
RsaML : A Domain Specific Modeling Language for
describing Robotic software architectures with integration

of real-time properties.

Valery M. Monthe
Faculty of Sciences

University of Yaounde 1
Yaounde, Cameroon

valery.monthe@gmail.com

Laurent Nana
Lab-STICC / UMR 6285

University of Brest
Brest, France

nana@univ-brest.fr

Georges E. Kouamou
National Advance School of

Engineering
Yaounde, Cameroon

georges.kouamou@polytechnique.cm
Claude Tangha

PUCA, Yaounde-Cameroon
ctangha@gmail.com

ABSTRACT
This paper deals with the problem of expression and rep-
resentation of robotics software architectures, at a level of
abstraction high enough, and independent of the implemen-
tation platform, taking into account real-time properties.
It also addresses the problem of standard representation,
communication between domain experts, and therefore that
of reusability of these architectures. It presents RsaML
(Robotic Software Architecture Modeling Language), a Do-
main Specific Modeling Language (DSML) for robotics soft-
ware architectures that we proposed in order to solve the
problems mentioned above. The conceptual model defin-
ing the terminology, and the hierarchy of concepts used for
the description and representation of robotic architectures
in RsaML are presented in this paper. RsaML is defined
through a meta-model which represents the abstract syntax
of the language. Real-time properties of robotics software
architectures are identified and included in the meta model.
The use of RsaML is illustrated through the definition of a
robotic system and the description of its architecture with
the help of the language. The support tool used for this
work is the Eclipse Modeling Framework (EMF).

CCS Concepts
•Computer systems organization→ Robotic control;
Real-time system specification; •Software and its engi-
neering→Domain specific languages; Embedded soft-
ware; Real-time systems software;

Keywords
robotics software architecture, domain specific modeling lan-
guage, MDE, real-time and embedded system, Eclipse EMF

EWiLi’16, October 6th, 2016, Pittsburgh, USA.
Copyright retained by the authors.

1. INTRODUCTION
Robotic systems are real-time systems whose behavior, of

type ”perception, decision, action”, is founded on informa-
tion extracted from the environment with the help of sensors
(for example images captured by a camera). The informa-
tion provided by the sensors should be processed within a
bounded time interval in order to provide a new command
to the robot, and this, before the capture of a new data.

Robotic systems are generally composed of two parts: the
physical part, and the software part that allows the robot
to operate in a complex, dynamic and unstructured environ-
ment, and that affects its behavior [3]. The software part
has an architecture that is considered as the software archi-
tecture of the robotic system.

The development of robotic systems has always been a
big challenge because of heterogeneous technological aspects
involved. The development of the software part of these
systems is even more complex, for several reasons, including:

• The lack of a standard representation of robotic archi-
tectures;

• The inadequacy of generalist languages for the repre-
sentation of concepts which are specific to the field of
robotics;

• The lack of a language for the description of these
architectures. Such a language is needed to facili-
tate communication and exchanges between members
of the community, and therefore to increase the reusabil-
ity;

• The lack of tools to rapidly build these architectures
and to ensure early validation of their design.

One of the challenges of robotics today is to use well-
known and proven software engineering techniques such as
Model Driven Engineering (MDE), that are proven in the de-
velopment of traditional software, to solve these problems.
MDE provides the ability to define a domain specific mod-
eling language (graphical or textual), and to use it to build
models (architectures) and generate code from these models.

This paper presents RsaML, a Domain Specific Modeling
Language (DSML) for robotics software architectures, which



is a solution to problems mentioned above. In the second
section, we present an overview of robotic software archi-
tectures. The third section is dedicated to related work.
The fourth section deals with the RsaML language that we
proposed. The fifth section presents the experimentation of
RsaML on a sample robotic system. A discussion is pre-
sented in the sixth section. The paper ends by conclusions
and future works in the seventh section.

2. OVERVIEW OF ROBOTIC SOFTWARE
ARCHITECTURES

Robotic software architectures can be classified into four
categories based on how they structure the elements and
operations: (i)traditional centralized architectures, (ii) hi-
erarchical architectures, (iii) behavioral or reactive archi-
tectures and (iv) hybrid architectures. We describe briefly
below these different categories.

2.1 Centralized architectures
The first work on robotic control architectures enters in

this category, and were inspired from artificial intelligence,
that is, organized around decision-making and a symbolic
state of the world and the robot[5][7]. These architectures
place planning at the system center and share the axiom
that the central problem in robotics is cognition, that is to
say, the manipulation of symbols to maintain and act on
a model of the world. The world is the environment with
which the robot interacts.

