
Enabling power-awareness for the Xen Hypervisor⇤

Matteo Ferroni
Politecnico di Milano
matteo.ferroni@polimi.it

Juan A. Colmenares
Samsung Research America

juan.col@samsung.com

Steven Hofmeyr
Lawrence Berkeley National

Laboratory
shofmeyr@lbl.gov

John D. Kubiatowicz
University of California

Berkeley
kubitron@cs.berkeley.edu

Marco D. Santambrogio
Politecnico di Milano

marco.santambrogio@polimi.it

ABSTRACT
Virtualization allows simultaneous execution of multi-tenant
workloads on the same platform, either a server or an em-
bedded system. Unfortunately, it is non-trivial to attribute
hardware events to multiple virtual tenants, as some sys-
tem’s metrics relate to the whole system (e.g., RAPL en-
ergy counters). Virtualized environments have then a rather
incomplete picture of how tenants use the hardware, limit-
ing their optimization capabilities. Thus, we propose XeM-
Power, a lightweight monitoring solution for Xen that pre-
cisely accounts hardware events to guest workloads. It also
enables attribution of CPU power consumption to individ-
ual tenants. We show that XeMPower introduces negligible
overhead in power consumption, aiming to be a reference
design for power-aware virtualized environments.

Categories and Subject Descriptors
H.4 [Software and its engineering, Virtual machines,

Performance monitoring]

1. INTRODUCTION
In the last few years, embedded systems have experienced

a shift from microcontrollers to multi-core processors, as
these have become cheaper, smaller, and less power-hungry.
This shift brings two advantages: 1) multiple embedded
applications can be consolidated on the same System-on-
Chip (SoC), improving the overall resource utilization, and
2) some applications can exploit concurrency and parallelism
to obtain better performance.

In the context of embedded systems, hardware-assisted
and software virtualization technologies have been developed
to allow colocated applications to share physical resources
while having strong security and isolation [24, 26, 22].

Those technologies seek to o↵er a stable and predictable
execution environment to make it easier for embedded ap-
plications to meet di↵erent Quality of Service (QoS) require-
ments.

The virtualized runtime can be a full-fledged guest Oper-
ating System (OS) or more suitable to embedded systems, a
light-weight OS (e.g., [14, 25]), customized for a specific ap-
plication. Applications executing in such runtimes generally
have di↵erent performance objectives, such as: hard and
soft deadlines, and peak throughput. Moreover, they are

⇤EWiLi’16, October 6th, 2016, Pittsburgh, USA. Copyright
retained by the authors.

often di↵erent from one another in terms of workload lim-
itations (i.e., memory-bound, I/O-bound, or CPU-bound)
and evolving load patterns (e.g., algorithmic phases).

Unfortunately, this high heterogeneity comes at a price:
The isolation between simultaneously resident applications,
enforced by virtualization, shifts the burden of optimization
from developers to the hypervisor itself because only a priv-
ileged arbiter can thoroughly observe what happens on the
bare metal. Hence, it becomes clear that a smart online

monitoring strategy is necessary to accurately observe and
model applications’ behavior to guarantee requirements and
optimize physical resources utilization.

Since power consumption is currently a key technological
limitation [13], recent works propose approaches to optimiz-
ing power [9], while maintaining Service Level Agreements
(SLAs) with each hosted guest. Again, these approaches
have an essential need for precise and thorough observation

of both hardware and guests’ behavior over time. Lacking
appropriate tools, many of these approaches employ custom
monitoring solutions or rely on outdated tools that do not
provide support for the latest hardware monitoring features.
Often, these ad-hoc approaches overlook the impact of mea-
surements on the overall system’s behavior.

Seeking to fill the gap, this paper proposes XeMPower, a
lightweight hardware and resource monitoring solution for
the Xen hypervisor [6]. It is meant to be agnostic to the
hosted applications, and results show it incurs negligible
power consumption overhead. XeMPower has been released
as open source,1 and it aims to be a reference design for
future works in the field of virtualized systems.

