the relative back-end function to be called

by the Virtual IO Task
3. A pointer for each original HAL Library function ar-

gument.
4. If the original HAL function returns a non-void value,

a field to store it.
We refer to this structure with the name HAL Library Ar-

gument Embedding Structure (HAE Structure). Then HAE
structure is instantiated in the function, on the stack, and
all structure’s fields are assigned with their values. A notifi-
cation is sent to the Virtual IO Layer Task with a pointer to
this structure. At the end optionally the HAL Library re-
turn value is returned if the function is non-void. A recap of
the embedding of this function is shown in right top corner
of Figure 2.

Back End Subset

The back end (or call back functions) is the part of the
library meant to be called by the Virtual IO Task. For each
front-end function, there is one corresponding back-end one
that takes in input a single argument, a void pointer. Its
body contains a declaration of the HAE structure written
for the corresponding front-end function. The void pointer
is then cast in this structure, arguments are then used to
call the original HAL function. When the HAL Library call
ends up, the return argument is written in the structure,
that still resides in the user-mode stack then control return
to the Virtual IO Task. Then the Virtual IO Task suspends
its execution waiting for the next call.

This architecture has two advantages: (1) the ease of use,
the programmer does not need to learn a new interface to
use the HAL. (2) All front-end calls and back-end calls have
the same format, so they can be written by a programmer
or generated by an automatic tool.

To Handle DMA asynchronous calls and to get notified
when a DMA transfer is completed, we use the Queue re-
turned when the user mode task subscribes the Virtual IO
Layer. For security it is important that all the interrupt ser-
vice routines (ISR) are implemented by the system. More-
over inside each service routine there is a Queue Send opera-
tion used to notify the task that wants to use the DMA that
the routine is called. To correctly notify the corresponding
user mode queue a reference table is used. This reference ta-
ble is set by the back-end, when the user mode task invokes
one of the DMA HAL Library functions.

3.4.2 Virtual IO Task
The Virtual IO Task is a privileged task that handles

the communication from user mode tasks to peripherals. It
starts when the Virtual IO layer is initialized, typically at
system boot time. The communication is handled via Di-
rect Task Notification. When started this task hangs in
suspended state waiting for a call from one of the user mode
registered tasks through the front-end.

The priority of this task is higher than all user mode tasks.
Thus, when the notification is thrown from the front-end,
the user mode task waits that the Virtual IO task ends
its execution. Therefore even if task notifications are asyn-
chronous, the call to HAL Library is blocking because in
FreeRTOS the preemption of the scheduler is priority based.

The body of this task, besides the Task Notify Wait, con-
sists of an Access Control List (ACL), shown in Figure 2,
that checks that the callee HAL Library function can be in-

voked by the caller. The pointer to HAE Structure is cast
to a generic structure common for all HAE Structures (we
always know that the first two fields are fixed: the user-
mode task task handler and the pointer to the call-back
function), then the ACL permission check occurs. if the
checking passed, the back-end function is invoked.

3.5 Dynamic Linking
The dynamic linking permits a task to be added to the

run time tasks without rebooting the system. We imple-
mented dynamic linking to demonstrate the usage of the
whole system. Therefore, we implemented a privileged task
in charge of dynamic linking other user mode tasks. Tasks
are cross-compiled and unresolved dependencies to system
library calls are run-time linked and the task is added to
scheduler execution queue. The library in charge of dynamic
linking usermode tasks is derived from the work of [4]. In
Flash memory we reserved a section to store these new tasks
binaries to be linked and then added to FreeRTOS scheduler
ready task list.

4. EXPERIMENTAL RESULTS
In this section we present results in term of performance

and memory footprint. All tests were conducted on an
STM32F411RE NUCLEO-64 Board [18]. This is a plat-
form by ST Microelectronics, it embeds an ARMR© 32-bit
CortexR©-M4 CPU running up to 100 MHz with FPU and
MPU. It features 512 KB of Flash memory and 128 KB of
RAM memory. In our software setup we use the new driver
for accessing hardware peripherals provided by ST called
Hardware Abstraction Layer Driver (HAL Driver) [19].

We identified two main use cases, i.e. ways to access pe-
ripherals in a Microcontroller unit, that must be considered
separately:

1. Atomic Action:
This is the case in which we call a HAL Driver routine
each time we access a peripheral. In other words, we
just want to access once an IO address or we may ac-
cess it in a loop, but call does not involve peripheral
transfer after it. An example of this behavior is when
we want to configure or read a GPIO PIN, or write
something on the UART.

2. Continuous Action (or Tunneling Action):
In this second case we consider all the peripheral us-
ages that involve the use of DMA. For example when
we want to set Analog to Digital converter and read it
at regular intervals by the DMA.

4.1 Virtual IO Layer Timing
The time of accessing a peripheral using the Virtual IO

Layer is reported in Table 2. The first row gives the cycles
to get the task handle through a system call. The MPU -
xTaskGenericNotify() is the direct task notification system
call. The third row reports the cycles required to notify the
Virtual IO Task. The last row gives the number of cycles to
return control, after the HAL Driver call back to the User
mode task. The cycles measurement has been done with
the DWT CYCCNT hardware cycle count register of the
Cortex-M4 MCU.

It is worth mentioning that with this paradigm, continu-
ous mode operations pay the overhead just once, when the
setup of the peripheral or IO is performed. Thus when the
DMA is working the only overhead is the queue used to syn-
chronize the ISR with the user mode task.