2.2 Hierarchical architectures
The organizational model of hierarchical architectures, also

called deliberative architectures, center the design over the
decisional system[5][7]. These architectures are organized
in most of the proposals in several layers (also called Lev-
els) hierarchy[1][6][11]. A layer directly communicates only
with the immediatly lower layer and the next higher layer.
It breaks down a task that was recommended to it by the
higher level, into more simple tasks for the lower layer. The
highest level manages the overall objectives of the applica-
tion, while the lowest controls the robot’s actuators level[7].
These architectures typically have three layers: functional
(contains the perception of modules), Executive (in charge
of the supervision of robot tasks), decisional(in charge of
planning).

2.3 Behavioral or reactive architectures
In a reactive architecture several modules connect the sen-

sor inputs to the actuators. Each module implements a be-
havior, i.e a basic functionality of the robot associating each
input vector (the set of sensor values) to an output vector
applied to the actuators. These behaviors are called ”re-
active” because they immediately provide an output value
from a value in this entry. Inspired by observing behavior of
animals, these architectures are built according to the idea
that, a more mature behavior can emerge from a combina-
tion of a set of simple basic behaviors.

2.4 Hybrid architectures
Hybrid architectures combine the reactive capacity of be-

havioral architectures and reasoning skills (decisional) of hi-
erarchical architectures [5][7]. These architectures include a
hierarchy of layers, and reactive nested loops allowing each
layer to provide tailored responses to its dynamics.

As mentioned earlier, one of the challenges of robotics
today is to use well-known and proven software engineering
techniques. In the next section, we present an overview of
MDE, a software engineering technique, that we have chosen
in this perspective. MDE has proven its efficiency in the
development of traditional software systems.

3. RELATED WORK
More and more solutions for the use of software engineer-

ing techniques in robotics are proposed at different levels.
But these works are very recent and are not numerous. In
this section, we present a few.

In [8], Passama proposes a solution to the problem of rep-
resentation and communication of Robotic software archi-
tectures between domain experts. He proposes a specific
modeling language for the domain. This with the aim to
express and easily compare different architectures.

Xavier Blanc and al. in [2] address the benefits brought by
the MDE (Model Driven Engineering) approach to the de-
velopment of Embedded systems and robotics. They apply
this approach to develop a software system for Aibo, which
is a type of robot.

Authors of [12] address the issue of model driven engineer-
ing applied to the design of a service robot controller. They
develop a scalable modeling approach for the development of
real-time control software of a prototype of seven-axis arm
actuated by artificial muscles.

In [10], authors also address the issue of MDE process
for robotic systems. They are particularly concerned with
taking into account of non-functional properties in modeling.
Properties such as quality of service, management of real-
time resources (eg the schedulability analysis of real-time
tasks).

The work proposed in [13] applies a MDE approach to de-
sign specific domain solutions for the development of robot
control system, using subsumption architecture. It presents
a case study of the entire process: identification of domain
meta model, definition of graphic notation and code gener-
ation.

The authors of [3, 4] formulate the problem of the develop-
ment of stable software systems in the robotics field, analyze
the elements that make this problem difficult, and identify
challenges that robotics community must face in order to
build stable software systems.

In [9], authors present the contributions of model driven
approach compared to code driven approach in the develop-
ment of robotic software systems.

The works presented above deal with the application of
the MDE approach in the field of robotics software archi-
tectures. The work [8] which is devoted to the definition
of a language has some failure in relation to the problems
that we have laid in section 1: it does not represent all cat-
egories of architectures; For example, it does not take into
account some specific aspects of behavioral architectures,
such as inhibition of outputs and deleting entries. Some
properties relating to the functioning of the robot software
architectures can not be defined solely by the structural re-
lationships between concepts. Such constraints must be ver-
ified by other means, for example using the OCL language.
Some of the works presented, such as [9, 10] deal with the
MDE in robotics in general, without providing a solution to
the specific problem of representation and communication of
robotic software architectures. The work of [13] is specific



to the subsumption architecture. The study conducted by
[2] concerns a specific case of robotic system, and therefore
the meta model it proposes is limited to Aibo system. [12]
is limited to the development of software for controlling a
given prototype. Almost all these works do not address the
real-time side of these systems.