To prove its e↵ectiveness, we present a use case in which
XeMPower precisely accounts hardware events to virtual
guests, enabling real-time attribution of CPU power con-
sumption to each guest or“domain”.2 XeMPower starts with
socket-level energy measurements through the Intel Running
Average Power Limit (RAPL) interface [23], and then uti-
lizes a performance-counter-driven model to account for the
proportional uses of energy by simultaneously resident do-
mains over time. This proportional attribution of power is
XeMPower’s secret sauce – the contribution is evaluated by
measuring a subset of architectural performance counters
related to each domain, but regardless of the physical core.

The paper is organized as follows. Section 2 presents an

1Available at: https://bitbucket.org/necst/xempower-4.6
2Adopting Xen terminology, the remainder of this paper will
refer to virtual guests as domains.



overview of XeMPower. Section 3 details the implemen-
tation of the tool, while Section 4 shows how to attribute
power to each domain. Next, Section 5 investigates the per-
formance overhead of XeMPower while its limitations are
discussed in Section 6. Finally, Section 7 presents the re-
lated work and Section 8 concludes.

2. PROPOSED APPROACH
XeMPower is a lightweight monitoring solution for Xen

designed to: 1) provide precise attribution of hardware
events to virtual tenants, 2) be agnostic to the mapping
between virtual and physical resources, hosted applications
and scheduling policies, and 3) add negligible overhead.

Our approach uses hypervisor-level instrumentation to
monitor every context switch between domains. More pre-
cisely, the monitoring flow proceeds as follows:

A. At each context switch and before the domain cho-
sen by the scheduler starts running on a CPU, we be-
gin counting the hardware events of interest. From
that moment the configured Performance Monitoring
Counter (PMC) registers in the CPU store the counts
associated with the domain that is about to run.

B. At the next context switch, the PMC values are read
from the registers and accounted to the domain that
was running. The counters are then cleared for the
next domain to run.

C. Steps A and B are performed at every context switch
on every system’s CPU (i.e., physical core or hardware
thread). The reason is that each domain may have
multiple virtual CPUs (VCPUs). Socket-level energy
measurements are also read (via Intel RAPL interface)
at each context switch.

D. Finally, the PMC values are aggregated by domain
and finally reported or used for other estimations (e.g.,
power consumption per domain).

Figure 1 illustrates the monitoring flow described above.
Steps A and B for domains 1, 2, and 3 are shown at every
context switch on the left side of the figure. On the right
side, steps C and D are performed by the XeMPower daemon

and Command Line Interface (CLI) program, both in Dom0.
Steps A and B allow us to meet the first requirement (pre-

cise event attribution), while the second requirement (being
agnostic) is satisfied by steps C and D. Regarding the third
requirement of low overhead, we empirically confirm that
XeMPower meets this requirement in Section 5, while the
technical aspects enabling that are discussed in Section 3.

3. IMPLEMENTATION
XeMPower implementation is inspired by XenMon [12],

a performance monitoring tool for Xen. Unlike XeMPower
and other works discussed in Section 7, XenMon does not
collect PMC reads. Nevertheless, since XenMon’s authors
report a maximum overhead of 1-2%, their implementation
approach was an interesting starting point for our work and
a reasonable baseline to compare our overhead with.

XeMPower operates at two levels (see Figure 1). At the
first level, PMC reads are collected inside the Xen kernel
and then aggregated by the XeMPower daemon running in

X
e
M

P
o
w

e
r 

C
L
I

A1

1

B1

A2

2

B2

A1

1

B1

A3

3

B3

A2

2

1

A1

Core 0 Core N
T

im
e B2

…

… …

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

X
e
M

P
o
w

e
r 

D
a
e
m

o
n B2

B2

B1

B1

B3

B2

B2

B1

B1

B3

Xen Kernel Dom0

Hardware events per core, 
energy per socket

 

…

Figure 1: Monitoring flow of XeMPower.

Dom0, while at the second level, a CLI program reports ag-
gregated values. In this section, we describe implementation
details of the components forming the proposed toolchain.