The cycles overhead to check if the function that the user
mode task wants to use is permitted by the ACL grows lin-
early with the number of checks that occurs. In Table are



Virtualization Step VIO (Cycles)
getTaskHandle 97
MPU xTaskGenericNotify 47
xTaskNotify + CS 490
Notify wait + CS back 293
TOTAL 926

Table 2: Timing overhead of accessing the IO using
the Virtual IO Layer in Cycles

Figure 3: Overhead of the control in the ACL.

we report the the overhead As expected the number of cy-
cles are proportional to the number of function addresses to
verify.

4.2 Virtual IO Layer Memory Footprint
The overhead in terms of memory footprint is described

in Table 3. We show the code size of the library and of the
Virtual IO Task separately, in case the compiler is invoked
with the flag for performance (-O3) or space (-OS) optimiza-
tion. The Size of the Virtual IO Library is measured with
an average size of 50 functions (front end + back end). As
we can notice from the results, the memory footprint is min-
imal, even if it scales with the number of driver functions
that we want to provide to the user mode tasks.

Optimization VIO Task VIO Library
-O3 592 B 2876 B
-OS 464 B 2314 B

Table 3: Virtualization Layer code size

As a concluding note, it is important to stress the fact that
the runtime of tasks when not interacting with the IOs is
exactly the same as native FreeRTOS tasks, with no perfor-
mance overhead for memory protection as the MPU is com-
pletely transparent from the performance viewpoint. This is
very similar to what happens in virtual machine execution
for high-end cores, and in sharp contrast with interpreted
virtual machines or even JIT-based systems.

5. CONCLUSIONS
In this paper we have presented a virtualization layer for

low-cost microcontrollers which creates a separation between
kernel mode and user mode and protects the hardware re-
sources from misuses when concurrent tasks or function are
written by different developers. Moreover we demonstrated
the effectiveness of a mechanism capable to execute new run-
time code, without the need of system reboot. We have
focused on small size of the framework and on lower over-
head, because targeted for low-cost and limited computing
capabilities microcontrollers such as the ones designed for
IoT and WSN. Experimental results demonstrate that the
overhead is limited and time delay is negligible considering

the typical application scenarios. Future works will extend
dynamic linking toward multiple upload channels and will
implement different permission policies to peripherals from
different user mode tasks.

6. ACKNOWLEDGMENTS
This work was partially supported by EU Project Eu-

roCPS H2020-ICT-2014 under Grant 644090 and in collab-
oration with STMicroelectronics.

7. REFERENCES
[1] Lu Tan et al. . Future internet: The internet of things.

In 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE),
volume 5, pages V5–376–V5–380, Aug 2010.

[2] Ala Al-Fuqaha et al. . Internet of things: A survey on
enabling technologies, protocols, and applications.
IEEE Communications Surveys Tutorials,
17(4):2347–2376, Fourthquarter 2015.

[3] Shah Bhatti et al. . Mantis os: An embedded
multithreaded operating system for wireless micro
sensor platforms. Mob. Netw. Appl., 10(4):563–579,
August 2005.

[4] Simon Holmbacka et al. Lightweight framework for
runtime updating of c-based software in embedded
systems. In Presented as part of the 5th Workshop on
Hot Topics in Software Upgrades, Berkeley, CA, 2013.
USENIX.

[5] ARM Virtualization Extension.
https://www.arm.com/.

[6] ARM Security Technology - Building a Secure System
using TrustZone Technology. Whitepaper, April 2009.

[7] T. Alves and D. Felton. Trustzone: Integrated
hardware and software security-enabling trusted
computing in embedded systems. White paper, arm,
july 2004.

[8] Micropython website. http://micropython.org/.
[9] PyMite. https://wiki.python.org/moin/PyMite.

[10] Oracle Java ME Embedded. http://www.oracle.com/.
[11] Niels Brouwers et al. . Darjeeling, a feature-rich vm

for the resource poor. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’09, pages 169–182, New York, NY, USA,
2009. ACM.

[12] Espruino Javascript Interpreter.
http://www.espruino.com/.

[13] Embedded power driven by Lua.
http://www.eluaproject.net/.

[14] Alessandro Bogliolo et al. . Virtualsense: A java-based
open platform for ultra-low-power wireless sensor
nodes. International Journal of Distributed Sensor
Networks, 2012, 2012.

[15] Contiki: The Open Source OS for the Internet of
Things. http://www.contiki-os.org/.

[16] Michael P. Andersen et al. . System design for a
synergistic, low power mote/ble embedded platform.
In Proceedings of the 15th International Conference on
Information Processing in Sensor Networks, IPSN ’16,
pages 17:1–17:12, Piscataway, NJ, USA, 2016. IEEE
Press.

[17] FreeRTOS website. http://www.freertos.org/.
[18] ST Microelectronics Nucleo Boards.

http://www.st.com/.
[19] ST Microelectronics Hardware Abstraction Layer

Driver. http://www.st.com/.

https://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://micropython.org/
https://wiki.python.org/moin/PyMite
http://www.oracle.com/us/technologies/java/embedded/micro-edition/overview/index.html
http://www.espruino.com/
http://www.eluaproject.net/
http://www.contiki-os.org/
http://www.freertos.org/
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo.html?querycriteria=productId=LN1847
http://www.st.com/content/ccc/resource/technical/document/user_manual/2f/71/ba/b8/75/54/47/cf/DM00105879.pdf/files/DM00105879.pdf/jcr:content/translations/en.DM00105879.pdf

	Introduction
	Related Works
	Software Architecture
	Real Time OS
	FreeRTOS Additions
	MPU Extension
	Safety Extensions
	Graceful Task Termination - Killer Task

	Software Protection
	IO Virtualization Architecture
	Virtual IO Library
	Virtual IO Task

	Dynamic Linking

	Experimental Results
	Virtual IO Layer Timing
	Virtual IO Layer Memory Footprint

	Conclusions
	Acknowledgments
	References