4. DEFINITION OF THE DOMAIN SPECIFIC
MODELING LANGUAGE PROPOSED

In this section we present our solution to the problem of
representation and communication of robotic software ar-
chitecture between experts. The section first presents some
challenges and describes the concepts identified for the lan-
guage. The graphical representation and constraints of the
language (meta model) are then discussed. This section con-
cludes with the real-time aspects to manage in the language.

4.1 Objectives and challenges
The development of a domain specific modeling language

begins with the identification of modeling concepts. This re-
quires to understand the functioning of the field, the notions
which are used there, how to use them and the links between
them. In our case we relied on reference documents (original
publications) of each class of architectures, and publications
in the field. Different concepts are used in each category.
Thus the main challenges are: (i) define concepts which al-
low to represent any robotic software architecture; (ii) de-
fine the types of these concepts in the model, the relation-
ship between them and especially cardinality, which allow
to respect the structural and functional aspects of these ar-
chitectures; (iii) be concise, but accurate and complete, to
avoid proposing a model dense and therefore complex, which
may be difficult to analyze and understand for end users of
the language; (iv) the opportunity to define the real-time
properties in the models that will be built.

4.2 Domain analysis : The main modeling con-
cepts

A careful study of each robotics software architecture class
was made. This initial work has resulted in a list of concepts
per architecture. Thereafter, it was question of integration
for a single list, where we would find a concept to represent
each concept used in each class of architectures. Finally,
we define a set of concepts, which are used in the different
types and examples of architectures; and which may enable
to represent any of these architectures. For a better under-
standing and ease of use of concepts in the language, we
defined a hierarchy of these. The diagram in figure 1 shows
the hierarchy of the different concepts identified.

In the diagram of figure 1, a robotic system consists of a
robot, the environment in which it operates and the software
that controls it. A robot has a central part which we call the
”body of the robot” and a set of hardware components. The
software allows it to evolve in this environment (set of physi-
cal and logical resources). The hardware components can be
either sensors, actuators, or any other devices for commu-
nicating and evolving (observation, perception, reaction) in
its environment. The software consists of a set of decision-
making components (layer, activity, database, knowledge,
etc.) and behavioral components (action, function, module,
modifier, goal, etc.). There are two types of ports: input
ports and output ports. In some architectures such as sub-
sumption, the port data can be modified by those of another.

Thus, an input port can carry multiple suppressors and an
output port several inhibitors.

Once identified, each concept was described, based on the
concept of robotics it models. Table 1 shows in alphabetical
order some of these descriptions.

Table 1: Some concepts used
Concepts Descriptions
Action basic task of the robot;
Actuator allows the robot to act on the environment
Activity task or sequence of tasks of the robot
Database database, knowledge base, etc.
Sensor allows the robot to detect its environment
Order order sent to the robot to perform a task
Knowledge data handled and how it is used
Layer level in the hierarchy of the architecture
Function set of functions implementing a module
Inhibitor allows to inhibit some outputs
Mission established set of goals, tasks and paths
Module any robotic software component
Plan sequence of actions to perform a mission
Supervisor controls plans execution
Suppressor allows to remove or edit entries

4.3 Graphical representation: the meta model
Once the concepts identified, the next step was to formal-

ize a model, which shows the way in which these concepts
are put in relationship to define an architecture. Thus, from
the list of concepts proposed in section 4.2, we identified
those of them, that are used in robotics software architec-
ture, to propose a meta model for the representation of these
architectures. It is shown in figure 2.

The diagram in figure 2 can be summarized as follows:
a robotic control software can be composed of: a database
containing a set of knowledge, several layers, and must have
one or more goals to achieve. The objective can be broken
down into sub targets reached by performing a set of activ-
ities. These activities follow a given strategy. The activities
are carried out by execution of processes that are imple-
mented in modules. The modules that are on the layers
may have several functions that implement processing. The
modules communicate through ports. Each function is a set
of actions that can be simple or contain real-time constraints
(real-time action). An action can be followed sequentially
by another or run in parallel to several others.

Once the meta model designed, it was necessary to define
a set of constraints (building rules) to control the handling
of the metal model concepts. We have defined a set of con-
straints using OCL. They are presented in section 4.4.