3.1 Xen Kernel Instrumentation
Xen runs a separate scheduler instance on each CPU,

and each scheduler instance has its own queue contain-
ing runnable VCPUs of domains [8]. Xen kernel’s sched-

ule() function3 preempts the currently running VCPU
(scheduler-independent), chooses the VCPU that will run
next (scheduler-dependent), and then makes the chosen
VCPU run (scheduler-independent). Hence, this function is
a suitable place to incorporate the steps A and B presented
in Section 2.

Even though there are libraries and APIs (e.g., PAPI [7])
that give developers access to hardware events indepen-
dently from the underlying architecture, we decided to di-
rectly use RDMSR and WRMSR assembly instructions to set the
count of desired hardware events as well as read and clear
the CPU’s PMC. The reason is that these operations are
performed at every context switch and we want the over-
head to be as low as possible at the kernel level, in terms
of execution time and memory footprint. We then accept
the trade o↵ and tie the current implementation to the In-
tel instruction set; however, other architectures (e.g., ARM
and AMD) can be supported by modifying the registers ad-
dresses at compile time.

Our current XeMPower implementation only counts ar-

chitectural performance monitoring events. We made that
decision because these events have consistent visible behav-
ior across processor implementations [5]. Moreover, previ-
ous work shows that they are the most significant metrics to
correlate CPU power consumption [28], which is the focus
of our motivating use case in Section 4. Since the available

3Source code: xen/common/schedule.c



Event Mask Mnemonic Register mapping

Instruction Retired IA32_FIXED_CTR0

UnHalted Core Cycles IA32_FIXED_CTR1

UnHalted Reference Cycles IA32_FIXED_CTR2

LLC Reference IA32_PMC0

LLC Misses IA32_PMC1

Branch Instruction Retired IA32_PMC2

Branch Misses Retired IA32_PMC3

Table 1: Monitored hardware events [5]

PMCs are limited (e.g., 8 per core and 4 per hardware thread
on Intel Sandy Bridge 2nd Gen processors), we map some
monitoring events onto 4 PMCs and others are counted us-
ing auxiliary fixed-function counters. Table 1 summarizes
the monitored events and their register mapping.

Regarding power monitoring, Intel RAPL interface pro-
vides dedicated read-only registers that can be accessed like
standard PMCs. These are available since Sandy Bridge
2nd generation processors and provide CPU power measure-
ments with a time granularity of 1ms approximately. XeM-
Power currently samples the register MSR_PKG_ENERGY_STA-
TUS, which accumulates the actual energy consumption (in
Joules) of the whole processor package; the average power
consumption is then easily obtained as energy/time for the
time window considered. For the moment, we decided not
to sample the other RAPL power planes (related to on-
chip DRAM and “uncore” devices) because their availability
varies across di↵erent processors.

Finally, we need to expose the collected data to a higher
level. For that, we use xentrace [8], a lightweight trace
capturing facility present in Xen that can record events at
arbitrary control points in the hypervisor. We tag every
trace record with the ID of the scheduled domain and its
current VCPU, as well as a timestamp to be able to later
reconstruct the trace flow.

3.2 XeMPower Daemon
The stream of trace records produced by xentrace flows

from the Xen kernel to the XeMPower daemon running in
Dom0 (see Figure 1). The daemon, a user-space program
written in C, receives the records and performs aggregation
operations on them. Note that we do not use the xentrace

user-space tool, as it can produce a very large amount of
data that may potentially cause intense disk writes. Our
daemon directly accesses xentrace memory bu↵ers, to avoid
any additional access to disk.

We defined two bitmasks, TRC_POWER_PMC and
TRC_POWER_RAPL, to di↵erentiate trace records with
PMC and RAPL events in the xentrace bu↵ers (one per
hardware thread). These bu↵ers are constantly monitored
by the XeMPower daemon – when a new record arrives, a
callback function is invoked to process and store it.

The XeMPower daemon performs aggregations in three
stream processing stages. First, records are grouped in tum-
bling windows with a configurable time interval. Second,
in each tumbling window an aggregation is performed per
hardware event. In this stage, the deamon also stores the
di↵erence between the values of the RAPL energy counter
at the beginning and the end of the tumbling window. Fi-
nally, in each tumbling window and for each hardware event

PMCs are collated per domain. Note that after aggregating
the records the notions of physical and virtual CPUs disap-
pear, bringing about a hardware-agnostic data structure.

The XeMPower daemon allocates a shared memory region
to store a configurable number of tumbling windows in a cir-
cular bu↵er. Processes other than the deamon can only read
from the region. Shared access to the tumbling windows al-
lows multiple front-end applications to read and display dif-
ferent statistics from the same data. The tumbling window
time interval, the capacity of the circular bu↵er of tumbling
windows, and other configuration parameters can be speci-
fied at compilation time. Currently, the default value for the
tumbling window interval is 100 ms and the circular bu↵er’s
capacity is 100. These values are used in our experiments
reported in Section 5.

3.3 XeMPower Command Line Interface
XeMPower CLI is a basic command line tool written in

Python. It periodically scans the tumbling windows pro-
duced by the XeMPower deamon (in the shared memory
region), and performs aggregations in two time intervals:
every second and every 10 seconds. It is also in charge of
converting the RAPL counter values into energy consump-
tion values (in Joules). The conversion factor is given by
the MSR_RAPL_POWER_UNIT register, which is architecture-
specific and can be read once when the XeMPower deamon is
started. The socket power consumption is then obtained as
the ratio of the energy consumption and the considered time
interval. XeMPower CLI is designed to show live statistics
on console or to log them into a file for a later processing.

4. USE CASE: PER-DOMAIN CPU POWER
ATTRIBUTION

As a motivating use case, we describe how XeMPower can
perform per-domain attribution of CPU power consumption.

Zhai et al. [28] examined multiple metrics (such as in-
struction counts, and last-level-cache references and misses)
in a wide range of microbenchmarks, including a busy-loop
benchmark (high instruction issue rate), a pointer chasing
benchmark (high cache miss rate), a CPU and memory in-
tensive benchmark (to mimic virus behavior), and a set
of bubble-up benchmarks that incur adjustable amounts of
pressure on the memory systems. They concluded that non-
halted cycle is the best metric to correlate power consump-
tion (linear correlation coe�cient above 0.95). Such high
correlation suggests that the higher the rate of non-halted
cycles for a domain is, the more CPU power the domain
consumes.

We then decided to use this result along with the data
produced by XeMPower. The approach is simple:

1. For each tumbling window, XeMPower CLI calculates
the power consumed by the whole socket, while XeM-
Power daemon calculates the total number of non-
halted cycles (one of the PMC traced).

2. Since we have the number of non-halted cycles per do-
main, we estimate the percentage of non-halted cycles
for each domain over the total number of non-halted
cycles. This percentage is adopted as the contribution
of each domain to the whole CPU power consumption.

3. Finally, we split the socket power consumption pro-



portionally to the estimated contributions for each do-
main.

The proposed approach works well even when CPU power
states (i.e., C-states and P-states) are enabled. XeMPower
is not a↵ected by CPU voltage and frequency scaling, as it
continues to measure the actual socket power consumption
and to trace and account hardware events consistently.

Note that we do not claim that this trivial use case is
highly accurate. Instead, we just present it as an exam-
ple of how XeMPower enables online attribution of coarse-
grained measurements to multiple tenants on a virtualized
environment, thanks to per-domain accounting of hardware
events.

5. EXPERIMENTAL RESULTS
XeMPower aims to be the tool of choice for any comput-

ing system demanding precise and thorough observations of
hardware events attributed to domains in Xen. Since the
tool is meant to continuously provide statistics at run-time,
one of its key requirements is to add negligible overhead to
the monitored system. Therefore, in this section we empir-
ically show that XeMPower monitoring components incur
very low overhead under di↵erent configurations and work-
load conditions. We defined the overhead metric as the
di↵erence in the system’s power consumption while using
XeMPower versus an o↵-the-shelf Xen 4.6 installation.