4.4 Definiton of constraints on the meta model
Several constraints cannot be defined by current meta-

modeling languages using only graphical elements. Thus we
defined a set of constraints for verifying and validating archi-
tectures (models) that will be built using the language(meta-
model). OCL is employed to define these constraints as so-
called well-formedness rules. In the following, we introduce
some examples for well-formedness rules in natural language
and subsequently show the corresponding OCL invariants.



Figure 1: Hierarchy of concepts used in robotic systems

−−1. Two modules that communicate must share the same
type of data on their communication interfaces.

context EntryPort
inv : self .dataType=outputport.dataType
context OutPutPort
inv : self .dataType=entryport.dataType
−−2. A module can inhibit (resp remove) the outputs (resp

entries) module of immediately lower layers.
context OutPutPort
inv : self . control−>forAll(m|m.port.module.layer.
number=self.module.layer.number−1)

Listing 1: some OCL constraints imposed on the
domain’ s meta-model

4.5 Real-time properties support
The integration of real-time properties was made at dif-

ferent levels in the definition of the meta-model. First of
all in the structure of the meta-model, by setting attributes
for specifying these real-time properties; next, through the
definition and adding of constraints to the meta model. Ta-
ble 2 describes some of these properties. These constraints
are shown in listing 2. Note that these constraints are de-
fined after laying a few assumptions. We assume that: (i)
the system response time, switching time and the generation
time of the mission plan are all zero; (ii) every action has a
limited and known time; (iii) any time other than execution
one is assumed to be zero.

−−1. If the type of module is real−time, its period and
delay must be not null .

context Module
inv : self .type=ElementType::realTime implies (delay
<>0 and period<>0)

Table 2: the real-time properties in meta model
Attributes Descriptions Concepts
MaxExecTime Maximum execution

time
layer

type type of the element (sim-
ple or real-time)

module, action,
function

period period of execution - - - - -
delay response time - - - - -
execDuration execution duration - - - - -
startDate start time action
timeUnit time unit - - - - -
execType sporadic, periodic or not - - - - -
synchroType synchronous or not function

−−2. A module is real−time if all its functions are real
−time

context Module
inv : self .type=ElementType::realTime implies (
function−>forAll(f|f.type=ElementType::realTime))
−−3. Runtimes of all modules of a layer are bounded by
the maximum execution time of the layer.

context Layer
inv : module−>forAll(m|m.execDuration<=self.
maxExecTime)

Listing 2: OCL constraints for management of real-
time properties

4.6 Implementation : metamodeling in eclipse

4.6.1 The meta model
After designing the meta model, it was implemented in

Eclipse, thanks to its Framework EMF. Once the meta model



Figure 2: Proposed meta model for the definition of robotics software architectures

built, we validated it by verifying that all the syntactic rules
of construction were satisfied (for example that we did not
forget to specify the type of an attribute).

4.6.2 Integration of OCL constraints in the meta-model
For defining OCL constraints for our meta model, we use

Eclipse OCL, a project focusing on the implementation of
the OCL standard within Eclipse. Before integrating them
to the meta model, we verified that each of our OCL con-
straints was syntactically correct, and provided the expected
result. For this, we used the evaluation interactive console
for OCL expressions, which is a tool of Eclipse OCL project.
Figure 3 shows an example of that evaluation. The result
is False in this case, because two modules (m12,m12) have
the same name.

Figure 3: Evaluation of OCL constraints

5. EXPERIMENTATIONS
We consider a very simple robotic system. It is a system

wherein the real time executive is represented by a single
processor. The latter is connected to a sensor and an actu-
ator, by means of two grabbers. The software system that

will control the robot is shown above the executive as shown
in the diagram in figure 4.

Figure 4: An example of robotic system architec-
ture[12]

We can represent a software system using the language
proposed by completing the following steps: Sensors and
actuators can be represented by corresponding sensor and
actuators concepts of our language, an action by an action,
a task by a function, the runtime system on which the real-
time controller will be executed by a Processor, other soft-
ware components (acquisition of sensor data , processing of
those data, etc.) by modules, the real-time controller with
a module, the connections between components by links be-
tween their respective ports, the memory by database and
the whole system by the Software concept. We built this
software system using the tree editor of Ecore, as shows the
figure 5.