5.1 Experimental Setup and Test Cases
Our test platform is a machine equipped with a 2.8-

GHz quad-core Intel Xeon E5-1410 processor (4 hardware
threads) and 32GB of RAM. We use a Watts up? PRO me-
ter [4] to independently monitor the entire machine’s power
consumption without being influenced by the system config-
uration in use.

We conduct our experiments under three system configu-
rations: 1) the baseline configuration uses o↵-the-shelf Xen
4.4, 2) the patched configuration uses Xen modified as de-
scribed in Section 3 without running the XeMPower dae-
mon, and 3) the monitoring configuration is the same as the
patched configuration but with the XeMPower daemon ac-
tually running and reporting statistics to an attached con-
sole. In all three configurations we assign a single virtual
CPU (VCPU) and 4GB of RAM to Dom0, and also dedi-
cate physical core 0 to it. Dedicating core 0 to Dom0, besides
adhering to Xen best practices [2], results in that any com-
putational overhead introduced by XeMPower monitoring
phase in Dom0 can be measured as an increment in power
consumption on core 0 and in the whole system.

We consider four runtime scenarios: an idle scenario in
which the system only runs Dom0, and the running-n sce-
narios, where n = {1, 2, 3} indicates the number of guest do-
mains in addition to Dom0. Each guest domain repeatedly
runs a multi-threaded compute-bound microbenchmark4 on
three VCPUs and uses a stripped-down Linux 3.14 as the
guest OS. The idea in the running-n scenarios is to stress the
system with an increasing number of CPU-intensive tenant
applications, thus increasing the amount of data traced by
the Xen kernel and collected in Dom0.

4CoEVP, a simplified proxy material science applica-
tion from the ExMatEx Center. It is available at
https://github.com/exmatex/CoEVP.

Table 2: Mean power consumption (µ), in Watts,

for the pinned-VCPU test case, scenarios idle and

running-{1,2,3}, and configurations baseline (b),

patched (p), and monitoring (m). Mean power values

are reported with their 95% confidence interval.

baseline (µb) patched (µp) monitoring (µm)
idle 34.10 ± 0.05 33.72 ± 0.05 33.83 ± 0.05
running-1 56.03 ± 0.09 56.07 ± 0.11 56.19 ± 0.08
running-2 66.14 ± 0.11 66.30 ± 0.06 66.56 ± 0.09
running-3 74.62 ± 0.07 74.60 ± 0.11 74.88 ± 0.29

Table 3: Mean power consumption (µ), in Watts,

for the unpinned-VCPU test case, scenarios idle

and running-{1,2,3}, and configurations baseline (b),

patched (p), and monitoring (m). Mean power values

are reported with their 95% confidence interval.

baseline (µb) patched (µp) monitoring (µm)
idle 34.32 ± 0.30 34.14 ± 0.08 34.19 ± 0.05
running-1 70.82 ± 0.10 71.20 ± 0.09 70.78 ± 0.10
running-2 72.99 ± 0.09 73.55 ± 0.12 73.17 ± 0.10
running-3 73.68 ± 1.09 74.67 ± 0.27 74.10 ± 0.09

Finally, we define two test cases for the running-n sce-
narios. In the pinned-VCPU case, each guest domain has
each VCPU assigned to a dedicated physical CPU. In the
unpinned-VCPU case, on the other hand, the guest domains
are assigned VCPUs with no physical mapping (i.e., VCPUs
can migrate between physical CPUs). The idea is to increase
the number of context switches and thereby the amount of
traces reported to Dom0.

5.2 Results and Discussion
We compare the power that our test platform consumes

for the di↵erent scenarios and test cases under the base-

line (b), patched (p), and monitoring (m) configurations.
Under each configuration, we run the idle scenario and the
running-1,2,3 scenarios, with and without VCPUs pinned to
dedicated physical CPUs (i.e., pinned-VCPU and unpinned-

VCPU test cases). We report the system’s mean power con-
sumption (µ) in Watts over a 60-second interval. We per-
formed a set of 40 independent experiments for each [test
case, scenario, configuration] combination.

Table 2 and Table 3 present the system’s mean power con-
sumption for the pinned-VCPU and unpinned-VCPU test
cases, respectively, across the considered scenarios and con-
figurations. Empirical mean power values are reported with
their 95% confidence interval.

At a glance, we can see how measurements are pretty
close. However, given the limited accuracy of the power
meter, some of them may seem misleading, e.g., the mean
power consumption of the baseline case sometimes is higher
than the others. This is the reason why we estimate an up-
per bound ✏ for the maximum overhead by performing the
following hypothesis test [18]:

T (µ) :=

⇢
H0 : µ � ✏+ µb

H1 : µ < ✏+ µb,

where a rejection of the null hypothesis H0 means that there
is strong statistical evidence that the power consumption
overhead is lower than ✏ (or equivalently, the mean µ is lower



Table 4: Estimated upper bound ✏ for the power

consumption overhead, in Watts, across the consid-

ered test cases and scenarios under the patch (p) and

monitoring (m) configurations. Parenthetical values

are the percentage overheads with respect to the

mean power consumption.

µ = µp µ = µm

pinned

idle <0.01 (<0.02 %) <0.01 (<0.02 %)
running-1 0.08 (0.14 %) 0.19 (0.34 %)
running-2 0.19 (0.28 %) 0.45 (0.67 %)
running-3 0.01 (0.01 %) 0.34 (0.45 %)

unpinned

idle <0.01 (<0.02 %) <0.01 (<0.02 %)
running-1 0.44 (0.61 %) 0.02 (0.02 %)
running-2 0.61 (0.83 %) 0.23 (0.31 %)
running-3 1.18 (1.58 %) 0.60 (0.81 %)

than the baseline mean µb increased by ✏). We compute ✏
for the considered test cases and scenarios, ensuring average
values of power consumption (µ) with confidence ↵ = 5%.

Table 4 shows the values of ✏ across the considered test
cases and scenarios for the patched and monitoring config-
urations. The values in parenthesis represent the percent-
age overheads relative to the mean power consumption (i.e.,
µp and µm, respectively). Our results indicate (with confi-
dence ↵ = 5%) that XeMPower introduces an overhead not
greater than 1.18W (1.58%), observed for the [unpinned-
VCPU, running-3, patched ] case. In all the other cases, the
overhead is less than 1W, and less than 1% in relative terms.

This is a satisfactory result when compared to a maxi-
mum overhead of 1-2% observed for XenMon [12], which we
adopted as a reference point for our XeMPower implementa-
tion. We consider this overhead a negligible and reasonable
price to pay, given the high-precision information that XeM-
Power can provide at runtime.

6. LIMITATIONS
We are actively working to bring XeMPower to the next

level. It currently o↵ers little flexibility since it monitors a
fixed set of PMCs, while we want to be able to configure the
set of monitored PMCs at runtime, as well as parametrized
tumbling windows for the per-domain attribution of CPU
power consumption. Moreover, we want to extend the tool
to deal with Non-Uniform Memory Access (NUMA) sys-
tems. We plan to evaluate the overhead introduced by such
flexibility improvements.

Additional experimental studies will involve di↵erent
hardware platforms, like ARM-based mobile systems and
microservers [1]. Moreover, XeMPower should be evaluated
with other than compute-bound workloads.

Finally, the presented approach to power consumption at-
tribution to domains is very simple, as it was a mere example
to show the tool’s potential. We are currently exploring ways
to improve its accuracy, for example with o✏ine character-
ization of both hardware and guest workloads. As shown
in [17, 28, 19], data-driven power models can be exploited
at runtime to improve the accuracy of power estimations
and to make predictions for the near future.

7. RELATED WORK
Performance monitoring and profiling has always been

crucial in every computing system over the last 30 years
[11]. The need for a constant monitoring solution has then
grown, especially in virtualization environments, where the
same hardware is shared between multiple tenants. Unfor-
tunately, every monitoring tool is a↵ected by a tradeo↵ be-
tween accuracy and overhead ; the e↵ective implementation
of these systems is then far from trivial. In the literature,
this problem has been tackled with two di↵erent approaches:
code instrumentation and performance counter monitoring.