Figure 5: Example represented using the language
in the tree editor of Ecore

6. DISCUSSION
The works presented in section 3, have each in its own

way, opened a path to the application of software engineering
techniques (especially MDE) in the field of robotics. Nev-
ertheless, as mentioned in section 3, they have some limi-
tations with respect to the issues discussed here, and the
objectives of this paper. This work has provided answers to
most of the shortcomings of the previous works:

- It has included the modifier concept (inhibitor and sup-
pressor), to handle the case of some behavioral architectures
(e.g. subsumption);

- It has integrated OCL constraints, thus enabling to ver-
ify properties specific to the area of robotics, that can not
be managed solely by the structural relationships between
concepts in the meta model;

- It does not address a particular category or a particular
architecture, but offers a language that takes into account
all categories;

- RsaML was designed, disregarding the robot (hardware)
that will be handled by the software architecture modeled;

- It incorporates elements for specifying real-time proper-
ties of the modeled system.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a DSML for describing robotic

software architectures. Robotic systems are special cases of
embedded real-time systems. An analysis of the modeling
domain was made by identifying the needs of these systems
and studying the different categories of their software ar-
chitectures. This analysis ended with the identification and
description of useful concepts for the representation of these
architectures. A hierarchy between these concepts was de-
fined. Useful attributes to take into account real-time prop-
erties have been identified, defined and integrated into the
relevant concepts. A meta model was proposed to describe
robotic software architectures. OCL constraints have been
defined and included in the meta model to check some se-
mantic rules specific to the field of robotics and check out
some real-time properties, not definable by the only model
structure. The EMF Framework was used to implement the
language. We finished by an experimentation of language
on an example of robotic system.
The proposed language allows to describe robotic software
architectures, that take into account some real-time prop-
erties. To better meet the needs that we expressed at the
beginning of this paper, we plan in our future works, to:

(i) provide a graphical editor to facilitate the representa-
tion of architecture and that would be easier to use than the
tree-based editor currently used; (ii) design a transformation
engine, to provide a complete chain from modeling to code
generation; (iii) the opportunity to transform the models
built, in other models (eg AADL), in which the verification
of real-time properties can be realized.

8. REFERENCES
[1] J. S. Albus, H. G. McCain, and R. Lumia. Nasa/nbs

standard reference model for telerobot control system
architecture (nasrem). 1989.

[2] X. Blanc, J. Delatour, and T. Ziadi. Benefits of the
mde approach for the development of embedded and
robotic systems. In Proceedings of the 2nd National
Workshop on ”Control Architectures of Robots: from
Models to Execution on Distributed Control
Architectures”, CAR, 2007.

[3] D. Brugali and M. Reggiani. Software stability in the
robotics domain: issues and challenges. In IRI-2005
IEEE International Conference on Information Reuse
and Integration, Conf, 2005., pages 585–591. IEEE,
2005.

[4] D. Brugali and P. Salvaneschi. Stable aspects in robot
software development. International Journal of
Advanced Robotic Systems, 3(1):017–022, 2006.

[5] A. El Jalaoui. Gestion Contextuelle de Tâches pour le
contrôle d’un véhicule sous-marin autonome. PhD
thesis, Université Montpellier II-Sciences et
Techniques du Languedoc, 2007.

[6] E. Gat et al. On three-layer architectures. Artificial
intelligence and mobile robots, 195:210, 1998.

[7] L. Nana. Architectures logicielles pour la robotique. In
Journees Nationales de la Recherche en Robotique,
pages 239–248, 2005.

[8] R. Passama. A modeling language for communicating
architectural solutions in the domain of robot control.
In Proceedings of the 2nd National Workshop on
”Control Architectures of Robots: from Models to
Execution on Distributed Control Architectures”, CAR,
pages 109–121, 2007.

[9] C. Schlegel, T. Haßler, A. Lotz, and A. Steck. Robotic
software systems: From code-driven to model-driven
designs. In Advanced Robotics, 2009. ICAR 2009.
International Conference on, pages 1–8. IEEE, 2009.

[10] A. Steck and C. Schlegel. Towards quality of service
and resource aware robotic systems through
model-driven software development. arXiv preprint
arXiv:1009.4877, 2010.

[11] A. Tate, B. Drabble, and R. Kirby. O-Plan2: an open
architecture for command, planning and control.
University of Edinburgh, Artificial Intelligence
Applications Institute, 1992.

[12] D. Thomas, C. Baron, and B. Tondu. Ingénierie
dirigée par les modèles appliquée à la conception d’un
contrôleur de robot de service.

[13] P. Trojanek. Model-driven engineering approach to
design and implementation of robot control system.
arXiv preprint arXiv:1302.5085, 2013.