Code instrumentation solutions, like Valgrind [20] and Ig-
Prof [10], inject extra code in the applications at compile
time and/or runtime, allowing complex analysis, e.g., on
memory and cache accesses. These tools are excellent for
an initial analysis of errors and ine�ciencies in programs,
but are not suitable for performing runtime analysis in pro-
duction, as the overhead introduced is often high [20].

Performance counter tools, on the other hand, focus
on sampling system’s events at di↵erent granularity (e.g.,
thread level, process level, set of processors, or the entire
systems). These tools provide information on hardware uti-
lization that may not be closely related to the application
domain, but their overhead can be tuned accordingly to the
actual needs [16]. They di↵er in functionality, data granu-
larity, level of abstraction, and interfaces they rely on.

Low-level performance counter libraries do not hide
architecture-specific event types from the user and lie di-
rectly on the hardware. Perf [3] and OProfile [15] are the
most popular tools available; they make use of kernel mod-
ules to access di↵erent categories of events: hardware events,
software events (context switches or minor faults), and tra-
cepoint events (disk I/O and TCP events).

Higher-level libraries (e.g., PAPI [7]) hide micro-
architecture event types behind a uniform API. They sup-
port event multiplexing to compensate for the limited num-
ber of performance counter registers that can be monitored
at a time: only a subset of the desired event sets is monitored
during subsections of a program’s execution, then results are
scaled to statistically estimate rates for the entire program.

In addition, some works in the literature focus on PMC
virtualization [27, 16, 21], providing low-level metrics to vir-
tual tenants. As XeMPower, all these solutions require to
patch Xen Hypervisor’s kernel to implement operations that
require privileged access, such as reprogramming counters or
setting up interrupt handlers.

In the context of Xen, the most common solution is Xeno-
prof [16], a system-wide statistical profiling toolkit based on
OProfile and specifically crafted for the hypervisor. It is
a valid solution to profile a standard workload running in
Dom0 or other domains in active mode (i.e., the domain
itself collects its own hardware event counters). However,
when profiling in passive mode (i.e., the domain is treated
as a “black box”), the results indicate which domain is run-
ning at sample time but do not delve more deeply into what
is being executed. Therefore, it does not satisfy the require-
ment of being agnostic to hosted applications.

Another interesting tool is Perfctr-Xen [21]. It supports
performance counter virtualization in Xen for: (1) paravirtu-
alized guest kernels, using hypercalls to communicate perfor-
mance counter configuration changes to the hypervisor; (2)
fully-virtualized guest kernels, using the “save-and-restore”
approach for all registers; and (3) a hybrid approach that of-



fers a tradeo↵ between the first two. Similar to XeMPower,
Perfctr-Xen re-programs the Performance Monitoring Unit
(PMU) configuration registers (e.g., event selectors) at ev-
ery context switch. Although this tool is good for workload
profiling inside a domain, it is not designed as a centralized
runtime monitoring solution.

8. CONCLUSION AND FUTURE WORK
We presented XeMPower, a lightweight monitoring solu-

tion for Xen that precisely accounts hardware events to vir-
tual guests. As a motivating use case, we described its use
in online attribution of CPU power consumption to individ-
ual domains. Our results show that XeMPower can provide
continuous statistics with very low overhead compared to an
o↵-the-shelf Xen installation.

As future work, we plan to adopt the tool as a starting
point and improve the accuracy of CPU power consumption
attribution to domains, considering, for example, other Per-
formance Monitoring Counters (PMCs) in the estimation of
domains’ contributions. In addition, we plan to explore the
complementary use of o✏ine characterization of both hard-
ware and guest workloads in order to predict power con-
sumption before their final deployment.

9. REFERENCES
[1] Intel Xeon processor D product family technical overview.

https://software.intel.com/en-us/articles/
intel-xeon-processor-d-product-family-technical-overview.
Accessed: 2016-07-11.

[2] Tuning Xen for performance. http:
//wiki.xenproject.org/wiki/Tuning Xen for Performance.
Accessed: 2015-11-19.

[3] The uno�cial linux perf events web-page.
http://web.eece.maine.edu/˜vweaver/projects/perf events/.
Accessed: 2015-11-13.

[4] Watts up plug load meters.
https://www.wattsupmeters.com/secure/products.php.
Accessed: 2015-11-19.

[5] Intel 64 and IA-32 Architectures Software Developer’s
Manual, volume B. 2015. 19-2.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In 19th ACM Symposium on
Operating Systems Principles, pages 164–177, 2003.

[7] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
portable programming interface for performance evaluation
on modern processors. Int. J. High Perform. Comput.
Appl., 14(3):189–204, Aug. 2000.

[8] D. Chisnall. The Definitive Guide to the Xen Hypervisor.
Prentice Hall Press, Upper Saddle River, NJ, USA, first
edition, 2007.

[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In 18th ACM
Int’l Conference on Architectural Support for Programming
Languages and Operating Systems, pages 77–88, 2013.

[10] G. Eulisse and L. Tuura. Igprof profiling tool. 2005.
[11] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A

call graph execution profiler. 17(6):120–126, 1982.
[12] D. Gupta, R. Gardner, and L. Cherkasova. Xenmon: QoS

monitoring and performance profiling tool. Hewlett-Packard
Labs, Tech. Rep. HPL-2005-187, 2005.

[13] J. Henkel, H. Khdr, S. Pagani, and M. Shafique. New
trends in dark silicon. In 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC),, pages 1–6, 2015.

[14] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov. OSv: optimizing the operating
system for virtual machines. In USENIX Annual Technical
Conference, pages 61–72, 2014.

[15] J. Levon and P. Elie. Oprofile: A system profiler for Linux,
2004.

[16] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the
Xen virtual machine environment. In 1st ACM/USENIX
Int’l Conference on Virtual Execution Environments, pages
13–23, 2005.

[17] C. Mobius, W. Dargie, and A. Schill. Power consumption
estimation models for processors, virtual machines, and
servers. IEEE Transactions on Parallel and Distributed
Systems, 25(6):1600–1614, June 2014.

[18] D. C. Montgomery and G. C. Runger. Applied statistics
and probability for engineers. Wiley. com, 2010.

[19] A. Nacci, F. Trovò, F. Maggi, M. Ferroni, A. Cazzola,
D. Sciuto, and M. D. Santambrogio. Adaptive and flexible
smartphone power modeling. Mobile Networks and
Applications, 18(5):600–609, 2013.

[20] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In 28th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 89–100, 2007.

[21] R. Nikolaev and G. Back. Perfctr-Xen: a framework for
performance counter virtualization. 46(7):15–26, 2011.

[22] D. Rossier. EmbeddedXen: A revisited architecture of the
Xen hypervisor to support ARM-based embedded
virtualization. White paper, Switzerland, 2012.

[23] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann,
and D. Rajwan. Power-management architecture of the
Intel microarchitecture code-named Sandy Bridge. IEEE
Micro, 32(2):20–27, Mar. 2012.

[24] A. A. Semnanian, J. Pham, B. Englert, and X. Wu.
Virtualization technology and its impact on computer
hardware architecture. In Eighth Int’l Conference on
Information Technology: New Generations (ITNG), pages
719–724. IEEE, 2011.

[25] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen,
J. John, H. A. Kalodner, V. Kulkarni, D. Oliveira, and
D. E. Porter. Cooperation and security isolation of library
OSes for multi-process applications. In 9th European
Conference on Computer Systems, 2014.

[26] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: Towards
real-time hypervisor scheduling in Xen. In 2011 IEEE Int’l
Conference on Embedded Software, pages 39–48, 2011.

[27] X. Xie, H. Jiang, H. Jin, W. Cao, P. Yuan, and L. T. Yang.
Metis: a profiling toolkit based on the virtualization of
hardware performance counters. Human-centric Computing
and Information Sciences, 2(1):1–15, 2012.

[28] Y. Zhai, X. Zhang, S. Eranian, L. Tang, and J. Mars.
Happy: Hyperthread-aware power profiling dynamically. In
USENIX Annual Technical Conference, pages 211–217,
2014.


